

Drupal Development Tricks for
Designers

Dani Nordin

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Drupal Development Tricks for Designers
by Dani Nordin

Copyright © 2012 Dani Nordin. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Julie Steele and Meghan Blanchette
Production Editor: Melanie Yarbrough

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2012-03-16 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449305536 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Drupal Development Tricks for Designers, the cover image of a springer spaniel, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30553-6

[LSI]

1331825933

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449305536

Table of Contents

Preface . v

Part I. Setting Up a Local Development Environment

1. Setting Up a Local Development Environment and Installing Drupal 3
Step 1: Install MAMP 4
Step 2: Setting Up Your Main File Structure 4
Step 3: Setting Up the Drupal files 7
Step 4: Creating the Database 8
Step 5: Install Drupal 11

2. Working on the Command Line: Some Basic Commands . 15
Commands 16
That Wasn’t So Bad, Was It? 17

3. Installing Drush . 19
Installing Drush 19
Another Option: Creating a Symbolic Link to Drush 22
Now the Fun Begins 23
Putting This in Action: Installing Modules 23

4. Getting Started with Version Control . 27
Master Versus Origin 28
Setting Up Git for Your Workflow 28
Step 1: Create an SSH Key 29
Step 2: Install Git 31
Step 3: Set Up Your Git Configuration 32
Step 4: Set Up a GitHub Account 33
Step 5: Create the Remote Repository 33
Step 6: Set Up the Local Repository 34

iii

So What Happens on a Team? 35
First Things First: The Git Workflow 35
And There We Go 36

Part II. Using Features and Drush Make to Make Development Easier

5. Using Features in Your Workflow . 39
Still More Awesomeness Awaits 44

6. Making Drupal Easier: Working with Drush Make and Installation Profiles 47
Step 1: Install Drush Make 48
Why This Is Lovely 50
Getting Started with Install Profiles 51
So Here We Are 51

iv | Table of Contents

Preface

In the first guide, Planning and Managing Drupal Projects, we walked through the pro-
cess of planning a site, figuring out the user experience, and working with content
architecture. In the second, Design and Prototyping in Drupal, we started looking at
how to create solid, user-centered design that works for a Drupal site, and how to allow
Drupal’s default behavior to guide your design decisions without defaulting to making
a site look “Drupally.”

In this guide, Drupal Development Tricks for Designers, we start looking at just a little
bit of real, honest-to-goodness, developer Ninja Magick. I’m going to share what I’ve
learned over years of building Drupal sites about setting up a development environ-
ment, getting yourself ready to collaborate on code with others, and other ways to make
site building easier so you can focus on design.

Wait, What? Why?
I realize the idea of learning how to use the command line, or set up a local development
environment, isn’t as sexy as learning how to push the envelope of Drupal design. Trust
me, I get it. But if there’s one thing that prevents Drupal designers from pushing that
envelope, it’s this: site building in Drupal isn’t as efficient if you haven’t figured out at
least a few of these tricks. Want to know why the same task takes some developers an
hour or two, while it takes some of us several hours of banging our heads against the
computer? It’s because they know how to quickly update their modules, or how to use
version control (hallelujah!) to protect themselves from bonehead mistakes.

The goal of this guide isn’t to show you everything that you can possibly do to make
development easier for yourself, or to provide a comprehensive guide to everything a
given development tool can do; the list is entirely too long, and if you’re anything like
me, you’ll get halfway down the list before you start wondering where your coffee is
and forget you ever looked at it. My goal here is simple: to help you figure out how much
of this stuff you need to make repetitive tasks in Drupal take less time. The rest, you can
figure out once you get the hang of it.

v

http://shop.oreilly.com/product/0636920020264.do
http://shop.oreilly.com/product/0636920020295.do

A Note for Windows Users
As you read through these pages, you might note that the instructions I provide here
are focused on the Mac platform. Although I don’t want to ignore my friends on Win-
dows, most of what I’ve learned about working with Drupal—particularly the com-
mand line stuff—simply works more efficiently on the Mac platform. Unfortunately,
Windows adds a rather annoying layer of complexity to most of the command line stuff
that you’ll see in these pages. Dear friends in the community have tried several times
to work in Git and Drush on Windows, and all have fought with their machines for
hours on end to get their configurations running. This complexity has led many of the
developers I know to forgo Windows altogether and get things done on Mac or Ubuntu.

If you do, however, prefer Windows, you can use a program like Cygwin to create a
UNIX-like environment on your PC; or if you’re feeling adventurous, a program like
VirtualBox will allow you to install a Linux distribution such as Ubuntu directly on
your machine, which you can then use as a virtual machine to work on command line
stuff. If you’re planning on Drush (see Chapter 3 for several reasons why you darn well
should), there’s actually a Drush for Windows installer, which you can download at
http://drush.org/drush_windows_installer.

The Designer’s Coding Toolkit
Every Drupal designer and developer has their own set of preferred applications for
making their work easier; the following is a list of applications I personally use, and
that many of my friends in the Drupal community also prefer. If you’ve got something
to add to this list, I’d love to hear it! Leave a comment on the website: http://drupalfor
designersbook.com.

MAMP
MAMP creates a virtual Apache server directly on your Mac. Using it, you can proto-
type, build and theme a Drupal site quickly on your local machine, without having to
worry about FTP servers, or people accidentally seeing your half-finished work. If
you’re working independently, or your staging server is incredibly slow, the time sav-
ings of working locally can not be understated. Working locally is also a beautiful thing
when you don’t have Internet access, or access is spotty; I once got a website halfway
to launch on a plane ride to Texas.

Dropbox
Dropbox allows you to manage files across the Internet using a folder on your desktop.
The glory of Dropbox is that it’s free (for up to 2GB), it works on any platform, and it
allows you to access your files on any machine that has Dropbox installed. I keep my
MAMP site files in a folder within my Dropbox, which allows me to work on sites from

vi | Preface

http://www.cygwin.com
http://www.virtualbox.org/
http://drush.org/drush_windows_installer
http://drupalfordesignersbook.com
http://drupalfordesignersbook.com

wherever I happen to be, no matter which computer I’m working on. The one challenge
to the Dropbox/MAMP combination is where databases are stored; although you can
easily store your site files in a Dropbox folder, the database files exist on whatever
machine you’re on, which means that you have to sync the databases from one machine
to the other if you want to do work on a different machine. This can be done using a
program like Navicat (see “Navicat” on page vii) or exporting the updated database
and using the export file to restore the database on your other machine. The Backup
and Migrate module (http://drupal.org/project/backup_migrate/) makes this process
relatively easy.

Coda
I first mentioned Coda in Design and Prototyping for Drupal, but it’s worth mentioning
again. Coda is a relatively inexpensive (under $100) application for coding websites.
Not only does it allow you to code your pages and upload them in the same screen, it
also has the ability to connect to Terminal on your remote server from within the ap-
plication, which is useful when you’re running shell commands, like Drush or Git. Most
importantly, Coda’s Clips library allows you to keep commonly used code snippets in
one place and insert them into your HTML simply by double-clicking. This is extra-
ordinarily useful in theming; I keep CSS3 snippets and Drupal theme hooks in the Clips
library, so I can add them to my template files at any time.

Terminal
Terminal is a native application in Mac OS X that lets you run command-line prompts.
If you’re going to use Git or Drush, you will need to get cozy with Terminal.

Navicat
Navicat is a Mac-based application that helps you manage databases. While you can
also use PHPmyAdmin (which comes with MAMP), what I like about using Navicat is
that it’s highly visually oriented, and you can connect—in one location—not just to
databases on your local hosting environment, but on other hosting environments as
well, as long as you’ve set up a way to access the host remotely. As hosting companies
tend to deal with remote access differently, make sure you check your hosting com-
pany’s FAQ or support wiki for how to establish remote access. With Dreamhost,
which I use, it’s generally as simple as entering the IP address you’re trying to access
the host from into an “allowed hosts” field in the user’s profile.

Git
Git is a free, open source version control system. It allows you to not only keep separate
versions of your work, it allows you to revert to an old version of your work should you
make a change and everything breaks. This is particularly important when doing

Preface | vii

http://drupal.org/project/backup_migrate/

custom work, such as theming or building a custom module, or when upgrading mod-
ules, as relatively minor things can sometimes cause everything to go haywire in your
Drupal installation. Check out Chapter 4 for more info on using and installing Git in
your development environment.

Drush
Drush is a shell program you can install on any server with a Drupal installation, in-
cluding your local development environment, which allows you to access several key
tasks from the command line. Why do this? Because once you get the hang of it, it takes
significantly less time to do many key tasks (like syncing databases, installing or up-
dating modules, and clearing caches). We’ll go deeper into the awesomeness that is
Drush in Chapter 3.

From the Trenches: Ben Buckman
Ben Buckman is a Drupal developer currently living in Buenos Aires, Argentina. His
shop, New Leaf Digital, specializes in helping Drupal teams solve tough development
problems. He is also a co-founder of Antiques Near Me, a web-based startup (built in
Drupal!) that helps connect antique collectors with shops and events near them.

Dani: You’ve always been very generous in terms of showing me how to do things in Drush,
Git, etc. What made you want to help me? Obviously, development stuff is your gig, so
what’s the benefit to passing this kind of knowledge along to non-developers?

