
this print for content only—size & color not accurate spine = 1.324" 704 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro Drupal Development,
SECOND EDITION
Dear Reader,

Drupal is a powerful open source content management framework for creating
customized web sites. Building on its modular core, over time you can evolve a
basic brochure-style site into a platform for driving cutting-edge services such
as social networking, mashups, and e-commerce, all within the same consis-
tent, integrated, and secure framework. Best of all, with Drupal’s fine-grained
permissions and revision support, editing web site content can be delegated to
those who know it best—the users.

In Pro Drupal Development, Second Edition, I cover Drupal from the per-
spective of someone knowledgeable in PHP who is looking for a way to quickly
understand the system and begin coding sophisticated Drupal applications as
soon as possible. For that reason, I use an approach that is peppered with practi-
cal coding examples, big-picture flowcharts, and diagrams to help you visualize
how Drupal works. And I’ve included a chapter on best practices for Drupal
development to help you avoid common pitfalls.

I have been using Drupal for over five years and have contributed to the Drupal
core as well as to numerous modules. During this time, though Drupal was designed
to be lean and modular, I’ve observed new developers struggling to understand
Drupal’s internals. This book should help make the learning curve less daunting and
encourage talented developers to learn, use, and ultimately share in the benefits of
one of the most vibrant and growing open source communities.

John K. VanDyk, PhD

US $49.99

Shelve in
PHP

User level:
Intermediate–Advanced

VanDyk

SECOND
EDITION

THE EXPERT’S VOICE® IN OPEN SOURCE

SECOND EDITION

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

John K. VanDyk
Foreword by Dries Buytaert,
Drupal founder and project lead

Companion
eBook Available

THE APRESS ROADMAP

Building Online
Communities with Drupal,

phpBB, and WordPress

Beginning PHP and
MySQL 5, Third Edition

PHP 5 Objects,
Patterns, and Practice

Pro Drupal Development,
Second Edition

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

Learn how to use the content management
framework to create powerful customized web sites

Pro

Drupal
Development

Now covers
Drupal 6!
Now covers
Drupal 6!

ISBN 978-1-4302-0989-8

9 781430 209898

54999

Drupal Developm
ent

Pro

Drupal 6

John K. VanDyk

Pro Drupal
Development
Second Edition

09898fmfinal.qxd 7/30/08 12:48 PM Page i

Pro Drupal Development, Second Edition
Copyright © 2008 by John K. VanDyk
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-0989-8

ISBN-13 (electronic): 978-1-4302-0990-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Matt Wade
Technical Reviewer: Robert Douglass
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas
Copy Editors: Heather Lang and Damon Larson
Associate Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor: Linda Weidemann, Wolf Creek Press
Proofreaders: April Eddy and Linda Siefert
Indexer: John Collin
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

09898fmfinal.qxd 7/30/08 12:48 PM Page ii

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

For the Great Architect
and to my incredibly patient wife and children

09898fmfinal.qxd 7/30/08 12:48 PM Page iii

Foreword. xxv

About the Author . xxvii

About the Technical Reviewer . xxix

Acknowledgments . xxxi

Introduction . xxxiii

!CHAPTER 1 How Drupal Works . 1

!CHAPTER 2 Writing a Module . 13

!CHAPTER 3 Hooks, Actions, and Triggers . 35

!CHAPTER 4 The Menu System . 59

!CHAPTER 5 Working with Databases . 89

!CHAPTER 6 Working with Users . 115

!CHAPTER 7 Working with Nodes . 137

!CHAPTER 8 The Theme System . 165

!CHAPTER 9 Working with Blocks . 203

!CHAPTER 10 The Form API . 221

!CHAPTER 11 Manipulating User Input: The Filter System . 275

iv

Contents at a Glance

09898fmfinal.qxd 7/30/08 12:48 PM Page iv

!CHAPTER 12 Searching and Indexing Content . 291

!CHAPTER 13 Working with Files . 309

!CHAPTER 14 Working with Taxonomy . 327

!CHAPTER 15 Caching . 349

!CHAPTER 16 Sessions . 365

!CHAPTER 17 Using jQuery. 377

!CHAPTER 18 Localization and Translation . 407

!CHAPTER 19 XML-RPC . 439

!CHAPTER 20 Writing Secure Code . 453

!CHAPTER 21 Development Best Practices . 477

!CHAPTER 22 Optimizing Drupal . 527

!CHAPTER 23 Installation Profiles . 547

!APPENDIX A Database Table Reference . 573

!APPENDIX B Resources . 605

!INDEX . 611

v

09898fmfinal.qxd 7/30/08 12:48 PM Page v

09898fmfinal.qxd 7/30/08 12:48 PM Page vi

Contents

Foreword. xxv

About the Author . xxvii

About the Technical Reviewer . xxix

Acknowledgments . xxxi

Introduction . xxxiii

!CHAPTER 1 How Drupal Works . 1

What Is Drupal? . 1
Technology Stack . 1
Core . 2
Administrative Interface . 3
Modules. 3
Hooks. 4
Themes . 5
Nodes . 5
Blocks . 6
File Layout . 6
Serving a Request . 8

The Web Server’s Role . 8
The Bootstrap Process . 9
Processing a Request . 10
Theming the Data . 11

Summary. 11

!CHAPTER 2 Writing a Module . 13

Creating the Files. 13
Implementing a Hook . 15
Adding Module-Specific Settings . 16
Adding the Data Entry Form. 19

Storing Data in a Database Table . 22
Defining Your Own Administration Section . 27
Presenting a Settings Form to the User. 29
Validating User-Submitted Settings . 31

vii

09898fmfinal.qxd 7/30/08 12:48 PM Page vii

Storing Settings . 32
Using Drupal’s variables Table . 33
Retrieving Stored Values with variable_get() 34

Further Steps . 34
Summary. 34

!CHAPTER 3 Hooks, Actions, and Triggers . 35

Understanding Events and Triggers . 35
Understanding Actions . 37

The Trigger User Interface . 37
Your First Action. 39
Assigning the Action . 41
Changing Which Triggers an Action Supports 41
Actions That Support Any Trigger . 42
Advanced Actions . 42

Using the Context in Actions . 47
How the Trigger Module Prepares the Context. 47
Establishing the Context . 49

Examining the Context . 51
How Actions Are Stored . 52

The actions Table. 52
Action IDs . 53

Calling an Action Directly with actions_do() . 53
Defining Your Own Triggers with hook_hook_info() 54
Adding Triggers to Existing Hooks . 56
Summary. 58

!CHAPTER 4 The Menu System . 59

Callback Mapping . 59
Mapping URLs to Functions . 59
Page Callback Arguments . 65

Menu Nesting . 69
Access Control . 70
Title Localization and Customization . 71

Defining a Title Callback. 71
Title Arguments . 73

Wildcards in Menu Items . 75
Wildcards and Parameter Replacement. 77
Building Paths from Wildcards Using to_arg() Functions 79

!CONTENTSviii

09898fmfinal.qxd 7/30/08 12:48 PM Page viii

Altering Menu Items from Other Modules . 80
Altering Menu Links from Other Modules . 82
Kinds of Menu Items . 82
Common Tasks . 83

Assigning Callbacks Without Adding a Link to the Menu 83
Displaying Menu Items As Tabs . 84
Hiding Existing Menu Items . 86

Using menu.module . 87
Common Mistakes. 87
Summary. 88

!CHAPTER 5 Working with Databases . 89

Defining Database Parameters . 89
Understanding the Database Abstraction Layer . 89
Connecting to the Database . 91
Performing Simple Queries . 92
Retrieving Query Results . 94

Getting a Single Value . 94
Getting Multiple Rows . 94
Getting a Limited Range of Results . 94
Getting Results for Paged Display. 95

The Schema API. 95
Using Module .install Files . 96
Creating Tables . 96
Using the Schema Module . 98
Field Type Mapping from Schema to Database 99
Declaring a Specific Column Type with mysql_type 102
Maintaining Tables . 103
Deleting Tables on Uninstall. 104
Changing Existing Schemas with hook_schema_alter() 105

Inserts and Updates with drupal_write_record() . 106
Exposing Queries to Other Modules with hook_db_rewrite_sql() 108

Using hook_db_rewrite_sql(). 108
Changing Other Modules’ Queries . 109

Connecting to Multiple Databases Within Drupal. 111
Using a Temporary Table . 112
Writing Your Own Database Driver . 112
Summary . 113

!CONTENTS ix

09898fmfinal.qxd 7/30/08 12:48 PM Page ix

!CONTENTSx

!CHAPTER 6 Working with Users . 115

The $user Object . 115
Storing Data in the $user Object . 117
Testing If a User Is Logged In . 118

Introduction to hook_user() . 118
Understanding hook_user(‘view’) . 119

The User Registration Process . 121
Using profile.module to Collect User Information 123

The Login Process . 124
Adding Data to the $user Object at Load Time. 126
Providing User Information Categories. 129

External Login . 129
Simple External Authentication . 130

Summary. 136

!CHAPTER 7 Working with Nodes . 137

So What Exactly Is a Node? . 137
Not Everything Is a Node . 140
Creating a Node Module. 140

Creating the .install File . 141
Creating the .info File . 142
Creating the .module File . 142
Providing Information About Our Node Type 143
Modifying the Menu Callback . 144
Defining Node-Type–Specific Permissions with hook_perm(). . . . 145
Limiting Access to a Node Type with hook_access() 145
Customizing the Node Form for Our Node Type 146
Adding Filter Format Support. 148
Validating Fields with hook_validate() . 149
Saving Our Data with hook_insert() . 149
Keeping Data Current with hook_update() . 150
Cleaning Up with hook_delete() . 150
Modifying Nodes of Our Type with hook_load() 151
The punchline: hook_view() . 151
Manipulating Nodes That Are Not Our Type with

hook_nodeapi() . 155
How Nodes Are Stored . 157
Creating a Node Type with CCK . 158

09898fmfinal.qxd 7/30/08 12:48 PM Page x

Restricting Access to Nodes . 159
Defining Node Grants . 160
The Node Access Process . 161

Summary. 163

!CHAPTER 8 The Theme System . 165

Theme System Components . 165
Template Languages and Theme Engines . 165
Themes . 167

Installing a Theme. 168
Building a PHPTemplate Theme . 169

Using Existing HTML and CSS Files . 169
Creating a .info File for Your Theme. 172

Understanding Template Files. 176
The Big Picture. 176
Overriding Themable Items . 179
Adding and Manipulating Template Variables. 182
Variables for All Templates. 185
page.tpl.php . 185
node.tpl.php . 189
block.tpl.php. 190
comment.tpl.php . 192
box.tpl.php . 193
Other .tpl.php Files . 193
Multiple Page Templates . 193

Advanced Drupal Theming. 194
The Theme Registry . 194
A Detailed Walkthrough of theme() . 196
Defining New Block Regions . 200
Theming Drupal’s Forms . 200
Using the Theme Developer Module. 200

Summary. 201

!CHAPTER 9 Working with Blocks. 203

What Is a Block? . 203
Block Configuration Options . 204
Block Placement . 206

!CONTENTS xi

09898fmfinal.qxd 7/30/08 12:48 PM Page xi

Defining a Block. 206
Understanding How Blocks Are Themed . 208
Using the Block Hook . 208

Building a Block . 210
Bonus Example: Adding a Pending Users Block 217

Enabling a Block When a Module Is Installed . 218
Block Visibility Examples . 218

Displaying a Block to Logged-In Users Only 218
Displaying a Block to Anonymous Users Only. 218

Summary. 219

!CHAPTER 10 The Form API . 221

Understanding Form Processing. 221
Initializing the Process . 223
Setting a Token . 223
Setting an ID . 223
Collecting All Possible Form Element Definitions 223
Looking for a Validation Function . 225
Looking for a Submit Function. 225
Allowing Modules to Alter the Form Before It’s Built 225
Building the Form . 225
Allowing Functions to Alter the Form After It’s Built 226
Checking If the Form Has Been Submitted . 226
Finding a Theme Function for the Form. 226
Allowing Modules to Modify the Form Before It’s Rendered 226
Rendering the Form. 226
Validating the Form . 227
Submitting the Form . 228
Redirecting the User . 228

!CONTENTSxii

09898fmfinal.qxd 7/30/08 12:48 PM Page xii

Creating Basic Forms . 229
Form Properties . 231
Form IDs . 232
Fieldsets . 233
Theming Forms . 236
Specifying Validation and Submission Functions with

hook_forms() . 239
Call Order of Theme, Validation, and Submission Functions 240
Writing a Validation Function . 240
Form Rebuilding. 244
Writing a Submit Function . 245
Changing Forms with hook_form_alter() . 245
Submitting Forms Programmatically with drupal_execute() 246
Multipage Forms . 247

Form API Properties . 252
Properties for the Root of the Form . 252
Properties Added to All Elements . 254
Properties Allowed in All Elements . 255
Form Elements . 257
#ahah Property. 267

Summary. 273

!CHAPTER 11 Manipulating User Input: The Filter System 275

Filters. 275
Filters and Input Formats . 276

Installing a Filter. 279
Know When to Use Filters . 280

Creating a Custom Filter. 282
Implementing hook_filter() . 283
The list Operation. 284
The description Operation . 284
The settings Operation . 285
The no cache Operation . 285
The prepare Operation . 285
The process Operation . 285
The default Operation . 285
hook_filter_tips() . 287

Protecting Against Malicious Data . 288
Summary . 289

!CONTENTS xiii

09898fmfinal.qxd 7/30/08 12:48 PM Page xiii

!CHAPTER 12 Searching and Indexing Content . 291

Building a Custom Search Page . 291
The Default Search Form . 292
The Advanced Search Form. 292
Adding to the Search Form . 293

Using the Search HTML Indexer . 299
When to Use the Indexer. 299
How the Indexer Works. 299

Summary. 308

!CHAPTER 13 Working with Files . 309

How Drupal Serves Files . 309
Public Files . 310
Private Files . 311

PHP Settings. 311
Media Handling . 312

Upload Module . 312
Other Generic File-Handling Modules. 313
Images and Image Galleries. 313
Video and Audio . 313

File API. 313
Database Schema . 314
Common Tasks and Functions . 314
Authentication Hooks for Downloading . 325

Summary. 326

!CHAPTER 14 Working with Taxonomy. 327

What Is Taxonomy?. 327
Terms. 327
Vocabularies . 328

Kinds of Taxonomy . 331
Flat . 331
Hierarchical. 331
Multiple Hierarchical . 332

Viewing Content by Term. 333
Using AND and OR in URLs . 333
Specifying Depth for Hierarchical Vocabularies 334
Automatic RSS Feeds . 335

!CONTENTSxiv

09898fmfinal.qxd 7/30/08 12:48 PM Page xiv

Storing Taxonomies . 335
Module-Based Vocabularies . 337

Creating a Module-Based Vocabulary . 337
Providing Custom Paths for Terms . 338
Keeping Informed of Vocabulary Changes with

hook_taxonomy() . 339
Common Tasks . 340

Finding Taxonomy Terms in a Node Object. 340
Building Your Own Taxonomy Queries . 341

Taxonomy Functions . 342
Retrieving Information About Vocabularies . 342
Adding, Modifying, and Deleting Vocabularies 342
Retrieving Information About Terms. 343
Adding, Modifying, and Deleting Terms. 344
Retrieving Information About Term Hierarchy. 345
Retrieving Information About Term Synonyms 347
Finding Nodes with Certain Terms . 347

Additional Resources . 348
Summary. 348

!CHAPTER 15 Caching . 349

Knowing When to Cache . 349
How Caching Works . 350
How Caching Is Used Within Drupal Core . 351

Menu System . 351
Filtered Input Formats. 352
Administration Variables and Module Settings 352
Pages . 352
Blocks . 358
Per-Request Caching with Static Variables . 360
Using the Cache API . 360

Summary. 364

!CHAPTER 16 Sessions . 365

What Are Sessions? . 365
Usage. 366

!CONTENTS xv

09898fmfinal.qxd 7/30/08 12:48 PM Page xv

Session-Related Settings . 367
In .htaccess. 368
In settings.php . 368
In bootstrap.inc . 368
Requiring Cookies . 369

Storage . 369
Session Life Cycle . 370
Session Conversations . 372

First Visit . 373
Second Visit . 373
User with an Account . 373

Common Tasks . 373
Changing the Length of Time Before a Cookie Expires 373
Changing the Name of the Session . 373
Storing Data in the Session . 374

Summary. 375

!CHAPTER 17 Using jQuery . 377

What Is jQuery? . 377
The Old Way . 378
How jQuery Works. 379

Using a CSS ID Selector . 379
Using a CSS Class Selector . 380

jQuery Within Drupal . 381
Your First jQuery Code . 381
Targeting an Element by ID . 384
Method Chaining . 384
Adding or Removing a Class . 385
Wrapping Existing Elements . 385
Changing Values of CSS Elements . 386
Where to Put JavaScript . 386
Overridable JavaScript . 390

Building a jQuery Voting Widget . 393
Building the Module. 395
Using Drupal.behaviors. 404
Ways to Extend This Module . 404
Compatibility. 405

Next Steps . 405
Summary . 405

!CONTENTSxvi

09898fmfinal.qxd 7/30/08 12:48 PM Page xvi

!CHAPTER 18 Localization and Translation . 407

Enabling the Locale Module. 407
User Interface Translation . 407

Strings . 407
Translating Strings with t() . 408
Replacing Built-In Strings with Custom Strings 410

Starting a New Translation . 420
Getting .pot Files for Drupal . 420
Generating .pot Files with Translation Template Extractor. 421

Installing a Language Translation. 424
Setting Up a Translation at Install Time . 424
Installing a Translation on an Existing Site . 425

Right-to-Left Language Support . 426
Language Negotiation. 427

None. 428
Path Prefix Only . 429
Path Prefix with Language Fallback . 431
Domain Name Only . 431

Content Translation . 432
Introducing the Content Translation Module 432
Multilingual Support . 432
Multilingual Support with Translation. 433

Localization- and Translation-Related Files . 437
Additional Resources . 437
Summary. 438

!CHAPTER 19 XML-RPC . 439

What Is XML-RPC? . 439
Prerequisites for XML-RPC . 439
XML-RPC Clients . 440

XML-RPC Client Example: Getting the Time 440
XML-RPC Client Example: Getting the Name of a State 441
Handling XML-RPC Client Errors . 442
Casting Parameter Types . 445

A Simple XML-RPC Server . 445
Mapping Your Method with hook_xmlrpc() . 446
Automatic Parameter Type Validation with hook_xmlrpc() 447

!CONTENTS xvii

09898fmfinal.qxd 7/30/08 12:48 PM Page xvii

Built-In XML-RPC Methods . 449
system.listMethods . 449
system.methodSignature . 450
system.methodHelp. 450
system.getCapabilities . 450
system.multiCall. 451

Summary. 451

!CHAPTER 20 Writing Secure Code . 453

Handling User Input. 453
Thinking About Data Types . 453
Using check_plain() and t() to Sanitize Output 455
Using filter_xss() to Prevent Cross-Site Scripting Attacks 458
Using filter_xss_admin(). 459

Handling URLs Securely . 460
Making Queries Secure with db_query() . 461
Keeping Private Data Private with db_rewrite_sql() 465
Dynamic Queries . 466
Permissions and Page Callbacks . 467
Cross-Site Request Forgeries (CSRF). 468
File Security . 468

File Permissions . 468
Protected Files . 468
File Uploads . 469
Filenames and Paths. 470

Encoding Mail Headers. 471
Files for Production Environments . 471

Protecting cron.php. 472
SSL Support . 472
Stand-Alone PHP . 473
AJAX Security. 474
Form API Security . 474
Protecting the Superuser Account . 475
Using eval() . 476
Summary . 476

!CONTENTSxviii

09898fmfinal.qxd 7/30/08 12:48 PM Page xviii

!CHAPTER 21 Development Best Practices . 477

Coding Standards . 477
Line Indention. 477
PHP Opening and Closing Tags . 477
Control Structures . 478
Function Calls . 479
Function Declarations . 480
Function Names . 480
Arrays. 481
Constants . 481
Global Variables . 482
Module Names . 482
Filenames . 482

PHP Comments . 483
Documentation Examples. 484
Documenting Constants . 485
Documenting Functions . 485
Documenting Hook Implementations . 486

Checking Your Coding Style Programmatically . 487
Using code-style.pl . 487
Using the Coder Module . 488

Finding Your Way Around Code with egrep. 488
Taking Advantage of Version Control . 490

Installing CVS-Aware Drupal . 490
Using CVS-Aware Drupal . 491
Installing a CVS Client . 491
Checking Out Drupal from CVS . 491
Branches and Tags . 493
Updating Code with CVS. 497
Tracking Drupal Code Changes. 498
Resolving CVS Conflicts . 499
Cleanly Modifying Core Code. 499

Creating and Applying Patches . 500
Creating a Patch. 500
Applying a Patch . 501

!CONTENTS xix

09898fmfinal.qxd 7/30/08 12:48 PM Page xix

Maintaining a Module . 501
Getting a Drupal CVS Account . 502
Checking Out the Contributions Repository. 502
Adding Your Module to the Repository . 504
The Initial Commit . 505
Checking Out Your Module. 506
Creating a Project on drupal.org . 506
Committing a Bug Fix . 507
Viewing the History of a File. 508
Creating a Branch . 508
Creating a Drupal-6–Compatible Branch. 512
Advanced Branching . 516
Creating a Release Node . 517

Mixing SVN with CVS for Project Management . 518
Testing and Developing Code . 519

The devel Module . 519
Displaying Queries. 520
Dealing with Time-Consuming Queries . 520
Other Uses for the devel Module. 521

The Module Builder Module. 522
Application Profiling and Debugging . 522
Summary. 524

!CHAPTER 22 Optimizing Drupal . 527

Finding the Bottleneck . 527
Initial Investigation. 527
Other Web Server Optimizations . 530
Database Bottlenecks . 531

Drupal-Specific Optimizations. 536
Page Caching . 536
Bandwidth Optimization . 536
Pruning the Sessions Table . 537
Managing the Traffic of Authenticated Users 537
Pruning Error Reporting Logs. 537
Running cron . 538
Automatic Throttling . 539

!CONTENTSxx

09898fmfinal.qxd 7/30/08 12:48 PM Page xx

Architectures . 542
Single Server . 542
Separate Database Server . 542
Separate Database Server and a Web Server Cluster 542
Multiple Database Servers . 544

Summary. 545

!CHAPTER 23 Installation Profiles . 547

Where Profiles Are Stored . 547
How Installation Profiles Work. 548

Indicating Which Modules to Enable. 550
Defining Additional Installation Tasks . 551
Running Additional Installation Tasks. 553
Resources . 570

Summary. 571

!APPENDIX A Database Table Reference . 573

access (user module) . 573
accesslog (statistics module) . 573
actions (trigger module) . 574
actions_aid (trigger module) . 574
aggregator_category (aggregator module) . 575
aggregator_category_feed (aggregator module) . 575
aggregator_category_item (aggregator module) . 575
aggregator_feed (aggregator module). 575
aggregator_item (aggregator module). 576
authmap (user module) . 576
batch (batch.inc) . 577
blocks (block module). 577
blocks_roles (block module) . 578
book (book module) . 578
boxes (block module) . 579
cache . 579
cache_block (block module) . 579
cache_filter (filter module). 580
cache_form . 580
cache_menu. 581
cache_page . 581
cache_update . 582

!CONTENTS xxi

09898fmfinal.qxd 7/30/08 12:48 PM Page xxi

comments (comment module) . 582
contact (contact module) . 583
files (upload module). 583
filter_formats (filter module) . 584
filters (filter module) . 584
flood (contact module) . 584
forum (forum module). 585
history (node module) . 585
languages (locale module) . 585
locales_source (locale module). 586
locales_target (locale module) . 586
menu_custom (menu module) . 586
menu_links (menu module). 587
menu_router. 588
node (node module) . 589
node_access (node module) . 590
node_comment_statistics (comment module). 591
node_counter (statistics module) . 591
node_revisions (node module) . 591
node_type (node module) . 592
openid_association (openid module) . 593
permission (user module) . 593
poll (poll module) . 594
poll_choices (poll module) . 594
poll_votes (poll module) . 594
profile_fields (profile module) . 595
profile_values (profile module) . 595
role (user module) . 596
search_dataset (search module) . 596
search_index (search module) . 596
search_node_links (search module) . 597
search_total (search module) . 597
sessions . 597
system. 598
term_data (taxonomy module) . 599
term_hierarchy (taxonomy module) . 599
term_node (taxonomy module) . 599
term_relation (taxonomy module) . 599
term_synonym (taxonomy module) . 600
trigger_assignments (trigger module) . 600

!CONTENTSxxii

09898fmfinal.qxd 7/30/08 12:48 PM Page xxii

upload (upload module) . 600
url_alias (path module). 601
users (user module) . 601
users_roles (users) . 602
variable . 602
vocabulary (taxonomy module) . 603
vocabulary_node_types (taxonomy module) . 603
watchdog (dblog module). 604

!APPENDIX B Resources . 605

Code. 605
Drupal CVS . 605
Drupal API Reference . 605
Security Advisories . 605
Updating Modules . 606
Updating Themes. 606

Handbooks . 606
Forums . 606
Mailing Lists . 606

development . 606
documentation . 607
drupal-cvs . 607
infrastructure . 607
support. 607
themes. 607
translations . 607
webmasters . 607
CVS-applications . 607
consulting . 607

User Groups and Interest Groups . 608
Internet Relay Chat . 608

#drupal-support . 608
#drupal-themes . 608
#drupal-ecommerce . 608
#drupal . 608
#drupal-dev . 609
#drupal-consultants . 609
#drupal-dojo . 609

!CONTENTS xxiii

09898fmfinal.qxd 7/30/08 12:48 PM Page xxiii

Videocasts. 609
Weblogs . 609

Planet Drupal . 609
Conferences . 609
Contribute . 610

!INDEX . 611

!CONTENTSxxiv

09898fmfinal.qxd 7/30/08 12:48 PM Page xxiv

Foreword

Less than two years ago, I wrote the foreword for the first edition of this book. What was
missing at that time was a developer book for Drupal. By writing the first version of this
book, John VanDyk and Matt Westgate made an incredible contribution to Drupal’s
steady growth. I don’t think I know a single Drupal developer who doesn’t own a copy
of the first Pro Drupal Development book.

Drupal, through its open source nature, has become much greater than I ever imag-
ined it would. The Drupal developer community has a healthy desire to innovate, to
respond to the ever-changing landscape of web development, and to provide web devel-
opers an almost infinite amount of flexibility. Change is a constant in the Drupal com-
munity and key to our success.

Since the first edition of this book was published, we released Drupal 6, a big step
forward, with new and improved APIs. In fact, Drupal 6 had over 700 individual contribu-
tors who have patches included in the core code. Together, we’ve made important theme
system improvements, better support for multilingual web sites, an improved menu sys-
tem, form API improvements, JavaScript goodies, and much more. The net result is that
Drupal 6 is an even better web application development platform than Drupal 5.

Probably to John and Matt’s despair (sorry!), all of the chapters of the original edition
of Pro Drupal Development went partially out of date.

Fortunately, the second edition of this book fixes all that. This book covers all of the
capabilities and developer facilities in Drupal 6 and provides deep insight into the inner
workings and design choices behind Drupal 6. Every time we release a new major version
of Drupal, Drupal attracts more users and developers. So, if anything was missing for
Drupal 6, it was this book, and I’m indebted to John for revising and expanding it.

Armed with this book and a copy of Drupal’s source code, you can participate in the
Drupal community and contribute to Drupal’s development. If you have figured out how
to do something better, with fewer lines of code or more elegantly and faster than before,
let us know because we are completely and utterly focused on making Drupal rock even
more. I’d love to review and commit your Drupal core patches, and I’m sure many of the
other maintainers would too.

Dries Buytaert
Drupal founder and project lead

xxv

09898fmfinal.qxd 7/30/08 12:48 PM Page xxv

09898fmfinal.qxd 7/30/08 12:48 PM Page xxvi

About the Author

!JOHN VANDYK began his work with computers on a black Bell and
Howell Apple II by printing out and poring over the BASIC code for
Little Brick Out in order to increase the paddle width. Later, he
manipulated timing loops in assembly to give Pac-Man a larger time
slice than the ghosts. Before discovering Drupal, John was involved
with the UserLand Frontier community and used Plone before writ-
ing his own content management system (with Matt Westgate) using
Ruby.

John is a senior web architect at Lullabot, a Drupal education and consulting firm.
Before that, John was a systems analyst and adjunct assistant professor in the entomol-
ogy department at Iowa State University of Science and Technology. His master’s thesis
focused on cold tolerance of deer ticks, and his doctoral dissertation was on the effective-
ness of photographically created three-dimensional virtual insects on undergraduate
learning.

John lives with his wife Tina in Ames, Iowa. They homeschool their passel of children,
who have become used to bedtime stories like “The Adventures of a Node Revision in the
Land of Multiple Joins.”

xxvii

09898fmfinal.qxd 7/30/08 12:48 PM Page xxvii

09898fmfinal.qxd 7/30/08 12:48 PM Page xxviii

About the Technical Reviewer

!ROBERT DOUGLASS’s Drupal adventure started in 2003 with the
creation of his personal web site, RobsHouse.net. In 2005, Robert
coauthored the book Building Online Communities with Drupal,
phpBB, and WordPress (Apress). As the first book to be published that
covered Drupal in depth, Building Online Communities has proven
to be a valuable guide to Drupal newcomers and experienced
Drupallers alike.

Robert has been responsible for Drupal’s involvement in the
Google Summer of Code program, has spoken about Drupal at numerous conferences,
has published dozens of Drupal-related articles online, and is the founder of the Köln/
Bonn Drupal users group in Germany.

As senior Drupal advisor at Acquia, Robert is working to make Drupal more accessi-
ble, fun, and productive for a wider range of people and organizations. Robert loves
classical music and open source software dearly and looks to each as a source for moti-
vation and optimism.

xxix

09898fmfinal.qxd 7/30/08 12:48 PM Page xxix

09898fmfinal.qxd 7/30/08 12:48 PM Page xxx

Acknowledgments

First of all, thanks to my family members for their understanding and support during
the writing of this book, especially as a “simple revision” turned into a project as large as
the first edition.

Drupal is essentially a community-based project. This book could not have hap-
pened without the selfless gifts of the many people who write documentation, submit
bug reports, create and review improvements, and generally help Drupal to become what
it is today.

But among the many, I’d like to thank those few who went above and beyond what
could have been expected.

Those include the members of the #drupal Internet Relay Chat channel, who put up
with the constant questioning of how things worked, why things were written a certain
way, and whether a bit of code was brilliant or made no sense at all. Significant contribu-
tions came from Brandon Bergren, Øivind Binde, Larry “Crell” Garfield, Dmitri Gaskin,
Charlie Gordon, Gerhard Killesreiter, Greg Knaddison, Druplicon, Rob Loach, Chad Phillips,
and Oleg Terenchuck. Sincere apologies to the many who contributed but whose names
I have missed here.

A special thanks to Robert Douglass, Károly Négyesi, Addison Berry, Angela Byron,
Heine Deelstra, Jeff Eaton, Nathan Haug, Kevin Hemenway, Gábor Hojtsy, Barry Jaspan,
Earl Miles, and James Walker for their critical review of parts of the manuscript.

Thanks to Joel Coats at Iowa State University for believing that this book was a worth-
while investment of time, and thanks to the amazing team at Lullabot.

Thanks to the Apress team for showing grace when code examples needed to be
changed yet again and for magically turning my drafts into a book.

And of course, thanks to Dries Buytaert for sharing Drupal with the world.

xxxi

09898fmfinal.qxd 7/30/08 12:48 PM Page xxxi

09898fmfinal.qxd 7/30/08 12:48 PM Page xxxii

Introduction

The journey of a software developer is an interesting one. It starts with taking things
apart and inspecting the isolated components to try to understand the whole system.
Next, you start poking at and hacking the system in an attempt to manipulate its behav-
ior. This is how you learn—by hacking.

You follow that general pattern for some time until you reach a point of confidence
where you can build your own systems from scratch. You might roll your own content
management system, for example, deploy it on multiple sites, and think you’re changing
the world.

But there comes a critical point, and it usually happens when you realize that the
maintenance of your system starts to take up more time than building the features, when
you wish that you knew back when you started writing the system what you know now.
You begin to see other systems emerge that can do what your system can do and more.
There’s a community filled with people who are working together to improve the soft-
ware, and you realize that they are, for the most part, smarter than you. And even more,
the software is free.

This is what happened to me, and maybe even you, upon discovering Drupal. It’s a
common journey with a happy ending—hundreds of developers working together on one
simultaneous project. You make friends; you make code; and you are still recognized for
your contributions just as you were when you were flying solo.