There are probably many motivations, the most rational one being, it’s a win-win. It’s
not a threat to me if designers know Git; in fact, it makes it easier to work with them.
(As long as I keep learning new things, I’ll always be 10 steps ahead of the people I’m
teaching with the things I know better, and they’ll be 10 steps ahead in the things they
know better, and that makes for a good market/community/etc.) Proprietary knowl-
edge is short-sighted; there’s plenty of work to go around. It also makes me a go-to
resource for development questions, which has all sorts of practical benefits. If I said,
“I know how to do that but I won’t tell you,” people would think I was a jerk and not
want to work with me, and if no one knew that I knew anything, they wouldn’t know
to refer clients to me.

Dani: In terms of what you’ve shown me directly, you’ve gotten me started with Drush
and Git, and I think I sort of ended up spiraling from there into learning Drush Make and
Install Profiles. Are there any other developer-centric tools that you think designers could
benefit from?

Learn other shell tools like grep, find, tail -f, piping, loops, and writing shell scripts,
and the power is endless. You can dump text to your clipboard on a Mac by piping to
pbcopy. You can have the terminal tell you via Growl when a DNS record has propa-
gated. Or write a deployment script to push your code, ssh to the server, and pull it,
that you call with one line. The UNIX shell is like a pocket toolkit; once you know how
each tool works (and they’re usually simple on their own), you start to see all kinds of
problems as easily solved with a few commands.

viii | Preface

http://newleafdigital.com/
http://antiquesnearme.com/

[Author’s note: I have no idea what he just said.]

Other than that...Firebug or the Webkit (Chrome/Safari) Inspector has made web de-
velopment much easier. Everyone should know how to test CSS and JavaScript in the
inspector so they don’t have to keep saving-reloading-saving-reloading.

Dani: What do you think designers can gain from using these tools?

Efficiency...proficiency...People should know the things they work with. We should all
know the basics of how a car works, if we drive a car. Likewise if we use a computer,
or build things that work across networks of computers, we should know the basics of
how they work. (And the UNIX shell happens to be a good way of getting straight to
the raw underbelly of all these systems.) Developers should know their way around a
Photoshop file, and designers should know their way around Git and bash and some
PHP, and we’ll all understand each other better.

Dani: In terms of workflow management, I know that one of the things that you like as a
developer is being able to solve interesting problems in Drupal (or whatever technology
you’re using for the product). Where do you think the balance should lie? What’s the ideal
engagement for you—building the whole thing from scratch, or consulting during the early
phases of a project and then helping the design team put together the more advanced
functionality?

This is a good question, and I can’t say I’ve found the perfect balance. I’ve covered a
pretty wide range in the last few years. Lately I’ve been building some websites from
start (static designs) to finish (site in production) and I don’t usually enjoy those
projects. The challenges (basic content architecture) are mostly repetitive, and the cli-
ents don’t understand the difference between a good product and a bad one half the
time. Too much of the emotional value of those projects depends on the quality of the
client—a bad client makes those projects awful from start to finish, whereas a truly
interesting project can be rewarding even if the client is unpleasant.

The ideal engagement for me is working with designers or site builders who hit a glass
ceiling in their development skill sets and want a boost up, or developers who want
another brain to help think out of the box. Everyone should know what they don’t
know and be able to reach out to people to fill those gaps. If I teach someone to fish on
a project, they might not need me on the next project, but they’ll very likely refer me
to someone else who does. I like doing custom development on existing sites, or re-
factoring bad code (when the client understands what they’re asking for). A client re-
cently wanted functionality added to some existing but partially built modules to bridge
Webform with contextual filters in Views, with the resulting code submitted as a patch
for the community to use; I really like that kind of project. I also like doing investigative
troubleshooting. Aside from client work (and a separate startup business I co-founded),
I enjoy learning new platforms, and have been spending a lot of time lately immersed
in Node.js.

Dani: In your mind, at what point in the project does it make sense to hire a developer,
and at what point should a designer or site builder be able to figure things out on their own?

The point where your budget justifies hiring some additional help. ;) Actually, this is
probably a better question for you to answer than me, since I’m on the other side of

Preface | ix

the equation. I know that I’d pay someone to teach me the inner workings of Varnish,
because I’ve hit a wall with what I can learn by Googling. I’m often amazed what non-
developers can build with Drupal, but eventually if you want something out of the box,
you’ll need to write some code, and most designers don’t write modules. (Different side
of the brain? I don’t know.) Also I’ve written about a trend in Drupal toward higher
complexity, which brings more bugs, which means it’s more likely you’ll need a
developer to troubleshoot something.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example

x | Preface

code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Drupal Development Tricks for Designers
by Dani Nordin (O’Reilly). Copyright 2012 O’Reilly Media, Inc., 978-1-449-30553-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (http://my.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video form
from the world’s leading authors in technology and business. Technology
professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for
research, problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449305536

Preface | xi

mailto:permissions@oreilly.com
http://my.safaribooksonline.com
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://www.oreilly.com/catalog/9781449305536

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
To be honest, I’m still amazed at being given the chance to write this book. It had been
swirling around in my mind for a while, and I consider it one of life’s happier coinci-
dences that I happened to get the opportunity to write about Drupal in not one, but
two major books this year.

A brief list of thanks to the folks who have helped me in various capacities to help this
book see the light of day:

My intrepid editors, Julie Steele and Meghan Blanchette, for giving me the opportunity
to write the book, and for helping me make sense of O’Reilly’s lengthy style guide. Also
thanks to Laurel Ruma for making the introduction to Julie so I could actually sell this
crazy idea.

Todd Nienkerk of Four Kitchens (fourkitchens.com) helped me understand how the
ideas I’ve used in really tiny teams apply to the work of larger teams; his feedback as a
reviewer (as indicated by the many times I quote him throughout this text) was invalu-
able.

Ben Buckman of New Leaf Digital (newleafdigital.com) is one of the main reasons I
know any of this stuff in the first place, and was kind enough to lend a developer’s eye
to the text—including kindly nudging me about my consistent misuse of Master and
Origin in the Git chapter.

Jenifer Tidwell, a local UI Designer, was also kind enough to review this book and
provide perspective from a designer who doesn’t know Drupal. If you haven’t read her
book Designing User Interfaces (another O’Reilly Title), you should.

Various colleagues and professional acquaintances, in and out of the Drupal commu-
nity, who were kind enough to let me interview them for this series: Ben Buckman of
New Leaf Digital, Greg Segall of OnePica, Richard Banfield of Fresh Tilled Soil, David
Rondeau of inContext Design, Todd Nienkerk, Jason Pamental, Amy Seals, Mike
Rohde, Ryan Parsley, LeisaReichelt, and Andrew Burcin.

Claudio Luis Vera, for introducing me to Drupal and being a mentor, collaborator, and
commiserator for the last several years. Also, Ben Buckman of New Leaf Digital, who

xii | Preface

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

has been one of the guiding forces behind my passion to bring Drupally knowledge—
particularly Drush, Git, and other stuff—to my fellow designers.

Finally, I want to thank the niecelet, Patience Marie Nordin, for giving me someone to
be a role model to, and my husband, Nicolas Malyska, for being the most supportive
partner anyone can hope for.

About the Reviewers
Todd Ross Nienkerk, Four Kitchens co-founder, has been involved in the web design
and publishing industries since 1996. As an active member of the Drupal community,
Todd regularly speaks at Drupal events and participates in code sprints all over the
world. As a member of the Drupal.org Redesign Team, Todd helped spearhead the
effort to redesign Drupal.org and communicate a fresher, more effective Drupal brand.
He is also a member of the Drupal Documentation Team and has chaired tracks for
DrupalCon Copenhagen 2010, DrupalCon Chicago 2011, DrupalCon Denver 2012,
and DrupalConMunich 2012. Todd is currently serving as the DrupalCon global chair
for all design, user experience, and theming tracks.

Jenifer Tidwell has been designing and building user interfaces for a variety of industry
verticals for nearly two decades. She has experience in designing both desktop and web
applications, and currently designs and develops websites for small businesses. She
recently worked on redesigning the interface for Google Books. Before that, as a user
interface designer at The MathWorks, Jenifer was instrumental in a redesign of the
charting and visualization UI of MATLAB, which is used by researchers, students, and
engineers worldwide to develop cars, planes, proteins, and theories about the universe.
Jenifer blogs about UI patterns and other design-related topics at http://designinginter
faces.com/blog.

Ben Buckman started programming with the BASIC page in a kids’ magazine, and has
been building websites since 1995. In college, he studied political philosophy and
worked as a web developer. Today, his shop New Leaf Digital (http://newleafdigital
.com/) specializes in development and assistance for non-developers with the Drupal
content management system, and development with the Node.js platform. Ben has also
ridden a motorcycle across 35 US states, loves to sail, and is a co-founder of Antiques-
NearMe.com. He currently lives in Buenos Aires.

Preface | xiii

http://drupal.org/
http://designinginterfaces.com/blog
http://designinginterfaces.com/blog
http://newleafdigital.com/
http://newleafdigital.com/
http://AntiquesNearMe.com/
http://AntiquesNearMe.com/

PART I

Setting Up a Local
Development Environment

CHAPTER 1

Setting Up a Local Development
Environment and Installing Drupal

When I first started working in Drupal, I created all my sites on a staging URL (like
newsite.tzk-design.com) that lived as a subdomain of my studio website. Updating a
module meant downloading the project from drupal.org, unpacking and uploading it
to the staging URL, then running updates manually on the server. Theming meant
making changes to a file, uploading it to the server, and refreshing the page to see
changes.