This book was written for three levels of understanding. First and most importantly,
there are pretty pictures in the form of diagrams and flowcharts; those looking for the big
picture of how Drupal works will find them quite useful. At the middle level are code
snippets and example modules. This is the hands-on layer, where you get your hands
dirty and dig in. I encourage you to install Drupal, work along with the examples (prefer-
ably with a good debugger) as you go through the book, and get comfortable with Drupal.
The last layer is the book as a whole: the observations, tips, and explanations between
the code and pictures. This provides the glue between the other layers.

If you’re new to Drupal, I suggest reading this book in order, as chapters are pre-
requisites for those that follow.

Lastly, you can download this book’s code examples as well as the flowcharts and
diagrams from http://drupalbook.com or http://www.apress.com.

Good luck and welcome to the Drupal community!

xxxiii

09898fmfinal.qxd 7/30/08 12:48 PM Page xxxiii

http://drupalbook.com
http://www.apress.com

09898fmfinal.qxd 7/30/08 12:48 PM Page xxxiv

How Drupal Works

In this chapter, I’ll give you an overview of Drupal. Details on how each part of the system
works will be provided in later chapters. Here, we’ll cover the technology stack on which
Drupal runs, the layout of the files that make up Drupal, and the various conceptual terms
that Drupal uses, such as nodes, hooks, blocks, and themes.

What Is Drupal?
Drupal is used to build web sites. It’s a highly modular, open source web content manage-
ment framework with an emphasis on collaboration. It is extensible, standards-compliant,
and strives for clean code and a small footprint. Drupal ships with basic core functionality,
and additional functionality is gained by enabling built-in or third-party modules. Drupal is
designed to be customized, but customization is done by overriding the core or by adding
modules, not by modifying the code in the core. Drupal’s design also successfully separates
content management from content presentation.

Drupal can be used to build an Internet portal; a personal, departmental, or corporate
web site; an e-commerce site; a resource directory; an online newspaper; an image gallery;
an intranet, to mention only a few possibilities. It can even be used to teach a distance-
learning course.

A dedicated security team strives to keep Drupal secure by responding to threats and
issuing security updates. A nonprofit organization called the Drupal Association supports
Drupal by improving the drupal.org web site infrastructure and organizing Drupal confer-
ences and events. And a thriving online community of users, site administrators, designers,
and web developers work hard to continually improve the software; see http://drupal.org
and http://groups.drupal.org.

Technology Stack
Drupal’s design goals include both being able to run well on inexpensive web hosting
accounts and being able to scale up to massive distributed sites. The former goal means using
the most popular technology, and the latter means careful, tight coding. Drupal’s technology
stack is illustrated in Figure 1-1.

1

C H A P T E R 1

09898ch01final 7/30/08 3:07 PM Page 1

http://drupal.org
http://groups.drupal.org

Figure 1-1. Drupal’s technology stack

The operating system is at such a low level in the stack that Drupal does not care much
about it. Drupal runs successfully on any operating system that supports PHP.

The web server most widely used with Drupal is Apache, though other web servers
(including Microsoft IIS) may be used. Because of Drupal’s long history with Apache, Drupal
ships with .htaccess files that secure the Drupal installation. Clean URLs—that is, those
devoid of question marks, ampersands, or other strange characters—are achieved using
Apache’s mod_rewrite component. This is particularly important because when migrating
from another content management system or from static files, the URLs of the content need
not change, and unchanging URIs are cool, according to Tim Berners-Lee (http://www.w3.
org/Provider/Style/URI). Clean URLs are available on other web servers by using the web
server’s URL rewriting capabilities.

Drupal interfaces with the next layer of the stack (the database) through a lightweight
database abstraction layer. This layer handles sanitation of SQL queries and makes it possi-
ble to use different vendors’ databases without refactoring your code. The most widely
tested databases are MySQL and PostgreSQL, though support for Microsoft SQL Server and
Oracle is increasing.

Drupal is written in PHP. Since PHP is an easy language to learn, there are many PHP
programs written by beginners. The quality of beginner’s code has given PHP a bad reputa-
tion. However, PHP can also be used to write solid code. All core Drupal code adheres to
strict coding standards (http://drupal.org/nodes/318) and undergoes thorough review
through the open source process. For Drupal, the easy learning curve of PHP means that
there is a low barrier to entry for contributors who are just starting out, and the review
process ensures this ease of access comes without sacrificing quality in the end product.
And the feedback beginners receive from the community helps to improve their skills.

Core
A lightweight framework makes up the Drupal core. This is what you get when you download
Drupal from drupal.org. The core is responsible for providing the basic functionality that will
be used to support other parts of the system.

CHAPTER 1 ! HOW DRUPAL WORKS2

09898ch01final 7/30/08 3:07 PM Page 2

http://www.w3.org/Provider/Style/URI
http://www.w3.org/Provider/Style/URI
http://drupal.org/nodes/318

The core includes code that allows the Drupal system to bootstrap when it receives a
request, a library of common functions frequently used with Drupal, and modules that
provide basic functionality like user management, taxonomy, and templating as shown in
Figure 1-2.

Figure 1-2. An overview of the Drupal core (not all core functionality is shown)

Administrative Interface
The administrative interface in Drupal is tightly integrated with the rest of the site and, by
default, uses the same visual theme. The first user, user 1, is the superuser with complete
access to the site. After logging in as user 1, you’ll see an Administer link within your user
block (see the “Blocks” section). Click that, and you’re inside the Drupal administrative inter-
face. Each user’s block will contain different links depending on his or her access levels for
the site.

Modules
Drupal is a truly modular framework. Functionality is included in modules, which can be
enabled or disabled (some required modules cannot be disabled). Features are added to a
Drupal web site by enabling existing modules, installing modules written by members of the
Drupal community, or writing new modules. In this way, web sites that do not need certain
features can run lean and mean, while those that need more can add as much functionality as
desired. This is shown in Figure 1-3.

CHAPTER 1 ! HOW DRUPAL WORKS 3

09898ch01final 7/30/08 3:07 PM Page 3

Figure 1-3. Enabling additional modules gives more functionality.

Both the addition of new content types such as recipes, blog posts, or files, and the addi-
tion of new behaviors such as e-mail notification, peer-to-peer publishing, and aggregation
are handled through modules. Drupal makes use of the inversion of control design pattern, in
which modular functionality is called by the framework at the appropriate time. These oppor-
tunities for modules to do their thing are called hooks.

Hooks
Hooks can be thought of as internal Drupal events. They are also called callbacks, though
because they are constructed by function-naming conventions and not by registering with a
listener, they are not truly being called back. Hooks allow modules to “hook into” what is hap-
pening in the rest of Drupal.

Suppose a user logs into your Drupal web site. At the time the user logs in, Drupal fires
the user hook. That means that any function named according to the convention module

CHAPTER 1 ! HOW DRUPAL WORKS4

09898ch01final 7/30/08 3:07 PM Page 4

name plus hook name will be called. For example, comment_user() in the comment module,
locale_user() in the locale module, node_user() in the node module, and any other similarly
named functions will be called. If you were to write a custom module called spammy.module
and include a function called spammy_user() that sent an e-mail to the user, your function
would be called too, and the hapless user would receive an unsolicited e-mail at every login.

The most common way to tap into Drupal’s core functionality is through the implementa-
tion of hooks in modules.

!Tip For more details about the hooks Drupal supports, see the online documentation at http://
api.drupal.org/api/6, and look under Components of Drupal, then “Module system (Drupal hooks).”

Themes
When creating a web page to send to a browser, there are really two main concerns: assem-
bling the appropriate data and marking up the data for the Web. In Drupal, the theme layer is
responsible for creating the HTML (or JSON, XML, etc.) that the browser will receive. Drupal
can use several popular templating approaches, such as Smarty, Template Attribute Language
for PHP (PHPTAL), and PHPTemplate.

The important thing to remember is that Drupal encourages separation of content and
markup.

Drupal allows several ways to customize and override the look and feel of your web site.
The simplest way is by using a cascading style sheet (CSS) to override Drupal’s built-in classes
and IDs. However, if you want to go beyond this and customize the actual HTML output, you’ll
find it easy to do. Drupal’s template files consist of standard HTML and PHP. Additionally,
each dynamic part of a Drupal page (such as a box, list, or breadcrumb trail) can be over-
ridden simply by declaring a function with an appropriate name. Then Drupal will use your
function instead to create that part of the page.

Nodes
Content types in Drupal are derived from a single base type referred to as a node. Whether
it’s a blog entry, a recipe, or even a project task, the underlying data structure is the same.
The genius behind this approach is in its extensibility. Module developers can add features
like ratings, comments, file attachments, geolocation information, and so forth for nodes in
general without worrying about whether the node type is blog, recipe, or so on. The site
administrator can then mix and match functionality by content type. For example, the
administrator may choose to enable comments on blogs but not recipes or enable file
uploads for project tasks only.

Nodes also contain a base set of behavioral properties that all other content types inherit.
Any node can be promoted to the front page of the web site, published or unpublished, or
even searched. And because of this uniform structure, the administrative interface is able to
offer a batch editing screen for working with nodes.

CHAPTER 1 ! HOW DRUPAL WORKS 5

09898ch01final 7/30/08 3:07 PM Page 5

http://api.drupal.org/api/6
http://api.drupal.org/api/6

Blocks
A block is information that can be enabled or disabled in a specific location on your web site’s
template. For example, a block might display the number of current active users on your site. You
might have a block containing links to the most popular content on the site, or a list of upcoming
events. Blocks are typically placed in a template’s sidebar, header, or footer. Blocks can be set to
display on nodes of a certain type, only on the front page, or according to other criteria.

Often blocks are used to present information that is customized to the current user. For
example, the user block only contains links to the administrative areas of the site to which the
current user has access, such as the “My account” page. Regions where blocks may appear (such
as the header, footer, or right or left sidebar) are defined in a site’s theme; placement and visibil-
ity of blocks within those regions is managed through the web-based administrative interface.

File Layout
Understanding the directory structure of a default Drupal installation will teach you several
important best practices such as where downloaded modules and themes should reside and
how to have different Drupal installation profiles. A default Drupal installation has the struc-
ture shown in Figure 1-4.

Figure 1-4. The default folder structure of a Drupal installation

CHAPTER 1 ! HOW DRUPAL WORKS6

09898ch01final 7/30/08 3:07 PM Page 6

Details about each element in the folder structure follow:

The includes folder contains libraries of common functions that Drupal uses.

The misc folder stores JavaScript and miscellaneous icons and images available to a stock
Drupal installation.

The modules folder contains the core modules, with each module in its own folder. It is
best not to touch anything in this folder (or any other folder except profiles and sites).
You add extra modules in the sites directory.

The profiles folder contains different installation profiles for a site. If there are other
profiles besides the default profile in this subdirectory, Drupal will ask you which pro-
file you want to install when first installing your Drupal site. The main purpose of an
installation profile is to enable certain core and contributed modules automatically.
An example would be an e-commerce profile that automatically sets up Drupal as an
e-commerce platform.

The scripts folder contains scripts for checking syntax, cleaning up code, running
Drupal from the command line, and handling special cases with cron. This folder is not
used within the Drupal request life cycle; these are shell and Perl utility scripts.

The sites directory (see Figure 1-5) contains your modifications to Drupal in the form
of settings, modules, and themes. When you add modules to Drupal from the con-
tributed modules repository or by writing your own, they go into sites/all/modules.
This keeps all your Drupal modifications within a single folder. Inside the sites direc-
tory will be a subdirectory named default that holds the default configuration file for
your Drupal site—default.settings.php. The Drupal installer will modify these origi-
nal settings based on the information you provide and write a settings.php file for
your site. The default directory is typically copied and renamed to the URL of your
site by the person deploying the site, so your final settings file would be at sites/
www.example.com/settings.php.

The sites/default/files folder doesn’t ship with Drupal by default, but it is needed to
store any files that are uploaded to your site and subsequently served out. Some examples
are the use of a custom logo, enabling user avatars, or uploading other media associated
with your new site. This subdirectory requires read and write permissions by the web
server that Drupal is running behind. Drupal’s installer will create this subdirectory if it
can and will check that the correct permissions have been set.

The themes folder contains the template engines and default themes for Drupal.
Additional themes you download or create should not go here; they go into sites/
all/themes.

cron.php is used for executing periodic tasks, such as pruning database tables and
calculating statistics.

index.php is the main entry point for serving requests.

install.php is the main entry point for the Drupal installer.

CHAPTER 1 ! HOW DRUPAL WORKS 7

09898ch01final 7/30/08 3:07 PM Page 7

http://www.example.com/settings.php

update.php updates the database schema after a Drupal version upgrade.

xmlrpc.php receives XML-RPC requests and may be safely deleted from deployments that
do not intend to receive XML-RPC requests.

robots.txt is a default implementation of the robot exclusion standard.

Other files not listed here are documentation files.

Figure 1-5. The sites folder can store all your Drupal modifications.

Serving a Request
Having a conceptual framework of what happens when a request is received by Drupal is
helpful, so this section provides a quick walk-through. If you want to trace it yourself, use a
good debugger, and start at index.php, which is where Drupal receives most of its requests.
The sequence outlined in this section may seem complex for displaying a simple web page,
but it is rife with flexibility.

The Web Server’s Role
Drupal runs behind a web server, typically Apache. If the web server respects Drupal’s
.htaccess file, some PHP settings are initialized, and the URL is examined. Almost all calls
to Drupal go through index.php. For example, a call to http://example.com/foo/bar under-
goes the following process:

1. The mod_rewrite rule in Drupal’s .htaccess file looks at the incoming URL and
separates the base URL from the path. In our example, the path is foo/bar.

2. This path is assigned to the URL query parameter q.

3. The resulting URL is http://example.com/index.php?q=foo/bar.

4. Drupal treats foo/bar as the internal Drupal path, and processing begins in index.php.

As a result of this process, Drupal treats http://example.com/index.php?q=foo/bar and
http://example.com/foo/bar exactly the same way, because internally the path is the same in
both cases. This enables Drupal to use URLs without funny-looking characters in them. These
URLs are referred to as clean URLs.

CHAPTER 1 ! HOW DRUPAL WORKS8

09898ch01final 7/30/08 3:07 PM Page 8

http://example.com/foo/bar
http://example.com/index.php?q=foo/bar
http://example.com/index.php?q=foo/bar
http://example.com/foo/bar

In alternate web servers, such as Microsoft IIS, clean URLs can be achieved using a
Windows Internet Server Application Programming Interface (ISAPI) module such as ISAPI
Rewrite. IIS version 7 and later may support rewriting directly.

The Bootstrap Process
Drupal bootstraps itself on every request by going through a series of bootstrap phases. These
phases are defined in bootstrap.inc and proceed as described in the following sections.

Initialize Configuration
This phase populates Drupal’s internal configuration array and establishes the base URL
($base_url) of the site. The settings.php file is parsed via include_once(), and any variable
or string overrides established there are applied. See the “Variable Overrides” and “String
Overrides” sections of the file sites/all/default/default.settings.php for details.

Early Page Cache
In situations requiring a high level of scalability, a caching system may need to be
invoked before a database connection is even attempted. The early page cache phase lets
you include (with include()) a PHP file containing a function called page_cache_
fastpath(), which takes over and returns content to the browser. The early page cache
is enabled by setting the page_cache_fastpath variable to TRUE, and the file to be included
is defined by setting the cache_inc variable to the file’s path. See the chapter on caching
for an example.

Initialize Database
During the database phase, the type of database is determined, and an initial connection is
made that will be used for database queries.

Hostname/IP-Based Access Control
Drupal allows the banning of hosts on a per-hostname/IP address basis. In the access con-
trol phase, a quick check is made to see if the request is coming from a banned host; if so,
access is denied.

Initialize Session Handling
Drupal takes advantage of PHP’s built-in session handling but overrides some of the han-
dlers with its own to implement database-backed session handling. Sessions are initialized
or reestablished in the session phase. The global $user object representing the current user
is also initialized here, though for efficiency not all properties are available (they are added
by an explicit call to the user_load() function when needed).

CHAPTER 1 ! HOW DRUPAL WORKS 9

09898ch01final 7/30/08 3:07 PM Page 9

Late Page Cache
In the late page cache phase, Drupal loads enough supporting code to determine whether or
not to serve a page from the page cache. This includes merging settings from the database into
the array that was created during the initialize configuration phase and loading or parsing
module code. If the session indicates that the request was issued by an anonymous user and
page caching is enabled, the page is returned from the cache and execution stops.

Language Determination
At the language determination phase, Drupal’s multilingual support is initialized and a deci-
sion is made as to which language will be used to serve the current page based on site and
user settings. Drupal supports several alternatives for determining language support, such
as path prefix and domain-level language negotiation.

Path
At the path phase, code that handles paths and path aliasing is loaded. This phase enables
human-readable URLs to be resolved and handles internal Drupal path caching and
lookups.

Full
This phase completes the bootstrap process by loading a library of common functions, theme
support, and support for callback mapping, file handling, Unicode, PHP image toolkits, form
creation and processing, mail handling, automatically sortable tables, and result set paging.
Drupal’s custom error handler is set, and all enabled modules are loaded. Finally, Drupal fires
the init hook, so that modules have an opportunity to be notified before official processing of
the request begins.

Once Drupal has completed bootstrapping, all components of the framework are avail-
able. It is time to take the browser’s request and hand it off to the PHP function that will
handle it. The mapping between URLs and functions that handle them is accomplished using
a callback registry that takes care of both URL mapping and access control. Modules register
their callbacks using the menu hook (for more details, see Chapter 4).

When Drupal has determined that there exists a callback to which the URL of the browser
request successfully maps and that the user has permission to access that callback, control is
handed to the callback function.

Processing a Request
The callback function does whatever work is required to process and accumulate data needed
to fulfill the request. For example, if a request for content such as http://example.com/
q=node/3 is received, the URL is mapped to the function node_page_view() in node.module.
Further processing will retrieve the data for that node from the database and put it into a data
structure. Then, it’s time for theming.

CHAPTER 1 ! HOW DRUPAL WORKS10

09898ch01final 7/30/08 3:07 PM Page 10

http://example.com

Theming the Data
Theming involves transforming the data that has been retrieved, manipulated, or created
into HTML (or XML or other output format). Drupal will use the theme the administrator
has selected to give the web page the correct look and feel. The resulting output is then sent
to the web browser (or other HTTP client).

Summary
After reading this chapter, you should understand in general how Drupal works and have an
overview of what happens when Drupal serves a request. The components that make up the
web page serving process will be covered in detail in later chapters.

CHAPTER 1 ! HOW DRUPAL WORKS 11

09898ch01final 7/30/08 3:07 PM Page 11

09898ch01final 7/30/08 3:07 PM Page 12

Writing a Module

In many open source applications, you can customize the application by modifying the
source code. While this is one method for getting the behavior you desire, it is generally
frowned upon and considered a last resort in the Drupal community. Customizing code
means that with each update of Drupal, you must perform more work—you must test to see
that your customization still works as expected. Instead, Drupal is designed from the ground
up to be modular and extensible.

Drupal is a very lean framework for building applications and the default installation is
referred to as the Drupal core. Functionality is added to the core by enabling modules, which
are files that contain PHP code. Core modules reside in the modules subdirectory of your
Drupal installation. Take a look at that directory now, and compare it to the list of modules
you see when you navigate to Administer ! Site building ! Modules on your Drupal site.

In this chapter, we are going to build a module from scratch. As you build the module,
you’ll learn about the standards to which modules must adhere. We need a realistic goal, so
let’s focus on the real-world problem of annotation. When looking through the pages of a
Drupal web site, users may comment on content if the administrator has enabled the com-
ment module. But what about making an annotation (a type of note that only the user can
see) to a web page? This might be useful for confidentially reviewing content (I know it seems
contrived, but bear with me).

Creating the Files
The first thing we are going to do is to choose a name for the module. The name “annotate”
seems appropriate—it’s short and descriptive. Next, we need a place to put the module. We
could put it in the modules directory along with the core modules, but that would make main-
tenance more difficult, because we’d have to remember which modules are core modules and
which are ours. Let’s put it in sites/all/modules to keep it separate from the core modules.

Create the sites/all/modules directory if necessary. Create a subdirectory called custom
in sites/all/modules and a subdirectory called annotate in sites/all/modules/custom. This
will keep the custom modules you develop separate from third-party modules you download.
This organization is up to you but can be helpful to orient another developer should you need
to hand off your site. We create a subdirectory and not just a file named annotate.module
because we’re going to include other files besides the module file in our module distribution.
For example, we’ll need a README.txt file to explain to other users what our module does and
how to use it, and an annotate.info file to provide some information about our module to
Drupal. Ready to begin?

13

C H A P T E R 2

09898ch02final 7/30/08 3:03 PM Page 13

Our annotate.info file follows:

; Id
name = Annotate
description = Allows users to annotate nodes.
core = 6.x
package = Pro Drupal Development

The file is in a simple format that defines keys and values. We start with a concurrent
versions system (CVS) identification tag. If we want to share our module with others by
checking it into Drupal’s contributed modules repository, this value will automatically be
replaced by CVS. Then we provide a name and description for Drupal to display in the
module administration section of the web site. We explicitly define which major version
of Drupal our module is compatible with; in this case, version 6.x. Drupal 6 and later will
not allow incompatible modules to be enabled. Modules are displayed in groups, and the
grouping is determined by the package; thus, if we have three different modules that have
package = Pro Drupal Development, they will display in one group. We could assign
optional values in addition to those listed previously. Here’s an example of a module
that requires PHP 5.2 and the forum and taxonomy modules:

; Id
name = Forum confusion
description = Randomly reassigns replies to different discussion threads.
core = 6.x
dependencies[] = forum
dependencies[] = taxonomy
package = "Evil Bob's Forum BonusPak"
php = 5.2

"Note You might be wondering why we need a separate .info file. Why not just have a function in our
main module that returns this metadata? Because when the module administration page loads, it would
have to load and parse every single module whether enabled or not, leading to memory use far higher than
normal and possibly over the memory limit assigned to PHP. With .info files, the information can be loaded
quickly and with minimal memory use.

Now we’re ready to create the actual module. Create a file named annotate.module inside
your sites/all/modules/custom/annotate subdirectory. Begin the file with an opening PHP
tag and a CVS identification tag, followed by a comment:

<?php
// Id

CHAPTER 2 " WRITING A MODULE14

09898ch02final 7/30/08 3:03 PM Page 14

/**
* @file
* Lets users add private annotations to nodes.
*
* Adds a text field when a node is displayed
* so that authenticated users may make notes.
*/

First, note the comment style. We begin with /**, and on each succeeding line, we use a
single asterisk indented with one space (*) and */ on a line by itself to end a comment. The
@file token denotes that what follows on the next line is a description of what this file does.
This one-line description is used so that api.module, Drupal’s automated documentation
extractor and formatter, can find out what this file does. After a blank line, we add a longer
description aimed at programmers who will be examining (and no doubt improving) our
code. Note that we intentionally do not use a closing tag (?>); these are optional in PHP and,
if included, can cause problems with trailing whitespace in files (see http://drupal.org/
node/545).

"Note Why are we being so picky about how everything is structured? It’s because when hundreds of
people from around the world work together on a project, it saves time when everyone does things one
standard way. Details of the coding style required for Drupal can be found in the “Coding standards” section
of the Developing for Drupal Handbook (http://drupal.org/node/318).

Our next order of business is to define some settings so that we can use a web-based form
to choose which node types to annotate. There are two steps to complete. First, we’ll define a
path where we can access our settings. Then, we’ll create the settings form.

Implementing a Hook
Recall that Drupal is built on a system of hooks, sometimes called callbacks. During the
course of execution, Drupal asks modules if they would like to do something. For example,
when determining which module is responsible for the current request, it asks all modules to
provide the paths that the modules will handle. It does this by making a list of all the modules
and calling the function that has the name of the module plus _menu in each module. When it
encounters the annotate module (which it will early on, since the listing is alphabetical by
default), it calls our annotate_menu() function, which returns an array of menu items. Each
item (we only have one at this point) is keyed by the path, in this case, admin/settings/
annotate. The value of our menu item is an array consisting of keys and values describing
what Drupal should do when this path is requested. We’ll cover this in detail in Chapter 4,
which covers Drupal’s menu/callback system. Here’s what we’ll add to our module:

CHAPTER 2 " WRITING A MODULE 15

09898ch02final 7/30/08 3:03 PM Page 15

http://drupal.org
http://drupal.org/node/318

/**
* Implementation of hook_menu().
*/
function annotate_menu() {
$items['admin/settings/annotate'] = array(
'title' => 'Annotation settings',
'description' => 'Change how annotations behave.',
'page callback' => 'drupal_get_form',
'page arguments' => array('annotate_admin_settings'),
'access arguments' => array('administer site configuration'),
'type' => MENU_NORMAL_ITEM,
'file' => 'annotate.admin.inc',

);

return $items;
}

Don’t worry too much about the details at this point. This code says, “When the user goes
to http://example.com/?q=admin/settings/annotate, call the function drupal_get_form(),
and pass it the form ID annotate_admin_settings. Look for a function describing this form in
the file annotate.admin.inc. Only users with the permission administer site configuration
may view this menu item.” When the time comes to display the form, Drupal will ask us to
provide a form definition (more on that in a minute). When Drupal is finished asking all the
modules for their menu items, it has a menu from which to select the proper function to call
for the path being requested.

"Note If you’re interested in seeing the function that drives the hook mechanism, see the
module_invoke_all() function in includes/module.inc.

You should see now why we call it hook_menu() or the menu hook. Drupal hooks are
always created by appending the name of the hook to the name of your module.

"Tip Drupal’s hooks allow modification of almost any aspect of the software. A complete list of supported
hooks and their uses can be found at the Drupal API documentation site (http://api.drupal.org).

Adding Module-Specific Settings
Drupal has various node types (called content types in the user interface), such as stories and
pages. We will want to restrict the use of annotations to only some node types. To do that, we
need to create a page where we can tell our module which node types we want to annotate.
On that page, we will show a set of check boxes, one for each content type that exists. This will

CHAPTER 2 " WRITING A MODULE16

09898ch02final 7/30/08 3:03 PM Page 16

http://example.com/?q=admin/settings/annotate
http://api.drupal.org

let the end user decide which content types get annotations by checking or unchecking the
check boxes (see Figure 2-1). Such a page is an administrative page, and the code that com-
poses it need only be loaded and parsed when needed. Therefore, we will put the code into
a separate file, not in our annotate.module file, which will be loaded and run with each web
request. Since we told Drupal to look for our settings form in the annotate.admin.inc file,
create that file at sites/all/modules/custom/annotate/annotate.admin.inc, and add the fol-
lowing code to it:

<?php
// Id

/**
* @file
* Administration page callbacks for the annotate module.
*/

/**
* Form builder. Configure annotations.
*
* @ingroup forms
* @see system_settings_form().
*/
function annotate_admin_settings() {
// Get an array of node types with internal names as keys and
// "friendly names" as values. E.g.,
// array('page' => 'Page', 'story' => 'Story')
$options = node_get_types('names');

$form['annotate_node_types'] = array(
'#type' => 'checkboxes',
'#title' => t('Users may annotate these content types'),
'#options' => $options,
'#default_value' => variable_get('annotate_node_types', array('page')),
'#description' => t('A text field will be available on these content types to

make user-specific notes.'),
);

return system_settings_form($form);

}

Forms in Drupal are represented as a nested tree structure; that is, an array of arrays. This
structure describes to Drupal’s form rendering engine how the form is to be represented. For
readability, we place each element of the array on its own line. Each form property is denoted
with a pound sign (#) and acts as an array key. We start by declaring the type of form element
to be checkboxes, which means that multiple check boxes will be built using a keyed array.
We’ve already got that keyed array in the $options variable.

CHAPTER 2 " WRITING A MODULE 17

09898ch02final 7/30/08 3:03 PM Page 17

We set the options to the output of the function node_get_types('names'), which conve-
niently returns a keyed array of the node types that are currently available in this Drupal
installation. The output would look something like this:

'page' => 'Page', 'story' => 'Story'

The keys of the array are Drupal’s internal names for the node types, with the friendly
names (those that will be shown to the user) on the right. If your Drupal installation had a
node type called Savory Recipe, the array might look like this:

'page' => 'Page', 'savory_recipe' => 'Savory Recipe', 'story' => 'Story'

Therefore, in our web form, Drupal will generate check boxes for the page and story
node types.

We give the form element a title by defining the value of the #title property.

"Note Any returned text that will be displayed to the user (such as the #title and #description prop-
erties of our form field) is inside a t() function, a function provided by Drupal to facilitate string translation.
By running all text through a string translation function, localization of your module for a different language
will be much easier. We did not do this for our menu item because menu items are translated automatically.

The next directive, #default_value, will be the default value for this form element.
Because checkboxes is a multiple form element (i.e., there is more than one check box) the
value for #default_value will be an array.

The value of #default_value is worth discussing:

variable_get('annotate_node_types', array('story'))

Drupal allows programmers to store and retrieve any value using a special pair of
functions: variable_get() and variable_set(). The values are stored to the variables
database table and are available anytime while processing a request. Because these vari-
ables are retrieved from the database during every request, it’s not a good idea to store
huge amounts of data this way. But it’s a very convenient system for storing values like
module configuration settings. Note that what we pass to variable_get() is a key describ-
ing our value (so we can get it back) and a default value. In this case, the default value is
an array of which node types should allow annotation. We’re going to allow annotation of
story node types by default.

"Tip When using system_settings_form(), the name of the form element (in this case,
annotate_node_types) must match the name of the key used in variable_get().

CHAPTER 2 " WRITING A MODULE18

09898ch02final 7/30/08 3:03 PM Page 18

Lastly, we provide a description to tell the site administrator a bit about the information
that should go into the field.

Save the files you have created, and go to Administer ! Site building ! Modules. Your
module should be listed at the end of the list in a group titled Pro Drupal Development (if not,
double-check the syntax in your annotate.info and annotate.module files; make sure they are
in the sites/all/modules/custom directory). Go ahead and enable your new module.

Now that the annotate module is enabled, navigating to Administer ! Settings ! Anno-
tate should show us the configuration form for annotate.module (see Figure 2-1).

Figure 2-1. The configuration form for annotate.module is generated for us.

In only a few lines of code, we now have a functional configuration form for our module
that will automatically save and remember our settings! OK, one of the lines was pretty long,
but still, this gives you a feeling of the power you can leverage with Drupal.

Adding the Data Entry Form
In order for the user to enter notes about a web page, we’re going to need to provide a place for
the notes to be entered. Let’s add a form for notes to annotate.module.

/**
* Implementation of hook_nodeapi().
*/
function annotate_nodeapi(&$node, $op, $teaser, $page) {
global $user;
switch ($op) {
// The 'view' operation means the node is about to be displayed.
case 'view':
// Abort if the user is an anonymous user (not logged in) or
// if the node is not being displayed on a page by itself
// (for example, it could be in a node listing or search result).
if ($user->uid == 0 || !$page) {
break;

}
// Find out which node types we should annotate.
$types_to_annotate = variable_get('annotate_nodetypes', array('page'));

CHAPTER 2 " WRITING A MODULE 19

09898ch02final 7/30/08 3:03 PM Page 19

// Abort if this node is not one of the types we should annotate.
if (!in_array($node->type, $types_to_annotate)) {
break;

}

// Add our form as a content item.
$node->content['annotation_form'] = array(
'#value' => drupal_get_form('annotate_entry_form', $node),
'#weight' => 10

);
break;

}
}

This looks complicated, so let’s walk through it. First, note that we are implementing yet
another Drupal hook. This time it’s the nodeapi hook, and it’s called when Drupal is doing
various activities with a node, so that other modules (like ours) can modify the node before
processing continues. We are given a node through the $node variable. The ampersand in the
first parameter shows that this is actually a reference to the $node object, which is exciting
because it means any modification we make to the $node object here in our module will be
preserved. Since our objective is to append a form, we are glad that we have the ability to
modify the node.

We’re also given some information about what is going on in Drupal at the moment our
code is called. The information resides in the $op (operation) parameter and could be insert
(the node is being created), delete (the node is being deleted), or one of many other values.
Currently, we are only interested in modifying the node when it is being prepared to be
viewed; the $op variable will be view in this case. We structure our code using a switch state-
ment, so that we can easily add cases and see what our module will do in each case.

Next, we quickly check for situations in which we don’t want to display the annotation
field. One case is when the user viewing the node is not logged in (notice that we used the
global keyword to bring the $user object into scope so we could test if the current user is
logged in). Another time we want to avoid displaying the form is when the $page parameter
is not TRUE. If the $page parameter is FALSE, this node is not being displayed by itself but is
being displayed in a list, such as in search engine results or a list of recently updated nodes.
We are not interested in adding anything in such cases. We use the break statement to exit
from the switch statement and avoid modifying the page.