While this is a totally reasonable way to work, there were a few problems with it:

• Depending on my Internet connection or the size of a file, uploading files to a server
took a significant amount of time—particularly when you add up the time spent
tweaking little bits of CSS and checking the results.

• If I had no Internet connection (for example, when traveling), or the connection
was spotty, I was screwed.

• Perhaps most importantly, everything I was doing could conceivably be found by
someone else on the Web. This left me constantly worried that people—particularly
clients—would end up randomly finding my half-finished work all over the Web.
And while there were certainly ways to avoid that, like HTTP authentication on
the server1, that alone didn’t solve the first two problems, which are much more
annoying.

When I finally figured out how to set up a local hosting environment on my laptop
(thanks to a few wonderful friends in the Drupal community, including developer Ben

1. If you are using a remote staging server, one way to prevent your dev/staging environments from being
seen is to edit the .htaccess file (included in Drupal) to require all visitors to use a password just to view
the site. You can use this tool to create the text you need to paste into the top of .htaccess: http://www
.htaccesstools.com/htaccess-authentication/. Then use this to generate the .htpasswd file that contains the
username and password: http://www.htaccesstools.com/htpasswd-generator/. Of course, I didn’t learn any
of this until after I’d discovered how to work locally, but that’s my issue, not yours.

3

http://newsite.tzk-design.com
http://drupal.org
http://www.htaccesstools.com/htaccess-authentication/
http://www.htaccesstools.com/htaccess-authentication/
http://www.htaccesstools.com/htpasswd-generator/

Buckman, interviewed earlier), I was delighted. Now I could develop sites more effi-
ciently from anywhere I happened to be with my laptop. Of course, it also meant that
I was more likely to work on vacation (ask me about the time I had to launch a website
in the middle of a yoga retreat), but overall, it’s been very worth it.

In this section, we’ll focus on creating a local development environment, and installing
Drupal 7 in a temporary folder we can access from that environment. In later chapters,
we’ll learn a bit about the command line, install Drush and use it to download and
enable some modules, and learn how to set up Git so we can keep track of changes and
revert mistakes easily. Before we start, we have to install MAMP.2 Once you download
the software package, simply drag the MAMP folder into your Applications folder and
drag the icon into your dock for easy access.

Step 1: Install MAMP
In order to set up a Drupal-friendly environment on your computer, you’ll need an
Apache server running PHP version 5 and MySQL. The good news is that you can get
this—easily and for FREE—on the Web (see Figure 1-1). If you’re on the Mac platform,
you can download MAMP at http://mamp.info for free.3

Once you have your copy of MAMP downloaded, you’ll want to set up your computer
to support development on your local server (which is called localhost).

Step 2: Setting Up Your Main File Structure
Drupal’s database and code depends on having a well-organized file structure. MAMP,
and its Windows and Linux counterparts, essentially turn a single folder in your com-
puter into a miniature development server. This means that all of the sites you develop
in MAMP will be subfolders of that main folder (e.g. /MAMP/my-crazy-awesome-site).
Once you have MAMP installed, it’s important to make sure you set the location of the
main folder to something that makes sense for your filesystem, and to back up that
folder regularly. I like to keep my MAMP folder in a Dropbox (http://getdropbox
.com), which allows me to sync my site files in the cloud and access them from any
computer I’m on.

2. If you want to try some other options, there’s also XAMPP, which is open source and available for a host
of systems, including Windows, OS X, and Ubuntu.

3. If you’re on Windows, you can download WAMP at http://www.wampserver.com. If you’re on Ubuntu,
the Lullabots have put together a video on how to install a LAMP server on Ubuntu: http://www.lullabot
.com/videos/install-local-web-server-ubuntu.

4 | Chapter 1: Setting Up a Local Development Environment and Installing Drupal

http://mamp.info
http://getdropbox.com
http://getdropbox.com
http://www.wampserver.com
http://www.lullabot.com/videos/install-local-web-server-ubuntu
http://www.lullabot.com/videos/install-local-web-server-ubuntu

Figure 1-1. Screenshot of mamp.info. You want the one on the left.

To start up MAMP and reset the main folder’s location:

1. After you’ve installed MAMP and moved the application icon into your dock, press
the MAMP icon in your dock. This will start up the MySQL server and PHP. You
should see a screen like the one in Figure 1-2.

2. Ignore the browser window that it opens up and go back to the MAMP application.

If you want to turn off the Start screen, you can change it in your
MAMP settings by unchecking “Open start page at startup” from
the Start/Stop tab in the Preferences screen.

3. Choose Preferences from the menu on the right, and go to the Apache Tab (see
Figure 1-3). Set the document root (which we’ll call the “web root” going forward)
to something that makes sense for your filesystem (see Figure 1-3). As I mentioned
earlier, I’m using a Dropbox for my files.

Step 2: Setting Up Your Main File Structure | 5

http://mamp.info

When starting up MAMP for the first time, you may get a dialog asking
you if you want to use MAMP or MAMP Pro. If you get this dialog,
choose MAMP instead of MAMP Pro. For most Drupal development,
the free version of MAMP will be more than sufficient.

Dropbox is available at getdropbox.com, and it allows you to store up to 2GB of data
for free, which is synced over the Web. If you don’t have a ton of large files to store,
it’s an easy way to keep your data available to you no matter what machine you’re on.
If you build sites using multiple machines, however, you also need to make sure to sync
your databases among those machines; MAMP keeps the databases you create in

Figure 1-2. The MAMP application screen

Figure 1-3. Setting up our document root

6 | Chapter 1: Setting Up a Local Development Environment and Installing Drupal

http://getdropbox.com

the /Applications/MAMP/db/mysql folder of the machine you create them on, so you
may have to export a file of the site’s database using a module like Backup and Migrate
(drupal.org/project/backup_migrate), and import them into the database of the ma-
chine you’re working on at the beginning of each session. Backup and Migrate lets you
back up your site’s database and import databases from other sources; it also includes
Dropbox integration, which allows you to export the databases directly into a Dropbox
instead of on the FTP server.

Step 3: Setting Up the Drupal files
Drupal’s core files are hosted as a project on Drupal.org along with thousands of con-
tributed modules (called “projects”) that can extend the core functionality of Drupal.
Start the installation process by downloading Drupal at drupal.org/project/drupal. You
want to download the latest stable release of Drupal 7 (7.12 as of this writing).

Once you have these files downloaded, extract the Drupal folder into your MAMP
directory, and rename the folder to something that makes sense for your site. I like to
name my site folders after the client, generally using a short code for them to save time
when navigating to the site. For example, my portfolio site, tzk-design.com, is in my
MAMP folder as /tzk. For this demonstration, we’ll be using the folder name d7-demo.

It is essential that any code that you add to or customize for your Drupal
site—whether it’s modules, themes, or uploaded files—goes into the /
sites/ folder, and not into any of the core folders, e.g. the core modules
or themes folder. Not doing this could result in all your hard work being
replaced the next time you upgrade. Seriously.4

Now that you’ve extracted Drupal and put it into your MAMP directory, navigate to
the sites folder within your Drupal files. Any modules, themes, libraries, etc. that you
use to customize this Drupal site should be downloaded into the sites/all folder, in
folders named modules, themes, or libraries, depending on their purpose. If you’re using
Drush to download modules (which we’ll be doing in Chapter 3), Drush will create
those folders within the sites folder for you if they don’t exist. Because it’s awesome.

Now, to develop locally, we want to create a localhost folder within sites, which will
hold the database settings for our local Drupal installation. If you’re already cozy with
the command line, there are several ways you could set this up, including creating
multiple local sites within the same Drupal installation; however, for our purposes, we
can stick with creating a localhost folder.5 Once you’ve created that folder, navigate
into the sites/default folder and make a copy of the file called default.settings.php, move

4. All. Of. It.

5. If you plan on using the same Drupal distribution to host multiple sites (which is totally valid and
possible), you’ll need to learn how to create multiple local URLs.

Step 3: Setting Up the Drupal files | 7

http://drupal.org/project/backup_migrate
http://Drupal.org
http://drupal.org/project/drupal
http://tzk-design.com

it into your localhost folder, and rename the file to settings.php. Leave it alone for now;
you’ll need it for what happens later.

You may notice that we’re putting our Drupal configuration in a differ-
ent folder than sites/default, which is the typical way of installing Drupal.
We’re doing this because leaving sites/default where it is for now is useful
for minimizing confusion when you eventually publish the site to its
final URL. Doing this, however, means that all the changes you make
in your Drupal site will be stored in the localhost folder, and you will
need to use drushsql-sync to sync the localhost database with the de-
fault database, which will require logging into the staging server via SSH.
You can also sync the local and remote databases using a program like
Navicat (see “Step 4: Creating the Database” on page 8), or by ex-
porting the localhost database and importing it into the remote site—
both of which can be done using the Backup and Migrate module
(drupal.org/project/backup_migrate). As with all things in Drupal, there
are about 372 ways to accomplish the same goal.

Step 4: Creating the Database
Drupal stores all the information related to your site in a database. In order to install
Drupal, you need to create this database on your local MySQL server.