Before we add the annotation form to the web page, we need to check whether the
node being processed for viewing is one of the types for which we enabled annotation on
our settings page, so we retrieve the array of node types we saved previously when we
implemented the settings hook. We save it in a variable with the nicely descriptive name
$types_to_annotate. As the second parameter of the variable_get() call, we still specify a
default array to use in case the site administrator has not yet visited the settings page for
our module to enter settings. The next step is to check if the node we are working with is,
indeed, of a type contained in $types_to_annotate; again, we bail out using the break
statement if it’s a type of node we don’t want to annotate.

CHAPTER 2 " WRITING A MODULE20

09898ch02final 7/30/08 3:03 PM Page 20

Our final task is to create the form and add it to the $node object. First, we’ll need to define
the form so that we have something to add. We’ll do that in annotate.module in a separate
function whose sole responsibility is to define the form:

/**
* Define the form for entering an annotation.
*/
function annotate_entry_form($form_state, $node) {
// Define a fieldset.
$form['annotate'] = array(
'#type' => 'fieldset',
'#title' => t('Annotations'),

);

// Define a textarea inside the fieldset.
$form['annotate']['note'] = array(
'#type' => 'textarea',
'#title' => t('Notes'),
'#default_value' => isset($node->annotation) ? $node->annotation : '',
'#description' => t('Make your personal annotations about this content here.
Only you (and the site administrator) will be able to see them.')

);

// For convenience, save the node ID.
$form['annotate']['nid'] = array(
'#type' => 'value',
'#value' => $node->nid,

);

// Define a submit function.
$form['annotate']['submit'] = array(
'#type' => 'submit',
'#value' => t('Update'),

);
return $form;

}

The function takes two parameters. The first, $form_state, is passed automatically by
Drupal to all form functions. We’ll ignore it for now; for details, see Chapter 10 where the form
API is discussed in detail. The second parameter is the $node object that we passed into
drupal_get_form() inside our nodeapi hook implementation previously.

We create the form the same way we did in our annotate_admin_settings() function, by
creating a keyed array—only this time we want to put our text box and Submit button inside a
fieldset so that they are grouped together on the web page. First, we create an array, set #type
to be 'fieldset', and give it a title. Then we create the array that describes the textarea. Note
that the array key of the textarea array is a member of the fieldset array. In other words, we

CHAPTER 2 " WRITING A MODULE 21

09898ch02final 7/30/08 3:03 PM Page 21

use $form['annotate']['note'] instead of $form['note']. This way, Drupal can infer that the
textarea element is a member of the fieldset element. We use the ternary operator to prepopu-
late the textarea with an existing annotation or, if no current annotation exists, with an empty
string. Last, we create the submit button and return the array that defines our form.

Back in the annotate_nodeapi() function, we appended the form to the page’s content
by adding a value and weight to the node’s content. The value contains what to display, and
the weight tells Drupal where to display it in relation to other content the node may have.
We want our annotation form to be low on the page, so we assign it a relatively heavy weight
of 10. What we want to display is our form, so we call drupal_get_form() to change our form
from an array describing how it should be built to the finished HTML form. Note how we
pass the $node object along to our form function; we’ll need that to get any previous annota-
tion and prefill the form with it.

Create and view a Page node in your web browser, and you should see that the form has
been appended with the annotations form (see Figure 2-2).

Figure 2-2. The annotation form as it appears on a Drupal web page

What will happen when we click the Update button? Nothing, because we haven’t written
any code to do anything with the form contents yet. Let’s add that now. But before we do, we
have to think about where we’re going to store the data that the user enters.

Storing Data in a Database Table
The most common approach for storing data used by a module is to create a separate data-
base table for the module’s data. That keeps the data separate from the Drupal core tables.
When deciding what fields to create for your module, you should ask yourself: What data
needs to be stored? If I make a query against this table, what fields and indices would I need?
And finally, what future plans do I have for my module?

The data we need to store are simply the text of the annotation, the numeric ID of the
node it applies to, and the user ID of the user who wrote the annotation. It might also be use-
ful to save a timestamp, so we could show a list of recently updated annotations ordered by
timestamp. Finally, the main question we’ll ask of this table is, “What is the annotation for this
user for this node?” We’ll create a compound index on the uid and nid fields to make our most
frequent query as fast as possible. The SQL for our table will look something like the following
statement:

CHAPTER 2 " WRITING A MODULE22

09898ch02final 7/30/08 3:03 PM Page 22

CREATE TABLE annotate (
uid int(10) NOT NULL,
nid int(10) NOT NULL,
note longtext NOT NULL,
when int(11) NOT NULL default '0',
PRIMARY KEY (uid, nid),

);

We could just provide this SQL in a README.txt file with our module, and others who
want to install the module would have to manually add the database tables to their data-
bases. Instead, we’re going to take advantage of Drupal’s facilities for having the database
tables created at the same time that your module is enabled. We’ll create a special file; the
filename should begin with your module name and end with the suffix .install, so for the
annotate.module, the filename would be annotate.install. Create sites/all/modules/
custom/annotate/annotate.install, and enter the following code:

<?php
// Id

/**
* Implementation of hook_install().
*/
function annotate_install() {
// Use schema API to create database table.
drupal_install_schema('annotate');

}

/**
* Implementation of hook_uninstall().
*/
function annotate_uninstall() {
// Use schema API to delete database table.
drupal_uninstall_schema('annotate');
// Delete our module's variable from the variables table.
variable_delete('annotate_node_types');

}

/**
* Implementation of hook_schema().
*/
function annotate_schema() {
$schema['annotations'] = array(
'description' => t('Stores node annotations that users write.'),
'fields' => array(
'nid' => array(

CHAPTER 2 " WRITING A MODULE 23

09898ch02final 7/30/08 3:04 PM Page 23

'type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'default' => 0,
'description' => t('The {node}.nid to which the annotation applies.'),

),
'uid' => array(
'type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'default' => 0,
'description' => t('The {user}.uid of the user who created the annotation.')

),
'note' => array(
'description' => t('The text of the annotation.'),
'type' => 'text',
'not null' => TRUE,
'size' => 'big'

),
'created' => array(
'description' => t('A Unix timestamp indicating when the annotation
was created.'),

'type' => 'int',
'not null' => TRUE,
'default' => 0

),
),
'primary key' => array(
'nid', 'uid'

),
);

return $schema;
}

When the annotate module is first enabled, Drupal looks for an annotate.install file and
runs the annotate_install() function, which reads the schema that is described in our imple-
mentation of the schema hook. We describe the database tables and fields we want Drupal to
create, and it translates them into standard SQL for the database we are using. For more infor-
mation on how this works, see Chapter 5. If everything goes well, the database tables will be
created. Let’s try this now. Because we already enabled the module with no database tables,
we need to reinstall our module with our new .install file. Do that now as follows:

CHAPTER 2 " WRITING A MODULE24

09898ch02final 7/30/08 3:04 PM Page 24

1. Disable the module on the Administer ! Site building ! Modules page.

2. Uninstall the module using the Uninstall tab on the Administer ! Site building !
Modules page. This causes Drupal to forget about database tables, if any, that are asso-
ciated with a module.

3. Enable the module. This time Drupal will create the tables while the module is being
enabled.

"Tip If you made a typo in your .install file or execution fails for another reason, you can make Drupal
forget about your module and its tables by disabling the module at Administer ! Site building ! Modules
and by uninstalling the module’s tables using the Uninstall tab. As a last resort, deleting the module’s row
from the system table of the database will do the trick.

After Drupal has created the annotations table to store the data, we’ll have to make some
modifications to our code. For one thing, we’ll have to add some code to handle the process-
ing of the data once the user enters an annotation and clicks the Update button. Our function
for form submittal follows:

/**
* Handle submission of the annotation form and saving
* of the data to the database.
*/
function annotate_entry_form_submit($form, $form_state) {
global $user;

$note = $form_state['values']['note'];
$nid = $form_state['values']['nid'];

db_query('DELETE FROM {annotations} WHERE nid = %d AND uid = %d',
$nid, $user->uid);

db_query("INSERT INTO {annotations} (nid, uid, note, created) VALUES
(%d, %d, '%s', %d)", $nid, $user->uid, $note, time());

drupal_set_message(t('Your annotation has been saved.'));
}

Since we’re allowing only one annotation per user per node, we can safely delete the pre-
vious annotation (if any) and insert our own into the database. There are a few things to notice
about our interactions with the database. First, we don’t need to worry about connecting to
the database, because Drupal has already done this for us during its bootstrap sequence. Sec-
ond, whenever we refer to a database table, we put it inside curly brackets. This is so that table
prefixing can be done seamlessly (for more on table prefixing, see the notes in sites/default/
settings.php). And third, we use placeholders in our queries and then provide the variables

CHAPTER 2 " WRITING A MODULE 25

09898ch02final 7/30/08 3:04 PM Page 25

to be placed, so that Drupal’s built-in query sanitizing mechanism can do its part to prevent
SQL injection attacks. We use the %d placeholder for integers and '%s' for strings. Then, we use
drupal_set_message() to stash a message in the user’s session, which Drupal will display as a
notice on the next page the user views. This way, the user gets some feedback.

Finally, we need to change our nodeapi hook code so that if there’s an existing annotation,
it gets pulled from the database and is used to prefill our form. Just before we assign our form
to $node->content, we add the following lines, shown in boldface type:

/**
* Implementation of hook_nodeapi().
*/
function annotate_nodeapi(&$node, $op, $teaser, $page) {
global $user;
switch ($op) {
// The 'view' operation means the node is about to be displayed.
case 'view':
// Abort if the user is an anonymous user (not logged in) or
// if only the node summary (teaser) is being displayed.
if ($user->uid == 0 || !$page) {
break;

}
// Find out which node types we should annotate.
$types_to_annotate = variable_get('annotate_node_types', array('page'));

// Abort if this node is not one of the types we should annotate.
if (!in_array($node->type, $types_to_annotate)) {
break;

}

// Get the current annotation for this node from the database
// and store it in the node object.
$result = db_query('SELECT note FROM {annotations} WHERE nid = %d
AND uid = %d', $node->nid, $user->uid);

$node->annotation = db_result($result);

// Add our form as a content item.
$node->content['annotation_form'] = array(
'#value' => drupal_get_form('annotate_entry_form', $node),
'#weight' => 10

);
break;

case 'delete':
db_query('DELETE FROM {annotations} WHERE nid = %d', $node->nid);
break;

}
}

CHAPTER 2 " WRITING A MODULE26

09898ch02final 7/30/08 3:04 PM Page 26

We first query our database table to select the annotation for this user and this node.
Next, we use db_result(), a function that gets only the first field of the first row from the result
set. Since we’re only allowing one note per user per node, there should only ever be one row.

We’ve also added a case for the delete operation of the nodeapi hook, so when a node is
deleted the annotations for that node will be deleted as well.

Test your module. It should be able to save and retrieve annotations. Pat yourself on the
back—you’ve made a Drupal module from scratch. You’re on your way to becoming a core
Drupal developer!

Defining Your Own Administration Section
Drupal has several categories of administrative settings, such as content management and
user management, that appear on the main administration page. If your module needs a cate-
gory of its own, you can create that category easily. In this example, we create a new category
called “Node annotation.” To do so, we modify our module’s menu hook to define the new cat-
egory:

/**
* Implementation of hook_menu().
*/
function annotate_menu() {
$items['admin/annotate'] = array(
'title' => 'Node annotation',
'description' => 'Adjust node annotation options.',
'position' => 'right',
'weight' => -5,
'page callback' => 'system_admin_menu_block_page',
'access arguments' => array('administer site configuration'),
'file' => 'system.admin.inc',
'file path' => drupal_get_path('module', 'system'),

);
$items['admin/annotate/settings'] = array(
'title' => 'Annotation settings',
'description' => 'Change how annotations behave.',
'page callback' => 'drupal_get_form',
'page arguments' => array('annotate_admin_settings'),
'access arguments' => array('administer site configuration'),
'type' => MENU_NORMAL_ITEM,
'file' => 'annotate.admin.inc',

);

return $items;
}

The results of our code changes, namely a new category with our module’s setting link in
it, are shown in Figure 2-3.

CHAPTER 2 " WRITING A MODULE 27

09898ch02final 7/30/08 3:04 PM Page 27

Figure 2-3. The link to the annotation module settings now appears as a separate category.

If you’re following along at home, you’ll need to clear the menu cache to see the link
appear. You can do this by truncating the cache_menu table or by clicking the “Rebuild menus”
link that the Drupal development module (devel.module) provides or by using the Clear
cached data button at Administer ! Site configuration ! Performance.

"Tip The development module (http://drupal.org/project/devel) was written specifically to
support Drupal development. It gives you quick access to many development functions, such as clearing
the cache, viewing variables, tracking queries, and much more. It’s a must-have for serious development.
If you do not have it installed, download it, and place the folder at sites/all/modules/devel, then turn
on the Development block at Administer ! Site building ! Blocks.

We were able to establish our new category in two steps. First, we added a menu item
that describes the category header. This menu item has a unique path (admin/annotate). We
declare that it should be placed in the right column with a weight of -5, because this places
it just above the “Site configuration” category, which is handiest for the screenshot shown in
Figure 2-3.

The second step was to tell Drupal to nest the actual link to annotation settings inside the
“Node annotation” category. We did this by changing the path of our original menu item, so
that instead of admin/settings/annotate, the path is now admin/annotate/settings. Previ-
ously, the menu item was a child of admin/settings, which is the path to the “Site configura-
tion” category, as shown in Table 2-1. When Drupal rebuilds the menu tree, it looks at the
paths to establish relationships among parent and child items and determines that, because

CHAPTER 2 " WRITING A MODULE28

09898ch02final 7/30/08 3:04 PM Page 28

http://drupal.org/project/devel

admin/annotate/settings is a child of admin/annotate, it should be displayed as such. Nest
module menu item paths underneath one of the paths shown in Table 2-1 to make those mod-
ules appear in that category on Drupal’s administration page.

Drupal loads only the files that are necessary to complete a request. This saves on mem-
ory usage. Because our page callback points to a function that is outside the scope of our
module (i.e., the function system_admin_menu_block_page() in system.module), we need to tell
Drupal to load the file modules/system/system.admin.inc instead of trying to load sites/all/
modules/custom/annotate/system.admin.inc. We did that by telling Drupal to get the path of
the system module and put the result in the file path key of our menu item.

Of course, this is a contrived example, and in real life, you should have a good reason to
create a new category to avoid confusing the administrator (often yourself!) with too many
categories.

Table 2-1. Paths to Administrative Categories

Path Category
admin/content Content management

admin/build Site building

admin/settings Site configuration

admin/user User management

admin/reports Reports

Presenting a Settings Form to the User
In the annotate module, we gave the administrator the ability to choose which node types
would support annotation (see Figure 2-1). Let’s delve into how this works.

When a site administrator wants to change the settings for the annotate module, we
want to display a form so the administrator can select from the options we present. In our
menu item, we set the page callback to point to the drupal_get_form() function and set the
page arguments to be an array containing annotate_admin_settings. That means that when
you go to http://example.com/?q=admin/annotate/settings, the call drupal_get_form
('annotate_admin_settings') will be executed, which essentially tells Drupal to build the
form defined by the function annotate_admin_settings().

Let’s take a look at the function defining the form, which defines a check box for node
types (see Figure 2-1), and add two more options. The function is in sites/all/modules/
custom/annotate/annotate.admin.inc:

/**
* Form builder. Configure annotations.
*
* @ingroup forms
* @see system_settings_form().
*/

CHAPTER 2 " WRITING A MODULE 29

09898ch02final 7/30/08 3:04 PM Page 29

http://example.com/?q=admin/annotate/settings

function annotate_admin_settings() {
// Get an array of node types with internal names as keys and
// "friendly names" as values. E.g.,
// array('page' => 'Page', 'story' => 'Story')
$options = node_get_types('names');

$form['annotate_node_types'] = array(
'#type' => 'checkboxes',
'#title' => t('Users may annotate these content types'),
'#options' => $options,
'#default_value' => variable_get('annotate_node_types', array('page')),
'#description' => t('A text field will be available on these content types
to make user-specific notes.'),

);

$form['annotate_deletion'] = array(
'#type' => 'radios',
'#title' => t('Annotations will be deleted'),
'#description' => t('Select a method for deleting annotations.'),
'#options' => array(
t('Never'),
t('Randomly'),
t('After 30 days')

),
'#default_value' => variable_get('annotate_deletion', 0) // Default to Never

);

$form['annotate_limit_per_node'] = array(
'#type' => 'textfield',
'#title' => t('Annotations per node'),
'#description' => t('Enter the maximum number of annotations allowed per
node (0 for no limit).'),

'#default_value' => variable_get('annotate_limit_per_node', 1),
'#size' => 3

);

return system_settings_form($form);
}

We add a radio button to choose when annotations should be deleted and a text entry
field to limit the number of annotations allowed on a node (implementation of these
enhancements in the module is left as an exercise for you). Rather than managing the process-
ing of our own form, we call system_settings_form() to let the system module add some
buttons to the form and manage validation and submission of the form. Figure 2-4 shows
what the options form looks like now.

CHAPTER 2 " WRITING A MODULE30

09898ch02final 7/30/08 3:04 PM Page 30

Figure 2-4. Enhanced options form using check box, radio button, and text field options

Validating User-Submitted Settings
If system_settings_form() is taking care of saving the form values for us, how can we check
whether the value entered in the “Annotations per node” field is actually a number? Can we
hook into the form submission process somehow? Of course we can. We just need to define a
validation function in sites/all/modules/custom/annotate/annotate.admin.inc and use it to
set an error if we find anything wrong.

/**
* Validate the annotation configuration form.
*/
function annotate_admin_settings_validate($form, $form_state) {
$limit = $form_state['values']['annotate_limit_per_node'];
if (!is_numeric($limit)) {
form_set_error('annotate_limit_per_node', t('Please enter a number.'));

}
}

CHAPTER 2 " WRITING A MODULE 31

09898ch02final 7/30/08 3:04 PM Page 31

Now when Drupal processes the form, it will call back to annotate_admin_settings_
validate() for validation. If we determine that a bad value has been entered, we set an error
against the field where the error occurred, and this is reflected on the screen in a warning
message and by highlighting the field containing the error, as shown in Figure 2-5.

Figure 2-5. The validation script has set an error.

How did Drupal know to call our function? We named it in a special way, using the name
of the form definition function (annotate_admin_settings) plus _validate. For a full explana-
tion of how Drupal determines which form validation function to call, see Chapter 10.

Storing Settings
In the preceding example, changing the settings and clicking the “Save configuration” button
works. If the “Reset to defaults” button is clicked, the fields are reset to their default values.
The sections that follow describe how this happens.

CHAPTER 2 " WRITING A MODULE32

09898ch02final 7/30/08 3:04 PM Page 32

Using Drupal’s variables Table
Let’s look at the “Annotations per node” field first. Its #default_value key is set to

variable_get('annotate_limit_per_node', 1)

Drupal has a variables table in the database, and key-value pairs can be stored using
variable_set($key, $value) and retrieved using variable_get($key, $default). So we’re
really saying, “Set the default value of the ‘Annotations per node’ field to the value stored in
the variables database table for the variable annotate_limit_per_node, but if no value can
be found, use the value 1.” So when the “Reset to defaults” button is clicked, Drupal deletes
the current entry for the key annotate_limit_per_node from the variables table and uses the
default value of 1.

"Caution In order for the settings to be stored and retrieved in the variables table without namespace
collisions, always give your form element and your variable key the same name (e.g., annotate_limit_
per_node in the preceding example). Create the form element/variable key name from your module name
plus a descriptive name, and use that name for both your form element and variable key.

The “Annotations will be deleted” field is a little more complex, since it’s a radio button
field. The #options for this field are the following:

'#options' => array(
t('Never'),
t('Randomly'),
t('After 30 days')

)

When PHP gets an array with no keys, it implicitly inserts numeric keys, so internally the
array is really as follows:

'#options' => array(
[0] => t('Never'),
[1] => t('Randomly'),
[2] => t('After 30 days')

)

When we set the default value for this field, we use

'#default_value' => variable_get('annotate_deletion', 0) // Default to Never

which means, in effect, default to item 0 of the array, which is t('Never').

CHAPTER 2 " WRITING A MODULE 33

09898ch02final 7/30/08 3:04 PM Page 33

Retrieving Stored Values with variable_get()
When your module retrieves settings that have been stored, variable_get() should be used:

// Get stored setting of maximum number of annotations per node.
$max = variable_get('annotate_limit_per_node', 1);

Note the use of a default value for variable_get() here also, in case no stored values are
available (maybe the administrator has not yet visited the settings page).

Further Steps
We’ll be sharing this module with the open source community, naturally, so a README.txt file
should be created and placed in the annotations directory alongside the annotate.info,
annotate.module, and annotate.install files. The README.txt file generally contains informa-
tion about who wrote the module and how to install it. Licensing information need not be
included, as all modules uploaded to drupal.org are GPL licensed and the packaging script
on drupal.org will automatically add a LICENSE.txt file. Next, you could upload it to the con-
tributions repository on drupal.org, and create a project page to keep track of feedback from
others in the community.

Summary
After reading this chapter, you should be able to perform the following tasks:

• Create a Drupal module from scratch.

• Understand how to hook into Drupal’s code execution.

• Store and retrieve module-specific settings.

• Create and process simple forms using Drupal’s forms API.

• Store and retrieve data using your module’s database table.

• Create a new administrative category on Drupal’s main administration page.

• Define a form for the site administrator to choose options using check boxes, text input
fields, and radio buttons.

• Validate settings and present an error message if validation fails.

• Understand how Drupal stores and retrieves settings using the built-in persistent vari-
able system.

CHAPTER 2 " WRITING A MODULE34

09898ch02final 7/30/08 3:04 PM Page 34

Hooks, Actions, and Triggers

A common goal when working with Drupal is for something to happen when a certain event
takes place. For example, a site administrator may want to receive an e-mail message when a
message is posted. Or a user should be blocked if certain words appear in a comment. This
chapter describes how to hook into Drupal’s events to have your own code run when those
events take place.

Understanding Events and Triggers
Drupal proceeds through a series of events as it goes about its business. These internal events
are times when modules are allowed to interact with Drupal’s processing. Table 3-1 shows
some of Drupal’s events.

Table 3-1. Examples of Drupal Events

Event Type
Creation of a node Node

Deletion of a node Node

Viewing of a node Node

Creation of a user account User

Updating of a user profile User

Login User

Logout User

Drupal developers refer to these internal events as hooks because when one of the
events occurs, Drupal allows modules to hook into the path of execution at that point.
You’ve already met some hooks in previous chapters. Typical module development involves
deciding which Drupal event you want to react to, that is, which hooks you want to imple-
ment in your module.

Suppose you have a web site that is just starting out, and you are serving the site from
the computer in your basement. Once the site gets popular, you plan to sell it to a huge cor-
poration and get filthy rich. In the meantime, you’d like to be notified each time a user logs
in. You decide that when a user logs in you want the computer to beep. Because your cat is
sleeping and would find the beeps annoying, you decide to simulate the beep for the time

35

C H A P T E R 3

09898ch03final 7/30/08 3:01 PM Page 35

being with a simple log entry. You quickly write an .info file and place it at sites/all/
modules/custom/beep/beep.info:

; Id
name = Beep
description = Simulates a system beep.
package = Pro Drupal Development
core = 6.x

Then it’s time to write sites/all/modules/custom/beep/beep.module:

<?php
// Id
/**
* @file
* Provide a simulated beep.
*/

function beep_beep() {
watchdog('beep', 'Beep!');

}

This writes the message “Beep!” to Drupal’s log. Good enough for now. Next, it’s time to
tell Drupal to beep when a user logs in. We can do that easily by implementing hook_user()
in our module and catching the login operation:

/**
* Implementation of hook_user().
*/
function beep_user($op, &$edit, &$account, $category = NULL) {
if ($op == 'login') {
beep_beep();

}
}

There; that was easy. How about beeping when new content is added, too? We can do
that by implementing hook_nodeapi() in our module and catching the insert operation:

/**
* Implementation of hook_nodeapi().
*/
function hook_nodeapi(&$node, $op, $a3 = NULL, $a4 = NULL) {
if ($op == 'insert') {
beep_beep();

}
}

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS36

09898ch03final 7/30/08 3:01 PM Page 36

What if we wanted a beep when a comment is added? Well, we could implement
hook_comment() and catch the insert operation, but let’s stop and think for a minute. We’re
essentially doing the same thing over and over. Wouldn’t it be nice to have a graphical user
interface where we could associate the action of beeping with whatever hook and whatever
operation we’d like? That’s what Drupal’s built-in trigger module does. It allows you to
associate some action with a certain event. In the code, an event is defined as a unique hook-
operation combination, such as “user hook, login operation” or “nodeapi hook, insert
operation.” When each of these operations occurs, trigger.module lets you trigger an action.

To avoid confusion, let’s clarify our terms:

• Event: Used in the generic programming sense, this term is generally understood as
a message sent from one component of a system to other components.

• Hook: This programming technique, used in Drupal, allows modules to “hook into”
the flow of execution.

• Operation: This refers to the specific process that is being performed within a hook.
For example, the login operation is an operation of the user hook.

• Trigger: This refers to a specific combination of a hook and an operation with which
one or more actions can be associated. For example, the action of beeping can be
associated with the login operation of the user hook.

Understanding Actions
An action is something that Drupal does. Here are some examples:

• Promoting a node to the front page

• Changing a node from unpublished to published

• Deleting a user

• Sending an e-mail

Each of these cases has a clearly defined task. Programmers will notice the similarity
to PHP functions in the preceding list. For example, you could send e-mail by calling the
drupal_mail() function in includes/mail.inc. Actions sound similar to functions, because
actions are functions. They are functions that Drupal can introspect and loosely couple with
events (more on that in a moment). Now, let’s examine the trigger module.

The Trigger User Interface
Navigate to Administer " Site building " Modules, and enable the trigger module. Then go
to Administer " Site building " Triggers. You should see an interface similar to the one shown
in Figure 3-1.

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS 37

09898ch03final 7/30/08 3:01 PM Page 37

Figure 3-1. The trigger assignment interface

Notice the tabs across the top. Those correspond to Drupal hooks! In Figure 3-1, we are
looking at the operations for the nodeapi hook. They’ve all been given nice names; for exam-
ple, the delete operation of the nodeapi hook is labeled “After deleting a post.” So each of the
hook’s operations is shown with the ability to assign an action such as “Promote post to front
page” when that operation happens. Each action that is available is listed in the “Choose an
action” drop-down.

!Note Not all actions are available for all triggers, because some actions do not make sense in certain
contexts. For example, you wouldn’t run the “Promote post to front page” action with the trigger “After delet-
ing a post.” Depending on your installation, some triggers may display “No actions available for this trigger.”

Some trigger names and their respective hooks and operations are shown in Table 3-2.

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS38

09898ch03final 7/30/08 3:01 PM Page 38

Table 3-2. How Hooks, Operations, and Triggers Relate in Drupal 6

Hook Operation Trigger Name
comment insert After saving a new comment

comment update After saving an updated comment

comment delete After deleting a comment

comment view When a comment is being viewed by an authenticated user

cron run When cron runs

nodeapi presave When either saving a new post or updating an existing post

nodeapi insert After saving a new post

nodeapi update After saving an updated post

nodeapi delete After deleting a post

nodeapi view When content is viewed by an authenticated user

taxonomy insert After saving a new term to the database

taxonomy update After saving an updated term to the database

taxonomy delete After deleting a term

user insert After a user account has been created

user update After a user’s profile has been updated

user delete After a user has been deleted

user login After a user has logged in

user logout After a user has logged out

user view When a user’s profile is being viewed

Your First Action
What do we need to do in order for our beep function to become a full-fledged action? There
are two steps:

1. Inform Drupal which triggers the action should support.

2. Create your action function.

The first step is accomplished by implementing hook_action_info(). Here’s how it should
look for our beep module:

/**
* Implementation of hook_action_info().
*/

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS 39

09898ch03final 7/30/08 3:01 PM Page 39

function beep_action_info() {
$info['beep_beep_action'] = array(
'type' => 'system',
'description' => t('Beep annoyingly'),
'configurable' => FALSE,
'hooks' => array(
'nodeapi' => array('view', 'insert', 'update', 'delete'),
'comment' => array('view', 'insert', 'update', 'delete'),
'user' => array('view', 'insert', 'update', 'delete', 'login'),
'taxonomy' => array('insert', 'update', 'delete'),

),
);

return $info;
}

The function name is beep_action_info(), because like other hook implementations,
we use our module name (beep) plus the name of the hook (action_info). We’ll be return-
ing an array with an entry for each action in our module. We are only writing one action,
so we have only one entry, keyed by the name of the function that will perform the action:
beep_beep_action(). It’s handy to know when a function is an action while reading through
code, so we append _action to the name of our beep_beep() function to come up with
beep_beep_action().

Let’s take a closer look at the keys in our array.

• type: This is the kind of action you are writing. Drupal uses this information to cate-
gorize actions in the drop-down select box of the trigger assignment user interface.
Possible types include system, node, user, comment, and taxonomy. A good question to ask
when determining what type of action you are writing is, “What object does this action
work with?” (If the answer is unclear or “lots of different objects!” use the system type.)

• description: This is the friendly name of the action that will be shown in the drop-
down select box of the trigger assignment user interface.

• configurable: This determines whether or not the action takes any parameters.

• hooks: In this array of hooks, each entry must enumerate the operations the action sup-
ports. Drupal uses this information to determine where it is appropriate to list possible
actions in the trigger assignment user interface.

We’ve described our action to Drupal, so let’s go ahead and write it:

/**
* Simulate a beep. A Drupal action.
*/
function beep_beep_action() {
beep_beep();

}

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS40

09898ch03final 7/30/08 3:01 PM Page 40

That wasn’t too difficult, was it? Before continuing, go ahead and delete beep_user()
and beep_nodeapi(), since we’ll be using triggers and actions instead of direct hook
implementations.

Assigning the Action
Now, let’s revisit Administer " Site building " Triggers. If you’ve done everything correctly,
your action should be available in the user interface, as shown in Figure 3-2.

Figure 3-2. The action should be selectable in the triggers user interface.

Changing Which Triggers an Action Supports
If you modify the values that define which operations this action supports, you should see the
availability change in the user interface. For example, the “Beep” action will be available only
to the “After deleting a post” trigger if you change beep_action_info() as follows:

/**
* Implementation of hook_action_info().
*/

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS 41

09898ch03final 7/30/08 3:01 PM Page 41

function beep_action_info() {
$info['beep_beep_action'] = array(
'type' => 'system',
'description' => t('Beep annoyingly'),
'configurable' => FALSE,
'hooks' => array(
'nodeapi' => array('delete'),

),
);

return $info;
}

Actions That Support Any Trigger
If you don’t want to restrict your action to a particular trigger or set of triggers, you can declare
that your action supports any trigger:

/**
* Implementation of hook_action_info().
*/
function beep_action_info() {
$info['beep_beep_action'] = array(
'type' => 'system',
'description' => t('Beep annoyingly'),
'configurable' => FALSE,
'hooks' => array(
'any' => TRUE,

),
);

return $info;
}

Advanced Actions
There are essentially two kinds of actions: actions that take parameters and actions that do
not. The “Beep” action we’ve been working with does not take any parameters. When the
action is executed, it beeps once and that’s the end of it. But there are many times when
actions need a bit more context. For example, a “Send e-mail” action needs to know to whom
to send the e-mail and what the subject and message are. An action like that requires some
setup in a configuration form and is called an advanced action, also called a configurable
action.

Simple actions take no parameters, do not require a configuration form, and are automat-
ically made available by the system (after visiting Administer " Site building " Modules). You
tell Drupal that the action you are writing is an advanced action by setting the configurable
key to TRUE in your module’s implementation of hook_action_info(), by providing a form to

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS42

09898ch03final 7/30/08 3:01 PM Page 42

configure the action, and by providing an optional validation handler and a required submit
handler to process the configuration form. The differences between simple and advanced
actions are summarized in Table 3-3.

Table 3-3. Summary of How Simple and Advanced Actions Differ

Simple Action Advanced Action
Parameters No* Required

Configuration form No Required

Availability Automatic Must create instance of action using actions
administration page

Value of configure key in FALSE TRUE
hook_action_info()

* The $object and $context parameters are available if needed.

Let’s create an advanced action that will beep multiple times. We will be able to specify
the number of times that the action will beep using a configuration form.