You can create a database using phpMyAdmin, which is free and comes with MAMP
(instructions on how to create the database using phpMyAdmin are available in “Using
phpMyAdmin” on page 10). If you prefer a more visually oriented way of dealing
with databases, Navicat, a paid software package available at navicat.com, is one of the
best programs I’ve found. Although the premium software is on the pricey side (and
you’ll need it for copying or syncing databases on multiple servers, unless you use
drushsql-sync—important when it’s time to launch your site), you can download an
inexpensive version called Navicat Premium Essentials for about $10 at www.navi-
cat.com/en/download/download.html. Both are available for Windows, Mac, and
Ubuntu. If you just want to check it out for now, you can also download Navicat as a
free trial for 30 days.

For the purposes of this demonstration, we’ll use Navicat Premium. The process in
Navicat Premium Essentials should basically be the same.

1. Open Navicat and select Connection→New Connection→MySQL from the top
menu.

2. Create your settings as shown in Figure 1-4. Your hostname is localhost, and your
username and password will both be root. Port, if you’ve left your MAMP defaults
as is, will likely be 8888. Mine has been changed to 8889, for reasons I can’t re-
member.

8 | Chapter 1: Setting Up a Local Development Environment and Installing Drupal

http://navicat.com
http://www.navicat.com/en/download/download.html
http://www.navicat.com/en/download/download.html

Figure 1-4. Connection settings in Navicat for our local MAMP server.

3. Once you’ve created the connection, open the connection by double-clicking its
name in the left column. Right-click on the connection name and select “Create
New Database” from the menu (see Figure 1-5). Give the database a name that
represents the project you’re creating; I’m going to call this one d7-demo.

Step 4: Creating the Database | 9

Figure 1-5. Right-clicking your server in Navicat gives you a handy contextual menu that’ll let
you perform key database operations.

That’s it. Done. See how easy?

Using phpMyAdmin
If you decide that you’d rather just stick with phpMyAdmin to create your database,
you can start that journey by clicking the “Open Start Page” on your MAMP home
screen (see Figure 1-6).

Figure 1-6. The “Open Start Page” button will take you to your MAMP homepage, where you
can access PHPMyAdmin.

Once you get to the MAMP Homepage, you’ll see a tiny link under the “MySQL”
heading that will take you to phpMyAdmin. Clicking that link will take you to the
phpMyAdmin interface, where you can create a database simply by typing a name into
the “Create New Database” field (see Figure 1-7). Again, we’ll call this one d7-demo.

10 | Chapter 1: Setting Up a Local Development Environment and Installing Drupal

Figure 1-7. Creating a new Database is pretty easy in PHPMyAdmin.

The new database you create will come set up with all the privileges your localhost user
needs to install Drupal. When it comes time to transfer the database from your local
server to a staging or production server, you’ll need a new database with different per-
missions—but that’s for another time. For now, we press onward.

Step 5: Install Drupal
Now that you’ve created your database, go back into your favorite browser (I use
Chrome: http://www.google.com/chrome) and go to localhost:8888/d7-demo/in-
stall.php. Choose the “standard” installation profile for now (see Figure 1-8); it will
take care of some basic configurations for you. On the next page, select English as the
installation language. If you need to install it in another language, there’s a handy link
on that screen that will show you how to do it.

Step 5: Install Drupal | 11

http://www.google.com/chrome

Figure 1-8. Choosing the “Standard” profile when installing Drupal will set you up with some basic
functionality for your Drupal site.

Now that you’ve taken care of that, it’s time to add the values for the database that we
just created. On the screen that follows, enter the values that you provided when you
created the database. In my case, the database name is d7-demo, the host is localhost,
and the username and password are both root.

You might be wondering why we’re setting up Drupal with a pretty
obviously insecure password. When you’re developing locally, security
is important, but less of an issue than when you’re developing on a
remote site. When you transfer this local version of the site to a remote
server, for staging or production, you’re actually going to create a new
database (with a stronger username and password), and sync the data
from the local database to the new remote database.

Submit the form, and Drupal will install itself within a couple of minutes. When the
installer finishes (see Figure 1-9), you’ll be able to fill in some basic site details along
with a username and email address for the administrative user account.

12 | Chapter 1: Setting Up a Local Development Environment and Installing Drupal

Figure 1-9. Once you’ve installed Drupal, you can set up some of the site’s initial configuration.

Step 5: Install Drupal | 13

The first user created in the installation process is given permission to
do everything on the site, ALWAYS. Therefore, it is strongly advised
never to use this user as your own personal account, but rather as an
administrator account, and to give it a strong password. The site might
be just on your computer now, but when you move it online, you’ll need
to make sure to preserve the user accounts. Drupal requires all email
addresses for site users to be unique, so if you have only one email ad-
dress, it makes sense to create a second email account, like
admin.user@gmail.com, that you use specifically for the administrator
account. For some email providers, like Gmail, you can also add a “+”
to the email address to create a subaccount. Drupal 7 will recognize
these as a separate address, e.g. dani+drupaladmin@gmail.com will go
to dani@gmail.com.

Congratulations! You now have an empty Drupal site, ready for content. Before we
start playing with Drupal, however, it’s time to move on to a few more things that can
make local Drupal development easier. Next up, we’ll learn just a little bit of the com-
mand line to prepare us to start working with Drush, which will help us more efficiently
download and update modules and themes.

14 | Chapter 1: Setting Up a Local Development Environment and Installing Drupal

mailto:admin.user@gmail.com
mailto:dani+drupaladmin@gmail.com
mailto:dani@gmail.com

CHAPTER 2

Working on the Command Line:
Some Basic Commands

Okay, folks, here we are: it’s time to start looking at the command line. Back when I
was a young and naïve Drupal designer, I fought passionately against the command
line, arguing that Drupal should be easy enough that I shouldn’t need to use Terminal
to get things done. And technically, many aspects of Drupal are easy enough to get
away without needing it. But, my friend, easy (or rather, easy-ish) doesn’t mean effi-
cient. Since then, I’ve made a point of learning just enough command line to get by.

Here’s why you should use the command line:

• It’s quicker. Many commands are just a few characters, and can get you to what
you need to be doing in half the time of ordinary methods. When we get into Drush
in Chapter 3, you’ll see this firsthand.

• It makes you feel like a ninja. Let’s face it: even with all the wonderful usability
enhancements that have been built into Drupal 7, working in Drupal can be in-
timidating for people who aren’t developers by training. Being able to work in the
command line, just a little bit, can be ridiculously gratifying.

• It makes developers like you. While I’ve certainly annoyed my share of de-
velopers by asking them constant questions about different command-line things,
the majority of the developers I’ve spoken to genuinely appreciate someone who’s
willing to learn the basics. For one thing, it makes their jobs easier (no constant
asking for minor things while they’re trying to solve complex code issues); for
another, it helps give you a common language.

15

Commands
Here’s a super-quick primer on command-line things you should know. Use them in
good health.

Some of these commands are a bit scary and can mess up your filesystem
if you’re not careful. Make sure to use these commands with caution,
and keep backups of your work. Luckily, we’ll be talking about backups
when we get to working with Git in Chapter 4.

~
This character (technically called a tilde; I usually call it squiggly) is your HOME
folder. On a Mac, this is usually located in Macintosh HD/Users/YOURNAME.

cd
Use this command to navigate to a particular directory in your filesystem. If you
want to navigate to your MAMP folder, for example (assuming that, like mine, it’s
located inside a Dropbox folder), you’d use the command cd ~/Dropbox/MAMP.

ls
This command will list the contents of any folder you’re in.

mkdir
This command will make a directory in whatever folder you happen to be in.

mv FILENAME DESTINATION
This command will move the file you specify into the destination you specify. It’s
also useful for renaming a file.

chmod
Use this command to modify permissions on a file or folder in a system. This com-
mand can be configured in any number of different ways, and frankly, it can be
pretty confusing. With the exception of using it to make Drush executable when I
install it on a server (see Chapter 3), I rarely use it.1

rm FILENAME
This command will remove any file you specify. Use this with EXTREME CAU-
TION; removing files willy-nilly can mess up your system.

rsync -a SOURCE DESTINATION
This command, one of my favorites, will sync two folders of your choice. It’s easiest
to use when the two folders you’re syncing are in the same main folder; for example,
if you have a staging site on a subdomain of your main site, e.g. Staging.site.com
and site.com, you could use the code rsync -a staging.site.com/ site.com/ from

1. There is, however, a pretty decent rundown of this command on Wikipedia, should you be feeling brave
today: http://en.wikipedia.org/wiki/Chmod.

16 | Chapter 2: Working on the Command Line: Some Basic Commands

http://Staging.site.com
http://site.com
http://staging.site.com
http://site.com
http://en.wikipedia.org/wiki/Chmod

your web root to sync the files—in far less time than you would need to copy them
via FTP.

Make sure you include the trailing slashes in your URLs, which
ensures that you’re copying the contents of the folders and not the
folders themselves.

That Wasn’t So Bad, Was It?
Now that we’ve got that over with, it’s time to start looking at Drush. Ready? I knew
you would be.

That Wasn’t So Bad, Was It? | 17

CHAPTER 3

Installing Drush

Drush is the Drupal Shell, a mighty library of commands that are designed to make
your life easier in Drupal. Among the many things you can do with Drush, some of the
most exciting (from a designer/site builder’s standpoint) are:

• drush dl module_name: Download any module from drupal.org. You can even
download a string of modules by separating the names with spaces.