First, we will need to tell Drupal that this action is configurable. Let’s add an entry for our
new action in the action_info hook implementation of beep.module:

/**
* Implementation of hook_action_info().
*/
function beep_action_info() {
$info['beep_beep_action'] = array(
'type' => 'system',
'description' => t('Beep annoyingly'),
'configurable' => FALSE,
'hooks' => array(
'nodeapi' => array('delete'),

),
);
$info['beep_multiple_beep_action'] = array(
'type' => 'system',
'description' => t('Beep multiple times'),
'configurable' => TRUE,
'hooks' => array(
'any' => TRUE,

),
);

return $info;
}

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS 43

09898ch03final 7/30/08 3:01 PM Page 43

Let’s quickly check if we’ve done the implementation correctly at Administer " Site con-
figuration " Actions. Sure enough, the action should show up as a choice in the advanced
actions drop-down select box, as shown in Figure 3-3.

Figure 3-3. The new action appears as a choice.

Now, we need to provide a form so that the administrator can choose how many beeps
are desired. We do this by defining one or more fields using Drupal’s form API. We’ll also write
functions for form validation and submission. The names of the functions are based on the
action’s ID as defined in hook_action_info(). The action ID of the action we are currently dis-
cussing is beep_multiple_beep_action, so convention dictates that we add _form to the form
definition function name to get beep_multiple_beep_action_form. Drupal expects a vali-
dation function named from the action ID plus _validate (beep_multiple_beep_action_
validate) and a submit function named from the action ID plus _submit (beep_multiple_
beep_action_submit).

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS44

09898ch03final 7/30/08 3:01 PM Page 44

/**
* Form for configurable Drupal action to beep multiple times.
*/
function beep_multiple_beep_action_form($context) {
$form['beeps'] = array(
'#type' => 'textfield',
'#title' => t('Number of beeps'),
'#description' => t('Enter the number of times to beep when this action

executes.'),
'#default_value' => isset($context['beeps']) ? $context['beeps'] : '1',
'#required' => TRUE,

);
return $form;

}

function beep_multiple_beep_action_validate($form, $form_state) {
$beeps = $form_state['values']['beeps'];
if (!is_numeric($beeps)) {
form_set_error('beeps', t('Please enter a numeric value.'));

}
else if ((int) $beeps > 10) {
form_set_error('beeps', t('That would be too annoying. Please choose fewer
than 10 beeps.'));

}
}

function beep_multiple_beep_action_submit($form, $form_state) {
return array(
'beeps' => (int) $form_state['values']['beeps']

);
}

The first function describes the form to Drupal. The only field we define is a single text
field so that the administrator can enter the number of beeps. When the administrator
chooses to add the advanced action “Beep multiple times,” as shown in Figure 3-3, Drupal will
use our form field to present a full action configuration form, as shown in Figure 3-4.

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS 45

09898ch03final 7/30/08 3:01 PM Page 45

Figure 3-4. The action configuration form for the “Beep multiple times” action

Drupal has added a Description field to the action configuration form. The value of this
field is editable and will be used instead of the default description that was defined in the
action_info hook. That makes sense, because we could create one advanced action to beep
two times and give it the description “Beep two times” and another that beeps five times
with the description “Beep five times.” That way, we could tell the difference between the
two advanced actions when assigning actions to a trigger. Advanced actions can thus be
described in a way that makes sense to the administrator.

!Tip These two actions, “Beep two times” and “Beep five times,” can be referred to as instances of the
“Beep multiple times” action.

The validation function is like any other form validation function in Drupal (see Chap-
ter 10 for more on form validation). In this case, we check to make sure the user has actually
entered a number and that the number is not excessively large.

The submit function’s return value is special for action configuration forms. It should be
an array keyed by the fields we are interested in. The values in this array will be made available
to the action when it runs. The description is handled automatically, so we only need to return
the field we provided, that is, the number of beeps.

Finally, it is time to write the advanced action itself:

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS46

09898ch03final 7/30/08 3:01 PM Page 46

/**
* Configurable action. Beeps a specified number of times.
*/
function beep_multiple_beep_action($object, $context) {
for ($i = 1; $i < $context['beeps']; $i++) {
beep_beep();

}
}

You’ll notice that the action accepts two parameters, $object and $context. This is in con-
trast to the simple action we wrote earlier, which used no parameters.

!Note Simple actions can take the same parameters as configurable actions. Because PHP ignores
parameters that are passed to a function but do not appear in the function’s signature, we could simply
change the function signature of our simple action from beep_beep_action() to beep_beep_action
($object, $context) if we had a need to know something about the current context. All actions are
called with the $object and $context parameters.

Using the Context in Actions
We’ve established that the function signature for actions is example_action($object,
$context). Let’s examine each of those parameters in detail.

• $object: Many actions act on one of Drupal’s built-in objects: nodes, users, tax-
onomy terms, and so on. When an action is executed by trigger.module, the object
that is currently being acted upon is passed along to the action in the $object
parameter. For example, if an action is set to execute when a new node is created,
the $object parameter will contain the node object.

• $context: An action can be called in many different contexts. Actions declare which
triggers they support by defining the hooks key in hook_action_info(). But actions
that support multiple triggers need some way of determining the context in which
they were called. That way, an action can act differently depending on the context.

How the Trigger Module Prepares the Context
Let’s set up a scenario. Suppose you are running a web site that presents controversial issues.
Here’s the business model: users pay to register and may leave only a single comment on the
web site. Once they have posted their comment, they are blocked and must pay again to get
unblocked. Ignoring the economic prospects for such a site, let’s focus on how we could
implement this with triggers and actions. We will need an action that blocks the current user.
Examining user.module, we see that Drupal already provides this action for us:

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS 47

09898ch03final 7/30/08 3:01 PM Page 47

/**
* Implementation of hook_action_info().
*/
function user_action_info() {
return array(
'user_block_user_action' => array(
'description' => t('Block current user'),
'type' => 'user',
'configurable' => FALSE,
'hooks' => array(),

),
'user_block_ip_action' => array(
'description' => t('Ban IP address of current user'),
'type' => 'user',
'configurable' => FALSE,
'hooks' => array(),

),
);

}

However, these actions do not show up on the triggers assignment page, because they do
not declare any supported hooks; the hooks key is just an empty array. If only we could change
that! But we can.

Changing Existing Actions with drupal_alter()
When Drupal runs the action_info hook so that each module can declare the actions it pro-
vides, Drupal also gives modules a chance to modify that information—including information
provided by other modules. Here is how we would make the “Block current user” action avail-
able to the comment insert trigger:

/**
* Implementation of hook_drupal_alter(). Called by Drupal after
* hook_action_info() so modules may modify the action_info array.
*
* @param array $info
* The result of calling hook_action_info() on all modules.
*/
function beep_action_info_alter(&$info) {
// Make the "Block current user" action available to the
// comment insert trigger. If other modules have modified the
// array already, we don't stomp on their changes; we just make sure
// the 'insert' operation is present. Otherwise, we assign the
// 'insert' operation.
if (isset($info['user_block_user_action']['hooks']['comment'])) {
array_merge($info['user_block_user_action']['hooks']['comment'],
array('insert'));

}

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS48

09898ch03final 7/30/08 3:01 PM Page 48

else {
$info['user_block_user_action']['hooks']['comment'] = array('insert');

}
}

The end result is that the “Block current user action” is now assignable, as shown in
Figure 3-5.

Figure 3-5. Assigning the “Block current user” action to the comment insert trigger

Establishing the Context
Because of the action we have assigned, when a new comment is posted, the current user will
be blocked. Let’s take a closer look at how that happens. We already know that Drupal’s way of
notifying modules that certain events are happening is to fire a hook. In this case, it is the
comment hook. The particular operation that is happening is the insert operation, since a
new comment is being added. The trigger module implements the comment hook. Inside this
hook, it asks the database if there are any actions assigned to this particular trigger. The data-
base gives it information about the “Block current user” action that we assigned. Now the

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS 49

09898ch03final 7/30/08 3:01 PM Page 49

trigger module gets ready to execute the action, which has the standard action function signa-
ture example_action($object, $context).

But we have a problem. The action that is about to be executed is an action of type user,
not comment. It expects the object it receives to be a user object! But here, a user action is
being called in the context of a comment hook. Information about the comment was passed
to the hook, not information about the user. What should we do? What actually happens is
that the trigger module determines that our action is a user action and loads the $user object
that a user action expects. Here is code from modules/trigger/trigger.module that shows
how this happens:

/**
* When an action is called in a context that does not match its type,
* the object that the action expects must be retrieved. For example, when
* an action that works on nodes is called during the comment hook, the
* node object is not available since the comment hook doesn't pass it.
* So here we load the object the action expects.
*
* @param $type
* The type of action that is about to be called.
* @param $comment
* The comment that was passed via the comment hook.
* @return
* The object expected by the action that is about to be called.
*/
function _trigger_normalize_comment_context($type, $comment) {
switch ($type) {
// An action that works with nodes is being called in a comment context.
case 'node':
return node_load($comment['nid']);

// An action that works on users is being called in a comment context.
case 'user':
return user_load(array('uid' => $comment['uid']));

}
}

When the preceding code executes for our user action, the second case matches so the
user object is loaded and then our user action is executed. The information that the comment
hook knows about (for example, the comment’s subject) is passed along to the action in the
$context parameter. Note how the action looks for the user’s ID first in the object and then the
context, and finally falls back to the global $user:

/**
* Implementation of a Drupal action.
* Blocks the current user.
*/

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS50

09898ch03final 7/30/08 3:01 PM Page 50

function user_block_user_action(&$object, $context = array()) {
if (isset($object->uid)) {
$uid = $object->uid;

}
elseif (isset($context['uid'])) {
$uid = $context['uid'];

}
else {
global $user;
$uid = $user->uid;

}
db_query("UPDATE {users} SET status = 0 WHERE uid = %d", $uid);
sess_destroy_uid($uid);
watchdog('action', 'Blocked user %name.', array('%name' =>
check_plain($user->name)));

}

Actions must be somewhat intelligent, because they do not know much about what is
happening when they are called. That is why the best candidates for actions are straightfor-
ward, even atomic. The trigger module always passes the current hook and operation along in
the context. These values are stored in $context['hook'] and $context['op']. This approach
offers a standardized way to provide information to an action.

Examining the Context
The fact that the hook and operation are available in the context is invaluable. An example of
an action that makes heavy use of this is the “Send e-mail” action. It’s an action of type system
and can be assigned to many different triggers.

The “Send e-mail” action allows certain tokens to be replaced during the composition of
the e-mail. For example, you might want to include the title of a node in the body of the e-mail
or have the author of a node be the recipient of the e-mail. But depending on which trigger the
action is assigned to, the recipient may not be available. For example, if e-mail is sent during
the user hook, no node is available and thus no node author is available to be a recipient. The
“Send e-mail” action in modules/system/system.module spends some time examining the con-
text to determine what is available. Here, it is making sure that it has a node so node-related
substitutions can happen:

/**
* Implementation of a configurable Drupal action. Sends an e-mail.
*/
function system_send_email_action($object, $context) {
global $user;

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS 51

09898ch03final 7/30/08 3:01 PM Page 51

switch ($context['hook']) {
case 'nodeapi':
// Because this is not an action of type 'node' (it's an action
// of type 'system') the node will not be passed as $object,
// but it will still be available in $context.
$node = $context['node'];
break;

case 'comment':
// The comment hook provides nid, in $context.
$comment = $context['comment'];
$node = node_load($comment->nid);

case 'user':
// Because this is not an action of type 'user' the user
// object is not passed as $object, but it will still be
// available in $context.
$account = $context['account'];
if (isset($context['node'])) {
$node = $context['node'];

}
elseif ($context['recipient'] == '%author') {
// If we don't have a node, we don't have a node author.
watchdog('error', 'Cannot use %author token in this context.');
return;

}
break;

default:
// We are being called directly.
$node = $object;

} ...

How Actions Are Stored
Actions are functions that run at a given time. Simple actions do not have configurable param-
eters. For example, the “Beep” action we created simply beeped. It did not need any other
information (though of course $object and $context are available if needed). Contrast this
action with the advanced action we created. The “Beep multiple times” action needed to know
how many times to beep. Other advanced actions, such as the “Send e-mail” action, may need
even more information: whom to send the e-mail to, what the subject of the e-mail should be,
and so on. These parameters must be stored in the database.

The actions Table
When an instance of an advanced action is created by the administrator, the information that
is entered in the configuration form is serialized and saved into the parameters field of the
actions table. A record for the simple “Beep” action would look like this:

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS52

09898ch03final 7/30/08 3:01 PM Page 52

aid: 'beep_beep_action'
type: 'system'
callback: 'beep_beep_action'
parameters:
description: Beep

In contrast, the record for an instance of the “Beep multiple times” action would look
like this:

aid: 2
type: 'system'
callback: 'beep_beep_action'
parameters: (serialized array containing the beeps parameter with its value, i.e.,
the number of times to beep)

description: Beep three times

Just before an advanced action is executed, the contents of the parameters field are unse-
rialized and included in the $context parameter that is passed to the action. So the number of
beeps in our “Beep multiple times” action instance will be available to beep_multiple_beep_
action() as $context['beeps'].

Action IDs
Notice the difference in the action IDs of the two table records in the previous section. The
action ID of the simple action is the actual function name. But obviously we cannot use the
function name as an identifier for advanced actions, since multiple instances of the same
action are stored. So a numeric action ID (tracked in the actions_aid database table) is used
instead.

The actions execution engine determines whether or not to go through the process of
retrieving stored parameters for an action based on whether or not the action ID is numeric.
If it is not numeric, the action is simply executed and the database is not consulted. This is a
very quick determination; Drupal uses the same approach in index.php to distinguish con-
tent from menu constants.

Calling an Action Directly with actions_do()
The trigger module is only one way to call actions. You might want to write a separate module
that calls actions and prepare the parameters yourself. If so, using actions_do() is the recom-
mended way to call actions. The function signature follows:

actions_do($action_ids, &$object, $context = array(), $a1 = NULL, $a2 = NULL)

Let’s examine each of these parameters.

• $action_ids: The action(s) to execute, either a single action ID or an array of action IDs

• $object: The object that the action will act upon, if any

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS 53

09898ch03final 7/30/08 3:01 PM Page 53

• $context: Associative array containing information the action may wish to use, includ-
ing configured parameters for advanced actions

• $a1 and $a2: Optional additional parameters that, if passed to actions_do(), will be
passed along to the action

Here’s how we would call our simple "Beep" action using actions_do():

$object = NULL; // $object is a required parameter but unused in this case
actions_do('beep_beep_action', $object);

And here is how we would call the "Beep multiple times" advanced action:

$object = NULL;
actions_do(2, $object);

Or, we could call it and bypass the retrieval of stored parameters like this:

$object = NULL;
$context['beeps'] = 5;
actions_do('beep_multiple_beep_action', $object, $context);

!Note Hardcore PHP developers may be wondering, “Why use actions at all? Why not just call the function
directly or just implement a hook? Why bother with stashing parameters in the context, only to retrieve them
again instead of using traditional PHP parameters?” The answer is that by writing actions with a very generic
function signature, code reuse can be delegated to the site administrator. The site administrator, who may
not know PHP, does not have to call on a PHP developer to set up the functionality to send an e-mail when a
new node is added. The site administrator simply wires up the “Send e-mail” action to the trigger that fires
when a new node is saved and never has to call anyone.

Defining Your Own Triggers with hook_hook_info()
How does Drupal know which triggers are available for display on the triggers user interface?
In typical fashion, it lets modules define hooks declaring which hooks the modules imple-
ment. For example, here’s the implementation of hook_hook_info() from comment.module. The
implementation of hook_hook_info() is where the trigger descriptions are defined.