• drush en module_name: Enable any of the modules that you just downloaded. Like
dl, you can enable a string of modules by typing a space-separated list.

• drush up: This is my single favorite thing to use Drush for, and the reason that you,
dear reader, MUST LEARN DRUSH. With this simple command, you can update
all of your modules and Drupal core in about five minutes, as opposed to the—
ahem—considerably longer amount of time it takes to do it manually.

If you’d like to see a demonstration of the merits of using Drush versus installing mod-
ules manually, check out the video “More Beer, less effort” from Development Seed:
http://developmentseed.org/blog/2009/jun/19/drush-more-beer-less-effort/. Synopsis: in-
stalling a site and a pile of modules via Drush versus manually left our hero with an
extra hour or more of time on his hands—plenty of time to celebrate with a frosty
beverage.

Installing Drush
Grab the Drush package from drupal.org/project/drush. You want to download the
tar.gz file containing the latest recommended release (see Figure 3-1).

You can also go to http://www.drush.org/resources to find a bunch of
resources related to Drush, including a handy Windows installer, for
those dear readers who work on a PC.

19

http://drupal.org
http://developmentseed.org/blog/2009/jun/19/drush-more-beer-less-effort/
http://drupal.org/project/drush
http://www.drush.org/resources

Unpack the tar.gz file into your working folder. If you’re developing locally, this could
be the Users/USERNAME folder; if you’re on a remote server (and you have shell access—
this is important), you would unpack it into the directory OUTSIDE the folder that
holds the site’s public files.

Drush works inside any directory that contains a working Drupal in-
stallation. If you’ve hosted multiple sites on the same server, you can
install Drush once on the main server, and use it by navigating (via the
command cd ~/path/to/directory) to the directory that contains the
site you want to work with.

Once you have Drush unpacked, you want to make the Drush file executable. You can
do this by using the following code:

chmod u+x /path/to/drush

Figure 3-1. The Drush project page. You can download the recommended release of any project by
clicking the “tar.gz” link.

20 | Chapter 3: Installing Drush

Where /path/to/drush is the location of your Drush folder (in my case, this is ~/drush/
drush). Once you’ve done that, you want to create an alias to Drush so you can use the
command outside of the actual Drush folder, e.g. your various Drupal installations.
This is where things get interesting, but it’s only for a moment.

You’ll start by entering the following code:

nano ~/.bash_profile

This opens an old-school text editor that will allow you to create an alias to Drush,
giving you the ability to run Drush commands from within any folder that contains a
Drupal installation. There might be one or two lines of code here, but you don’t need
to worry about those. Scroll down and make sure you’re on a new line at the end of the
file, and add the following code:

alias drush='PATH/TO/DRUSH'

So on my computer, it looks like Figure 3-2.

Figure 3-2. The .bash_profile file with our fancy new Drush alias.

Save the file using <control>-x, y (for yes) and <enter>.

If you’re interested in learning just a bit more command line, Jenifer Tidwell, a UI
designer from the Boston area, also suggests this one line trick to adding a line to
your .bash_profile. Be careful to enter the text EXACTLY AS SHOWN, or you’ll have
to go into a text editor anyway.

% cat >> ~/.bash_profile alias drush='PATH/TO/DRUSH'
click ENTER
^D
click CTRL+D

Installing Drush | 21

Once you’ve finished updating your .bash_profile, type the following:

source .bash_profile

to reload your updated .bash_profile. Now, if you type drush, you should see something
like Figure 3-3.

Figure 3-3. Look at all the fancy!

Another Option: Creating a Symbolic Link to Drush
Todd Nienkerk, of Austin’s Four Kitchens, also recommends this method for skipping
the old-school text editors (nano, vim, etc.) by creating a symbolic link using the com-
mand:

ln -s /PATH/TO/drush/drush /usr/local/bin/drush

Then close and reopen Terminal. Type which drush to verify that it’s installed; if it gives
you the path /usr/local/bin/drush, you’re done.

22 | Chapter 3: Installing Drush

Note that the second “drush” in /PATH/TO/drush/drush is IMPORTANT. In the example
I’ve described, my literal command would be:

ln -s ~/drush/drush /usr/local/bin/drush

Now the Fun Begins
Now that you have Drush installed, there are all sorts of things you can do from the
main folder of any working Drupal installation:

• Need to download and enable a module? Type drush dl MODULE_NAME, where MOD
ULE_NAME is what comes after drupal.org/project/ in the URL.

• Need to update some modules? Type drush up. What used to take a few hours if
you had a lot of modules to update, now takes a few seconds.

• Clear the caches? drush cc all.

• Enable a new module? drush en MODULE_NAME.

It’s just so beautiful!

Putting This in Action: Installing Modules
Want to start playing with Drush? Let’s go back to our D7 Demo site. Once you’ve
installed Drush, open Terminal and navigate to the d7-demo folder using the command
cd ~/Dropbox/MAMP/d7-demo. Again, this assumes that you’ve set up your MAMP folder
inside a Dropbox folder; if you haven’t, the path will be wherever your d7-demo folder
is located on your system.

Now that we’re in there, we’re going to start downloading some modules. For this
project, we’ll start with a few basic modules:

Pathauto and Token
Modules that help you automatically create sensible URLs for your site’s content.

Views and CTools
Modules that help create dynamic lists of content on your site. I’ve heard that it’s
possible to have a Drupal site that doesn’t require the Views module; however, I
have yet to see one.

Block Class
Allows you to add custom classes to individual blocks. This is very useful for
theming.

Link
Allows you to create Link fields.

Media
Allows you to create fields to accommodate a variety of media, including video
uploads, sharing from YouTube, etc.

Putting This in Action: Installing Modules | 23

http://drupal.org/project/

Devel
This module gives you some quick links to help during development, including
letting you generate placeholder content—very useful if you’re trying to prototype
quickly.

For now, we’ll stick with Bartik, the theme that comes pre-installed with Drupal 7. If,
however, we wanted to download a new base theme along with these modules, we
could do that as well, and Drush would install the theme in /sites/all/themes.

To download our modules, we would enter the following into Terminal (remember,
we’re in our d7-demo folder):

drush dl pathauto token views ctools block_class link media devel

Click Enter, and you’ll see something like what’s in Figure 3-4.

Figure 3-4. Drush downloads all of the modules that we ask it to into the sites/all/modules folder.
Total time? About 30 seconds.

Now, we can enable the modules that we need—either by checking them off in the
Modules screen (admin/modules), or through Drush by adding the code drush en mod
ule_name. Let’s try the latter. Enter the following code:

drush en views views_ui ctools media media_internet file_entity devel devel_generate
link block_class pathauto token

24 | Chapter 3: Installing Drush

and press Enter. You should get something along the lines of Figure 3-5.

Figure 3-5. Enabling all of our modules through Drush. Total time? About a minute.

When doing certain things in Drush, you may end up with an error
saying that you’ve exceeded your memory limit. If this happens, I often
fix it by going into sites/default/settings.php and adding the code
ini_set('memory_limit', '128M'); to the file. Do a search for the term
“ini_set” in the text and put the code at the top of all those values.

You may have to change the permissions on settings.php in order to
change the file; make sure that you set it back to 444 when you’re done.
This ensures that once you’ve made your changes, nobody else can
change your file—particularly important when the site is live. Drush
also has its own settings file, drushrc.php, which you can adjust in order
to give Drush more memory while keeping Drupal’s memory at a rea-
sonable limit.

So now, in about five minutes, we’ve done what it would have taken us over an hour
to do manually. This, dear reader, is why you should learn Drush.

Now that we’ve gotten used to the command line, and we’ve started downloading and
enabling modules on our d7-demo site, we need to make sure that we can back up our
work. For that, we’ll need to learn Git, the open source version control system.

Putting This in Action: Installing Modules | 25

CHAPTER 4

Getting Started with Version Control

The reasons for using version control on your Drupal projects are several and various,
and have only recently become clear to me as I’ve started working with Drush and Git.
Although adding version control to your workflow can be daunting at first, the benefits
far outweigh the initial annoyances. Consider this:

• In a recent project, while attempting to theme complex navigation on a Drupal 7
prototype, I found myself messing things up in a bad, bad way, shortly before
stakeholders were supposed to look at the site. Because we had Git installed on
our server, I was able to roll back to the former, not messed-up menu and leave it
there while we focused on other priorities—without having to make a frantic phone
call to our developer.

• When working with more than one person, especially on remote teams, version
control allows you not only to figure out who made what changes to the code, it
allows you to work on the same file at once without accidentally overwriting each
other’s changes.

• Finally, version control also ensures you have exactly the same files installed in all
locations. This means that you never have to worry that your local site is on a
different version of a module than your server copy.

If you don’t have a GitHub account yet, skip to “Step 4: Set Up a GitHub
Account” on page 33 for a moment and come back.

In this chapter, we’ll install Git in our local development environment, set up a local
and remote repository for our d7-demo site, and learn how to work Git into our Drupal
workflow.

27

Master Versus Origin
Git allows for multiple development tracks to be going on simultaneously, using a
technique called branching. Branches could be used to separate work by multiple de-
velopers on a team, to isolate work on specific bugs, or to separate development code
from stable/production code. Working with branches is not necessary to get started
with an effective version control workflow, however; so for now, we’ll assume all work
is on the default branch, called “master.” Where the word “master” appears in the Git
commands to follow, you can substitute other branch names if you’re using other
branches.1

When working with Git, you’ll primarily be working with a local copy, or clone, of
your repository (which we’ll be calling Master) and pushing/pulling that copy to a
remote copy, called Origin, usually hosted on a separate server. A repository, in version
control terms, is a collection of all the files that Git is tracking for your particular project.

As you work, you add your changes to stage, a temporary space that tracks the files,
using the command git add [filename, foldername, or -A for all files]. When you’re
ready to finalize things, you commit your changes to the branch using the command
git commit -m "message goes here".

Origin is your remote repository, where you push and pull all the working code for your
project. This is generally a repository that is saved on GitHub or a similar Git-enabled
hosting service.

Setting Up Git for Your Workflow
For a solo workflow, I’ll typically start with three clones of the same repository:

• A remote Origin, hosted on GitHub.

• A local clone of the repository, hosted on my MAMP server.

• A second remote clone, hosted on a staging server with protected access. The stag-
ing server allows clients and collaborators to view the site’s progress as it’s hap-
pening, without affecting the production (i.e. live/launch) domain.

All of these repositories are clones of each other, which means they have the same files
and data; pushing and pulling syncs the files among them. Most development workflows
will typically start this way; as you add collaborators, or move your code from staging
to launch, each of these different environments will require its own clone of the main
repository. Each collaborator on the team will push and pull to the main repository.

1. For more on branches, check out this great writeup on version control: http://hoth.entp.com/output/git
_for_designers.html.

28 | Chapter 4: Getting Started with Version Control

http://hoth.entp.com/output/git_for_designers.html
http://hoth.entp.com/output/git_for_designers.html

When I first started using Git, I was overwhelmed by trying to figure out how everything
worked. After a few times, however, I realized it was relatively easy to get the hang of.
The basic workflow is this:

1. Create an empty repository on GitHub, which will become Origin.

2. Create a local directory for your installation and copy your files into it.

3. In Terminal.app, navigate to the new directory and initialize your new Master:

git init;

4. Commit your files to Master by typing the following:

git add -A
git commit -m "first commit"

5. Add the remote Origin you just created on GitHub using the command:

git remote add origin git@github.com/USERNAME/REPOSITORY-NAME.git;

6. Push the files to GitHub using the following:

git push origin master

Next, we’ll look at those steps in a bit more detail. Steps 1–4 cover installation, and
only need to be done once per computer you’re installing Git on. The rest of the steps
will help you set up the workflow for each project.

Step 1: Create an SSH Key
In order to push your first commit to the remote Origin you’ll create in step 2, you’ll
need to create an SSH key for your account. This helps your computer connect securely
to GitHub, and you only need to do it once per computer you want to access the
repository from. The GitHub site has a pretty in-depth writeup of how to do this at
http://help.github.com/mac-set-up-git/; however, I’ll give you the basic steps here.

1. In Terminal.app, navigate to your ssh directory using the command:

cd ~/.ssh

2. Check to see what’s in the directory by using the command:

ls

3. This will list all the contents of the directory. If you see the filenames id_rsa and
id_rsa.pub, those are your current SSH keys; you can skip to 5 on page 30. If you
don’t see them, you want to create a new one. To generate a new SSH key, enter
the code:

ssh-keygen -t rsa -C "your_email@youremail.com"
Enter file in which to save the key (/Users/your_user_directory/.ssh/id_rsa):

4. Now you need to enter a passphrase.

Enter passphrase (empty for no passphrase):<enter a passphrase>
Enter same passphrase again:<enter passphrase again>

Step 1: Create an SSH Key | 29

http://help.github.com/mac-set-up-git/

This should give you a message like this:

Your identification has been saved in /Users/your_user_directory/.ssh/id_rsa.
Your public key has been saved in /Users/your_user_directory/.ssh/id_rsa.pub.

The key fingerprint is:
01:0f:f4:3b:ca:85:d6:17:a1:7d:f0:68:9d:f0:a2:db user_name@username.com

5. You now want to add this key to your GitHub account.

If you don’t have a GitHub account yet, skip to “Step 4: Set Up a
GitHub Account” on page 33 for a moment and come back.

To do this, go into the Account Settings page and click the SSH Public Keys tab
(see Figure 4-1). Create a new key by pressing the Add a New Key button.

Figure 4-1. Adding our SSH key to GitHub

Now you have to get the contents of your actual RSA key. If you have your Finder set
up to show hidden files (this is usually not a good idea, as it’s easy to accidentally delete
things you need), you can navigate directly to the .ssh directory and open id_rsa.pub in
a text editor like TextWrangler to copy the key. Personally, I prefer using the command
line. Assuming that you’re still in the ~/.ssh directory (if you aren’t, use cd ~/.ssh to
navigate there now) you can use the following code to spit out the key:

ls

This spits out the contents of the directory, which should be:

id_rsa id_rsa.pub known_hosts

From there, type the following code:

cat id_rsa.pub

30 | Chapter 4: Getting Started with Version Control

It should spit out a long line of gobbledygook that starts with ssh-rsa and ends with
your email address. Copy all of it with no lines or extra spaces and paste it into the text
box on GitHub, then click Add Key. Go ahead; I’ll wait.

Once you do that, you should be all set to push and pull to your GitHub account.

Step 2: Install Git
Installing Git is fairly straightforward, although it does require you to step into the
command Line.l

To install Git, the first thing you need to do is grab the installer. To do this, visit git-
scm.com and download the installer appropriate to your OS. Find the icon that suits
your operating system (see the box on the right in Figure 4-2), and use it to download
the right installer.

Figure 4-2. Installing Git. You can download the software by selecting the icon that represents your
operating system.

Install the Git software using the instructions that come with the package you down-
loaded. Once it’s installed, if you go into Terminal.app (on the Mac) and type git, you
should see a whole bunch of commands in the window (see Figure 4-3). If it doesn’t
work, try quitting Terminal.app and re-opening it.

Step 2: Install Git | 31

http://git-scm.com
http://git-scm.com

Once you’ve installed Git, you also want to set up some configurations within your
specific installation. This helps make it easier to see what’s been checked out and in by
whom, which is especially useful if you’re collaborating with others.

Step 3: Set Up Your Git Configuration
Type the following into Terminal to navigate to the .ssh directory:

cd ~/.ssh

If you don’t have an .ssh directory (which sometimes happens), you can create it:

mkdir ~/.ssh
chmod 700 ~/.ssh

mkdir creates the directory, while chmod 700 makes sure that only your user—i.e., YOU
—has access to that directory (important for the security of your system).

Type the following into your Terminal (within the .ssh folder) to set up your Git con-
figuration:

git config --global user.name "First Last"
git config --global user.email "username@example.com"
git config --global color.ui true
git config --global color.status auto
git config --global color.branch auto
git config --global color.interactive auto
git config --global color.diff auto

Figure 4-3. The Git manual, as seen from Terminal

32 | Chapter 4: Getting Started with Version Control

Then type the following into Terminal:

git config -l --global

Now you’ll see your configuration settings. The above configuration gives Git records
as to who made the commit that you’ve posted, and it gives you the ability to read the
Git commands more easily by color coding them.

Step 4: Set Up a GitHub Account
I use GitHub to store my remote repositories. GitHub is fairly easy to set up, and it’s
reasonably priced (free if you make all your repositories public; $7/month if you want
to have up to five private repositories and a few collaborators—important for client
work; there are additional plans available as well). Once you have an account and sign
in, the GitHub Dashboard (see Figure 4-4) has instructions on how to create a reposi-
tory and do some other common things you’ll need to do on GitHub. Go ahead, poke
around; I’ll wait.

Figure 4-4. The GitHubBootcamp screen on your account dashboard. This will give you a quick
overview of what you need to know.

Step 5: Create the Remote Repository
Once you have your account set up, the first step is to create a repository. For client
projects, I keep my repositories private. I prefer not to have my code hanging around
where other people can grab at it. To create a new repository, click the “New Reposi-
tory” button on your GitHub dashboard (see Figure 4-5).

Step 5: Create the Remote Repository | 33

https://github.com/

Figure 4-5. Creating a new repository (Image borrowed from http://help.github.com/create-a-repo/)

In the screen that follows (see Figure 4-6), give the repository a name and description,
and choose whether you want it to be private or public.

Figure 4-6. Setting up a repository for the Drupal for Designers GitHub project

Step 6: Set Up the Local Repository
Once you have your repository set up on GitHub, you’ll get a set of instructions on the
next screen that walks you through the commands you need to create a local repository

34 | Chapter 4: Getting Started with Version Control

http://help.github.com/create-a-repo/

on your computer. This will help you set up Git so that your code can synchronize
between your local and remote repositories.

To create your local repository, you want to start by going into the folder that holds
your Drupal installation. This, as we may recall, is done using the following:

cd ~/path/to/d7-demo

Once you’re there, use the following commands to start a local repository, make your
first commit, add a remote repository, and push your files to the remote repository.

git init
git add -A
git commit -m "first commit"
git remote add origin git@github.com:USERNAME/REPOSITORY-NAME.git
git push origin master

Do all of those things in Terminal.app, using the values for your GitHub account name
and the name of your repository. Once you’ve created your remote Origin, use the git
pull command to pull down the changes on the remote server each time you start doing
work, and use git push to push the changes back once you’re done.

So What Happens on a Team?
The instructions above will help you set up a Master repository on your local machine,
and push it to a remote Origin account. But what happens if you’re working on a team?
Or you want to have a version of the code on a staging server? This is where things get
fun.

First Things First: The Git Workflow
Assuming that you’re developing locally (you are developing locally, aren’t you?), your
workflow would look like this:

1. At the start of your coding session, use the following code in Terminal.app to
navigate to your project folder and pull the latest code from the repository:

cd ~/PATH/TO/FOLDER
git pull

2. As you work, use this code to add your changes to Git for tracking and commit
them to the Master repository:

git add [FILENAME, DIRECTORY or -A]
git commit -m "Description of Changes"

3. When you’re finished, or ready to show your changes to the team, do one last pull:

git pull

Then push your changes back into the Origin repository by using the following:

git push

First Things First: The Git Workflow | 35

4. If you have a second version of the repository hosted on a staging server, you’d
then log into the staging server via SSH and use git pull to pull the changes down
into the staging server.

Why pull before pushing? You may have noticed that in step 3, we pulled
from Origin before we pushed back to it. This is important when you
have more than one person working on a repository, and it’s a good
habit to get into. Pulling the code down syncs any changes that have
been made by your other collaborators with the code you’re working
on; pushing the code adds all the changes back to Origin.

And There We Go
So now we’ve set up a local development environment, installed Drush, downloaded
some modules, and set up Git for our project. Next, we’ll talk about two additional
bits of awesomeness that you can add to your Drupal toolkit to make life easier: Features
and Drush Make files.

36 | Chapter 4: Getting Started with Version Control

PART II

Using Features and Drush Make
to Make Development Easier

CHAPTER 5

Using Features in Your Workflow

Along the way, you (like me) might find that many of the sites you work on tend to
have the same general sections. You’ll have an events section, some testimonials, a blog,
or some other type of functionality that always turns out pretty much the same way.

Or, let’s say that you’re one of a team of folks working on a specific project. You’re
plugging away at a local copy of the site, updating a View so that you can correctly
theme it...when you realize that none of the changes you just made to the View will
translate to the site that everyone else is working on.

Enter Features. Features is a Drupal module that allows you to pack up specific chunks
of functionality—content types, views, etc.—and export it as a custom module that
you can then install on any site you want.

Let’s look at the first example: commonly built functionality. My site, and many other
sites I’ve done, usually include some sort of events page. Each event has a date and
time, a location, title, and description, as well as a link to register for the event or learn
more at an external website. Once the content type was created and content was en-
tered, you create a View that will populate the Events page, and maybe include a block
display for the sidebar.

In order to create this section, you do each task separately, with each task taking any-
where from half an hour to several, depending on the complexity. With Features, you
can create it once, export it as a feature, and install that feature on any number of sites.

To start working with Features, you want to download and install the Features module
(drupal.org/project/features). You also want to install Strongarm (drupal.org/project/
strongarm), which will help you maintain the configurations of your feature (particu-
larly important for including content types).

39

http://drupal.org/project/features
http://drupal.org/project/strongarm
http://drupal.org/project/strongarm

For our Events feature, we create:

• An Event content type, with several custom fields.

• An Events view, with upcoming events as one (page) display, an events archive as
an (attachment) display, and a block display that features a list of events for a
sidebar listing.

Once you have everything set up the way you want it, go to the Features panel by
clicking Structure→Features. You will soon arrive at a screen similar to that of Fig-
ure 5-1:

Figure 5-1. The Features Window on a Drupal 7 site build. Note that some features have already been
created and installed.

To create your feature, click the Create Feature tab. This will give you a screen like the
one in Figure 5-2.

In the first set of fields, you set up your feature defaults. We’ll call this one Events, and
give it a description of “Creates an event content type and views for an events listing.”
In the Version field, give it a version of 7.x-1.0 (meaning it’s a Drupal 7 feature, and
this is the first iteration of it). It’s important not to leave those first three fields empty;
they help create the .info file for your new custom module.

Below that first set of fields, you’re going to start adding in the functionality for your
feature. Start by adding the content type. Under Components, select Content Types
and choose the Event content type. Now that you’ve added your content type, from
the Components list, choose Strongarm and choose every element that relates to your
Event content type. You can usually find them by doing a search on the page for the
name of the content type, e.g. “event”.

40 | Chapter 5: Using Features in Your Workflow

Finally, choose Views from the Components list and choose the view you created for
your Events section. If your work depends on a specific contributed module, like Se-
mantic Fields or Display Suite, and it didn’t show up in the Dependencies section, you
also want to add those under Dependencies in the Components list.

By the end of all this work, you should have something that looks like Figure 5-3.

Once all your components are assembled, you can download your feature by clicking
the Download Feature button. Your feature will download as a .tar.gz file, which you
can unpack and install into a custom directory under your sites/all/modules folder. Once
it’s in that folder, you can enable the feature under either the Modules list or by re-
turning to Structure→Features.

What features do, essentially, is turn your database configurations (in the form of con-
tent type, views, variables, etc.) into module code. This is fantastic when you want
something that works out of the box—but what if you want to change the default
settings of your new feature? How do you make edits without destroying the feature?

That, my friend, is the best thing about Features.

Let’s go back to our Event content type. Looking at the block I created on my homepage,
it looks like Figure 5-4.

It looks beautiful, but I realized that I want “Link to Page” to say “Learn More” instead.
Since the “Link to Page” label is part of my Events View, I can go into that display,
change the label of the Link to Page field to Learn More, and save the View. Now my
display looks like Figure 5-5.

Figure 5-2. Setting up our Feature description

Using Features in Your Workflow | 41

But if we return to our Features tab (see Figure 5-6), we’ll notice that the Events feature
we just created has been overridden by the database.

When you override a feature, it’s important to make sure that you update the code.
The reason for this is twofold. First, if you’re using the feature as part of a development
workflow (for example, you’re developing the site locally, but have to push changes to
the server), updating the feature’s code and pushing it to your remote server gives you
the opportunity to transfer the changes from your local site to the remote site with
relative ease. Second, updating the code keeps you safe against potential problems with
your database down the road.

There are two ways to update your features. One way is to recreate the feature using
the Recreate link on the Features page. Download the feature again, and replace the
code in your sites/all/modules/custom folder. Refresh the page, and everything’s all set.

The other way to do it, which is much quicker, is on the command line. Features comes
with a set of Drush commands specific to managing Features:

drush features
Gives you a list of all the Features installed on your site.

drush features-update FEATURE_NAME
Updates code for a feature that has been overridden by the database.

Figure 5-3. Your finished components list. In addition to what’s here, you can also include specific
modules required by your content types, such as Fieldgroup.

42 | Chapter 5: Using Features in Your Workflow

drush features-revert FEATURE_NAME
Reverts a feature that has been overridden by the database back to the original code.

Remember, all of these commands should be used from inside your Drupal installation.
In Figure 5-7, you’ll notice that I used drush features-update events to update my
Events feature.

In my short time working with Features on my own sites, I’ve seen both benefits and
challenges to this workflow. The biggest benefit to this workflow is both its portability
and speed. Developing locally, frankly, saves time; you don’t have to worry about
waiting for an FTP server to accept your file, or about accidentally uploading the wrong
file and wondering how to get it back. Additionally, since working in Drupal is so often
a dance between configuration in the database and tinkering with code, Features allows
you to get this same speed on your local machine without having to worry (too much)
about syncing a database between your local and remote machines.

Speaking of syncing a database, it’s important to note that Features won’t export the
content in your work to code. As such, if you’re using Features to prototype something
that involves a number of content types or complex node relationships, you’ll still have

Figure 5-4. Our Upcoming Workshops block, built from one of the Views displays in our Feature

Using Features in Your Workflow | 43

to recreate any content you added on your local machine when you install or update
the Feature. This, in fact, is the one case where it might make more sense to sync
databases back and forth instead of using Features; during one project, I ended up
having to recreate about 30 pieces of content on the staging site after updating my
Feature, which was officially Not Fun.

Still More Awesomeness Awaits
So far, we’ve learned a bunch of new ways to protect your work and make your life as
a Drupal designer easier. As we inch towards the finish line, we’re going to talk about
my absolute favorite Drupal development trick: the Drush .make file. With this one
file, you can use Drush to download Drupal, including any contrib or custom modules,
themes, or libraries you want—even a custom install profile—within about five mi-
nutes.

Figure 5-5. Our Views display, fixed up a bit

44 | Chapter 5: Using Features in Your Workflow

Figure 5-6. When you change an aspect of a Feature, the feature shows as Overridden in the listing

Figure 5-7. Updating Features on the command line. Three commands and you’re done.

Still More Awesomeness Awaits | 45

CHAPTER 6

Making Drupal Easier: Working with
Drush Make and Installation Profiles

As you continue working in Drupal, you’ll likely notice that you use certain modules
again and again. Normally, you’d start off a project by downloading and enabling each
module manually; you may even end up compiling, as I did for a while, a checklist of
modules that belong on every project. While a checklist is a convenient way to remem-
ber all the modules you typically use, it still takes time to download and install them.
Even using Drush to do it can get monotonous at times—and if you’re doing a lot of
modules, it’s easy to make a mistake and type the wrong filename. And while you could
also create a local installation that serves as a “base install” with all your configurations,
it takes time and effort to keep the code and modules updated in the base installation,
and creating a new site requires not only copying those files into a new folder, but
copying the database as well. It’s not the worst workflow, but it’s not the most efficient
either.

What if there was a way for you to run a script that would download Drupal for you,
download all your modules and base themes, and basically create your file structure
for you so you can get to work on configuring modules and designing something awe-
some? That’s what Drush Make is for. Drush Make is an extension for Drush that will
allow you to specify:

• Which core version you want to download (e.g. 6.x or 7.x)

• Which modules you want

• Which base theme you’d like

• Any external libraries or other bits of code you want

And download it all to the folder you’re in. Combine this with an installation profile that
enables the modules you want, sets your base theme as the new default, and establishes
other key settings, and you can have a new site up and running within about 15 to 30
minutes—with many of your most commonly used defaults already set up.

47

Step 1: Install Drush Make
To start using Drush Make, you first need to install the extension. It’s best to do this
in a hidden directory in your home folder, rather than in the drush directory. The reason
for this is simple—at some point, you may end up upgrading Drush. If you do, and
Drush Make is in the main /drush directory, you’ve just deleted Drush Make.

1. Download the project from drupal.org/project/drush_make.

2. Unpack the tar.gz file into your working folder (again, this is your home folder).

3. Move the folder into a hidden directory called .drush. Start by navigating to your
home directory using cd ~.

4. Then make a hidden .drush directory: mkdir .drush.

5. Finally, move the drush_make folder into your new hidden directory: mv drush_make
~/.drush.

Now, you need to create a .make file for it to run. If you go back to the project page for
Drush Make, you’ll find a sample .make file under the “Documentation and Resources”
heading called EXAMPLE.make. Copy the text from that file and paste it into a new
file in your favorite text editor (I’m using Coda, but you can also use TextWrangler for
Mac or a similar free text editor). Now, you can start customizing it any way you want.

Each .make file starts with specifying the version of Drupal core that you’re working
with and the Drush Make API version. I like to include comments in my files to help
organize, which are preceded by a semicolon:

; Specify Drupal core and Drush API version
core = 7.x
api = 2

Then you want to specify the actual Core project (aka Drupal core):

; Core project
projects[] = drupal

Now, you want to specify the modules you want to download.

Drush Make will only download versions of modules that are compat-
ible with the version of Drupal you’re specifying, and those that have
current recommended releases. This means that, while I’d normally in-
clude semantic_fields in my “Theming Helpers” section, I can’t because
it’s not in recommended release yet. You can still use Drush to download
the module, however, once the .make file finishes running.

I like to group modules by what they’re used for, or by a specific dependency, with
comments. For example, I’ll just start with Views, Ctools, Pathauto, and Token, which
are common to most Drupal installations:

48 | Chapter 6: Making Drupal Easier: Working with Drush Make and Installation Profiles

http://drupal.org/project/drush_make

; Standard modules
projects[] = views
projects[] = ctools
projects[] = pathauto
projects[] = token

Then I’ll add some of my favorite theming helper modules, and the WYSIWYG module,
with its dependency, Libraries:

; Theming helpers
projects[] = block_class

; WYSIWYG
projects[] = wysiwyg
projects[] = libraries

Then I’ll add my base theme, Omega:

; Base theme
projects[] = omega

Now, I’ll save the file as make_basic.make, and save it in a makefiles directory in my
home folder. Here’s where the magic happens.

Let’s say that now I want to create a new Drupal installation for a client project. I’ll
start in Terminal.app by navigating to my MAMP folder and creating a new directory
for the project. We’ll call it make-test for now.

cd ~/Dropbox/MAMP
mkdir make-test

Now, I’ll navigate into my new folder and call my make_basic.make file using Drush.

cd make-test
drush make ~/makefiles/make_basic.make
y
y

When we’re done, we’ll see something approximating Figure 6-1 in Terminal.

Figure 6-1. Drush Make downloading all of the modules and stuff that we need for our Drupal
installation

Step 1: Install Drush Make | 49

And if we go back into the Finder and navigate to our new make-test directory, we’ll
see something like Figure 6-2.

Figure 6-2. In about a minute, we just downloaded our entire Drupal installation, a base theme and
the modules we need to get started, in the right locations. Sweet!

Why This Is Lovely
If you’ve done Drupal sites for any length of time, you will likely notice that there are
certain modules—or a specific base theme—that you return to over and over again.
Using .make files, you can set up a file to download everything you need for a specific
use case—say, a standard promotional corporate site, or a web community—and run-
ning that one file will download everything you need to get started in about five minutes.

50 | Chapter 6: Making Drupal Easier: Working with Drush Make and Installation Profiles

Getting Started with Install Profiles
Once you’ve got a .make file ready, with all of the modules and other things that you
typically use for a project, you may want to make your life even easier by creating an
install profile that enables all of your modules for you, and sets up a few of the config-
urations that you have to reset over and over again. Although install profiles can be
tricky to set up, they can be huge time savers. While the .make file does the hard work
of downloading and unpacking most of your modules for you, the install profile can
be set up to actually enable all of those modules, along with a host of other things, like:

• Setting up default user roles and permissions (such as editor, administrator, and
other commonly needed user roles)

• Setting up appropriate input formats (like adding <h1>–<h4> tags and the like)

• Populating the database with some sample content

• And much more!

In Drupal 7, profiles are set up like modules, and need the following to work:

• A profilename.info file that sets up your dependencies (the modules that are enabled
when the profile is used to install Drupal)

• A profilename.install file that actually installs Drupal for you

• A profilename.profile file that sets up your configurations for you

The documentation for install profiles at http://drupal.org/node/1022020 provides a
great starting point for making your own install profile. I like to start my new profile
by copying and modifying the Standard profile that comes with Drupal 7 core (located
in the profiles folder). It should also be noted that, for certain things, like a specific
configuration of content types and Views (like an Events section, or a News section),
you’re better off packing it up into Features, which we talked about in Chapter 5.

So Here We Are
In this relatively slim volume, we’ve managed to set up a local development environ-
ment, learn the basics of Drush, Git, and some command line fu, and we’ve discovered
how to make our lives as designers and site builders easier using Features and Drush
Make. I won’t pretend that some of this stuff isn’t annoying; indeed, we’ve only
scratched the surface of what’s possible with all of this stuff. But, if you’re willing to
give it a shot, these tools can make your life infinitely easier as a Drupal designer—and
free you to focus your attention on more important priorities, such as creating design
that will wow your clients and get people’s attention.

Use these tools in good health; and remember that for every headache you end up with
during your site building adventures, I—and the entire Drupal community—will be
here to cheer you on.

So Here We Are | 51

http://drupal.org/node/1022020

About the Author
Dani Nordin is an independent user experience designer and strategist who specializes
in smart, human-friendly design for progressive brands. She discovered design purely
by accident as a Theatre student at Rhode Island College in 1995, and has been doing
some combination of design, public speaking, and writing ever since.

Dani is a regular feature at Boston’s Drupal meetup, and is a regular speaker at Boston’s
Design for Drupal Camp. In 2011, she was one of several contributors to The Definitive
Guide to Drupal 7, published by Apress; Drupal for Designers is her second book. You
can check out some of her work at tzk-design.com. She also blogs almost regularly at
daninordin.com.

Dani lives in Watertown, MA, with her husband Nick and Persephone, a 14-pound
giant ball of black furry love cat. Both are infinite sources of comedic gold.

	Table of Contents
	Preface
	Wait, What? Why?
	A Note for Windows Users
	The Designer’s Coding Toolkit
	MAMP
	Dropbox
	Coda
	Terminal
	Navicat
	Git
	Drush

	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	About the Reviewers

	Part I. Setting Up a Local Development
 Environment
	Chapter 1. Setting Up a Local Development Environment and Installing
 Drupal
	Step 1: Install MAMP
	Step 2: Setting Up Your Main File Structure
	Step 3: Setting Up the Drupal files
	Step 4: Creating the Database
	Step 5: Install Drupal

	Chapter 2. Working on the Command Line: Some Basic
 Commands
	Commands
	That Wasn’t So Bad, Was It?

	Chapter 3. Installing Drush
	Installing Drush
	Another Option: Creating a Symbolic Link to Drush
	Now the Fun Begins
	Putting This in Action: Installing Modules

	Chapter 4. Getting Started with Version Control
	Master Versus Origin
	Setting Up Git for Your Workflow
	Step 1: Create an SSH Key
	Step 2: Install Git
	Step 3: Set Up Your Git Configuration
	Step 4: Set Up a GitHub Account
	Step 5: Create the Remote Repository
	Step 6: Set Up the Local Repository
	So What Happens on a Team?
	First Things First: The Git Workflow
	And There We Go

	Part II. Using Features and Drush Make to Make Development Easier
	Chapter 5. Using Features in Your Workflow
	Still More Awesomeness Awaits

	Chapter 6. Making Drupal Easier: Working with Drush Make and Installation
 Profiles
	Step 1: Install Drush Make
	Why This Is Lovely
	Getting Started with Install Profiles
	So Here We Are