/**
* Implementation of hook_hook_info().
*/

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS54

09898ch03final 7/30/08 3:01 PM Page 54

function comment_hook_info() {
return array(
'comment' => array(
'comment' => array(
'insert' => array(
'runs when' => t('After saving a new comment'),

),
'update' => array(
'runs when' => t('After saving an updated comment'),

),
'delete' => array(
'runs when' => t('After deleting a comment')

),
'view' => array(
'runs when' => t('When a comment is being viewed by an
authenticated user')

),
),

),
);

}

If we had a module called monitoring.module installed that introduced a new hook to
Drupal called the monitoring hook, it might describe its two operations (overheating and
freezing) like this:

/**
* Implementation of hook_hook_info().
*/
function monitoring_hook_info() {
return array(
'monitoring' => array(
'monitoring' => array(
'overheating' => array(
'runs when' => t('When hardware is about to melt down'),

),
'freezing' => array(
'runs when' => t('When hardware is about to freeze up'),

),
),

),
);

}

After enabling the monitoring module, Drupal would pick up the new implementation of
hook_hook_info() and modify the triggers page to include a separate tab for the new hook, as

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS 55

09898ch03final 7/30/08 3:01 PM Page 55

shown in Figure 3-6. Of course, the module itself would still be responsible for firing the
hooks using module_invoke() or module_invoke_all() and for firing the actions. In this exam-
ple, the module would need to call module_invoke_all('monitoring', 'overheating'). It
would then need to implement hook_monitoring($op) and fire the actions with actions_do().
See trigger_cron() in modules/trigger/trigger.module for a simple implementation.

Figure 3-6. The newly defined trigger appears as a tab in the triggers user interface.

Although a module may define multiple new hooks, only the hook that matches the
module name will create a new tab in the triggers interface. In our example, the monitoring
module defined the monitoring hook. If it had also defined a different hook, that hook would
not appear under the monitoring tab, nor would it have a tab of its own. However, a hook that
does not match the module name is still accessible at http://example.com/?q=admin/build/
trigger/hookname.

Adding Triggers to Existing Hooks
Sometimes, you may want to add triggers to an existing hook if your code is adding a new
operation. For example, you might want to add an operation to the nodeapi hook. Suppose
you have written a module that archives old nodes and moves them to a data warehouse. You
could define an entirely new hook for this, and that would be perfectly appropriate. But since
this operation is on a node, you might want to fire an archive operation in the nodeapi hook
instead so that operations on content all appear under the same tab in the triggers interface.
The following code adds an additional trigger:

/**
* Declare a new trigger, to appear in the node tab.
*/
function archiveoffline_hook_info() {
$info['archiveoffline'] = array(
'nodeapi' => array(
'archive' => array(
'runs when' => t('When the post is about to be archived'),

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS56

09898ch03final 7/30/08 3:01 PM Page 56

http://example.com/?q=admin/build

),
),

);

return $info;
}

The new trigger is now available at the end of the list of triggers on the triggers adminis-
tration page at Administer " Site building " Triggers, as shown in Figure 3-7.

Figure 3-7. The additional trigger (“When the post is about to be archived”) appears in the user
interface.

The first key in the hook_hook_info() implementation is used by Drupal’s menu system
to automatically create a tab on the trigger administration page. Drupal names the tab with
the module’s name as defined in the module’s .info file (see the unused Archive Offline tab in
Figure 3-7). But our new trigger does not need to be placed under its own tab; we placed it
under the Content tab intentionally by adding our own operation to the nodeapi hook. We
can remove the unwanted tab using hook_menu_alter() (see Chapter 4 for more information
on how this hook works). The following code changes the automatically created tab from
type MENU_LOCAL_TASK (which Drupal renders as a tab by default) to type MENU_CALLBACK,
which Drupal does not render:

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS 57

09898ch03final 7/30/08 3:01 PM Page 57

/**
* Implementation of hook_menu_alter().
*/
function archiveoffline_menu_alter(&$items) {
$items['admin/build/trigger/archiveoffline']['type'] = MENU_CALLBACK;

}

For the archiveoffline_menu_alter() function to take effect, you’ll need to visit
Administer " Site building " Modules so that menus will be rebuilt.

Summary
After reading this chapter, you should be able to

• Understand how to assign actions to triggers.

• Write a simple action.

• Write an advanced action and its associated configuration form.

• Create and rename instances of advanced actions using the actions administration
page.

• Understand what a context is.

• Understand how actions can use the context to change their behavior.

• Understand how actions are stored, retrieved, and executed.

• Define your own hooks and have them displayed as triggers.

CHAPTER 3 ! HOOKS, ACTIONS, AND TRIGGERS58

09898ch03final 7/30/08 3:01 PM Page 58

The Menu System

Drupal’s menu system is complex but powerful. The term “menu system” is somewhat of a
misnomer. It may be better to think of the menu system as having three primary responsibili-
ties: callback mapping, access control, and menu customization. Essential code for the menu
system is in includes/menu.inc, while optional code that enables such features as customizing
menus is in modules/menu.

In this chapter, we’ll explore what callback mapping is and how it works, see how to pro-
tect menu items with access control, learn to use menu wildcards, and inventory the various
built-in types of menu items. The chapter finishes up by examining how to override, add, and
delete existing menu items, so you can customize Drupal as nonintrusively as possible.

Callback Mapping
When a web browser makes a request to Drupal, it gives Drupal a URL. From this information,
Drupal must figure out what code to run and how to handle the request. This is commonly
known as routing or dispatching. Drupal trims off the base part of the URL and uses the latter
part, called the path. For example, if the URL is http://example.com/?q=node/3, the Drupal
path is node/3. If you are using Drupal’s clean URLs feature, the URL in your browser would
be http://example.com/node/3 but your web server is quietly rewriting the URL to be http://
example.com/?q=node/3 before Drupal sees it; so Drupal always deals with the same Drupal
path. In the preceding example, the Drupal path is node/3 whether clean URLs are enabled
or not. See “The Web Server’s Role” in Chapter 1 for more detail on how this works.

Mapping URLs to Functions
The general approach taken is as follows: Drupal asks all enabled modules to provide an array
of menu items. Each menu item consists of an array keyed by a path and containing some
information about that path. One of the pieces of information a module must provide is a
page callback. A callback in this context is simply the name of a PHP function that will be run
when the browser requests a certain path. Drupal goes through the following steps when a
request comes in:

59

C H A P T E R 4

09898ch04final 7/30/08 2:54 PM Page 59

http://example.com/?q=node/3
http://example.com/node/3
http://example.com/?q=node/3
http://example.com/?q=node/3

1. Establish the Drupal path. If the path is an alias to a real path, Drupal finds the real
path and uses it instead. For example, if an administrator has aliased http://
example.com/?q=about to http://example.com/?q=node/3 (using the path module,
for example), Drupal uses node/3 as the path.

2. Drupal keeps track of which paths map to which callbacks in the menu_router data-
base table and keeps track of menu items that are links in the menu_links table. A
check is made to see if the menu_router and menu_links tables need rebuilding, a rare
occurrence that happens after Drupal installation or updating.

3. Figure out which entry in the menu_router table corresponds with the Drupal path and
build a router item describing the callback to be called.

4. Load any objects necessary to pass to the callback.

5. Check whether the user is permitted to access the callback. If not, an “Access denied”
message is returned.

6. Localize the menu item’s title and description for the current language.

7. Load any necessary include files.

8. Call the callback and return the result, which index.php then passes through
theme_page(), resulting in a finished web page.

A visual representation of this process is shown in Figures 4-1 and 4-2.

CHAPTER 4 ! THE MENU SYSTEM60

09898ch04final 7/30/08 2:54 PM Page 60

http://example.com/?q=about
http://example.com/?q=about
http://example.com/?q=node/3

Figure 4-1. Overview of the menu dispatching process

CHAPTER 4 ! THE MENU SYSTEM 61

09898ch04final 7/30/08 2:54 PM Page 61

Figure 4-2. Overview of the router and link building process

Creating a Menu Item
The place to hook into the process is through the use of the menu hook in your module. This
allows you to define menu items that will be included in the router table. Let’s build an exam-
ple module called menufun.module to experiment with the menu system. We’ll map the Drupal
path menufun to the PHP function that we’ll write named menufun_hello(). First, we need a
menufun.info file at sites/all/modules/custom/menufun/menufun.info:

CHAPTER 4 ! THE MENU SYSTEM62

09898ch04final 7/30/08 2:54 PM Page 62

; Id
name = Menu Fun
description = Learning about the menu system.
package = Pro Drupal Development
core = 6.x

Then we need to create the sites/all/modules/custom/menufun/menufun.module file,
which contains our hook_menu() implementation and the function we want to run:

<?php
// Id

/**
* @file
* Use this module to learn about Drupal's menu system.
*/

/**
* Implementation of hook_menu().
*/
function menufun_menu() {
$items['menufun'] = array(
'page callback' => 'menufun_hello',
'access callback' => TRUE,
'type' => MENU_CALLBACK,

);

return $items;
}

/**
* Page callback.
*/
function menufun_hello() {
return t('Hello!');

}

Enabling the module at Administer " Site building " Modules causes the menu item to
be inserted into the router table, so Drupal will now find and run our function when we go to
http://example.com/?q=menufun, as shown in Figure 4-3.

The important thing to notice is that we are defining a path and mapping it to a function.
The path is a Drupal path. We defined the path as the key of our $items array. We are using a
path that is the same as the name of our module. This practice assures a pristine URL name-
space. However, you can define any path.

CHAPTER 4 ! THE MENU SYSTEM 63

09898ch04final 7/30/08 2:54 PM Page 63

http://example.com/?q=menufun

Figure 4-3. The menu item has enabled Drupal to find and run the menufun_hello() function.

Defining a Title
The implementation of hook_menu() written previously is as simple as possible. Let’s add a few
keys to make it more like an implementation you’d normally write.

function menufun_menu() {
$items['menufun'] = array(
'title' => 'Greeting',
'page callback' => 'menufun_hello',
'access callback' => TRUE,
'type' => MENU_CALLBACK,

);

return $items;
}

We’ve given our menu item a title, which is automatically used as the page title when the
page is displayed in the browser (if you want to override the page title during code execution
later on, you can set it by using drupal_set_title()). After saving these changes, you would
think that refreshing your browser should now display the title we’ve defined along with
“Hello!” But it doesn’t, because Drupal stores all of the menu items in the menu_router data-
base table, and although our code has changed, the database has not. We have to tell Drupal
to rebuild the menu_router table. There are two easy ways to do this. The easiest is to install the
developer module (http://drupal.org/project/devel), and enable the devel block at Admin-
ister " Site building " Blocks. The devel block contains an item called Rebuild menus.
Clicking this will rebuild the menu_router table. If you don’t have the developer module handy,
simply going to Administer " Site building " Modules will do the trick; as part of the prepara-
tion for displaying that page, Drupal rebuilds the menu tables. From here on, I’ll assume that
you know to rebuild the menu after each code change we make.

CHAPTER 4 ! THE MENU SYSTEM64

09898ch04final 7/30/08 2:54 PM Page 64

http://drupal.org/project/devel

After the rebuild, our page looks like Figure 4-4.

Figure 4-4. The title of the menu item is shown in the page and browser title bar.

Page Callback Arguments
Sometimes, you may wish to provide more information to the function that is mapped to the
path. First of all, any additional parts of the path are automatically passed along. Let’s change
our function as follows:

function menufun_hello($first_name = '', $last_name = '') {
return t('Hello @first_name @last_name',
array('@first_name' => $first_name, '@last_name' => $last_name));

}

Now if we go to http://example.com/?q=menufun/John/Doe, we get the output shown in
Figure 4-5.

Figure 4-5. Parts of the path are passed along to the callback function.

Notice how each of the extra components of the URL was passed as a parameter to our
callback function.

You can also define page callback arguments inside the menu hook by adding an optional
page arguments key to the $items array. Defining page arguments is useful because you can

CHAPTER 4 ! THE MENU SYSTEM 65

09898ch04final 7/30/08 2:54 PM Page 65

http://example.com/?q=menufun/John/Doe

call the same callback from different menu items and provide some hidden context for the
callback through the page arguments. Let’s define some page arguments for our menu item:

function menufun_menu() {
$items['menufun'] = array(
'title' => 'Greeting',
'page callback' => 'menufun_hello',
'page arguments' => array('Jane', 'Doe'),
'access callback' => TRUE,
'type' => MENU_CALLBACK,

);

return $items;
}

The callback arguments you define in page arguments will be passed to the callback
function before (that is, placed first in the list of parameter values that are passed to the call-
back) any arguments generated from the path. The arguments from the URL are still avail-
able; to access them, you would change the function signature of your callback to add
parameters from the URL. So with our revised menu item, the following function signature
would result in $first_name being Jane (from the first item in the page arguments array),
$last_name being Doe (from the second item in the page arguments array), $a being John
(from the URL), and $b being Doe (from the URL).

function menufun_hello($first_name = '', $last_name = '', $a = '', $b = '') {...}

Let’s test this by putting Jane Doe in the page arguments and John Doe in the URL and
seeing which appears. Going to http://example.com/?q=John/Doe will now yield the results
shown in Figure 4-6 (if you’re not getting those results, you forgot to rebuild your menus).

Figure 4-6. Passing and displaying arguments to the callback function

Keys in keyed arrays are ignored in page callback arguments, so you can’t use keys to map
to function parameters; only order is important. Callback arguments are usually variables and
are often used in dynamic menu items.

CHAPTER 4 ! THE MENU SYSTEM66

09898ch04final 7/30/08 2:54 PM Page 66

http://example.com/?q=John/Doe

Page Callbacks in Other Files
If you don’t specify otherwise, Drupal assumes that your page callback can be found in your
module. In Drupal 6, many modules have been split up so that a minimum amount of code is
loaded on each page request. The file key of a menu item is used to specify which file con-
tains the callback function if the function is not already in scope. We used the file key when
writing the annotation module in Chapter 2.

If you define the file key, Drupal looks for that file in your module directory. If you are
pointing to a page callback that is provided by another module and thus is not in your module
directory, you’ll need to tell Drupal the file path to use when looking for the file. That is easily
accomplished with the file path key. We did that in “Defining Your Own Administration Sec-
tion” in Chapter 2.

Adding a Link to the Navigation Block
We declared that our menu item was of type MENU_CALLBACK. By changing the type to
MENU_NORMAL_ITEM, we indicate that we don’t simply want to map the path to a callback
function; we also want Drupal to include it in a menu.

!Tip Because MENU_NORMAL_ITEM is Drupal’s default menu item type, the type key could be omitted
in the code snippet in this section. I shall omit it in further code examples.

function menufun_menu() {
$items['menufun'] = array(
'title' => 'Greeting',
'page callback' => 'menufun_hello',
'page arguments' => array('Jane', 'Doe'),
'access callback' => TRUE,
'type' => MENU_NORMAL_ITEM,

);

return $items;
}

The menu item would now show up in the navigation block, as shown in Figure 4-7.

CHAPTER 4 ! THE MENU SYSTEM 67

09898ch04final 7/30/08 2:54 PM Page 67

Figure 4-7. The menu item appears in the navigation block.

If we don’t like where it is placed, we can move it down by increasing its weight. Weight is
another key in the menu item definition:

function menufun_menu() {
$items['menufun'] = array(
'title' => 'Greeting',
'page callback' => 'menufun_hello',
'page arguments' => array('Jane', 'Doe'),
'access callback' => TRUE,
'weight' => 5,

);

return $items;
}

The effect of our weight increase is shown in Figure 4-8. Menu items can also be relocated
without changing code by using the menu administration tools, located at Administer " Site
building " Menus (the menu module must be enabled for these tools to appear).

Figure 4-8. Heavier menu items sink down in the navigation block.

CHAPTER 4 ! THE MENU SYSTEM68

09898ch04final 7/30/08 2:54 PM Page 68

Menu Nesting
So far, we’ve defined only a single static menu item. Let’s add a second and another callback
to go with it:

function menufun_menu() {
$items['menufun'] = array(
'title' => 'Greeting',
'page callback' => 'menufun_hello',
'access callback' => TRUE,
'weight' => -10,

);
$items['menufun/farewell'] = array(
'title' => 'Farewell',
'page callback' => 'menufun_goodbye',
'access callback' => TRUE,

);

return $items;
}

/**
* Page callback.
*/
function menufun_hello() {
return t('Hello!');

}

/**
* Page callback.
*/
function menufun_goodbye() {
return t('Goodbye!');

}

Drupal will notice that the path of the second menu item (menufun/farewell) is a child of
the first menu item’s path (menufun). Thus, when rendering (transforming to HTML) the menu,
Drupal will indent the second menu as shown in Figure 4-9. It has also correctly set the bread-
crumb trail at the top of the page to indicate the nesting. Of course, a theme may render
menus or breadcrumb trails however the designer wishes.

CHAPTER 4 ! THE MENU SYSTEM 69

09898ch04final 7/30/08 2:54 PM Page 69

Figure 4-9. Nested menu

Access Control
In our examples so far, we’ve simply set the access callback key of the menu item to TRUE,
meaning that anyone can access our menu. Usually, menu access is controlled by defining
permissions inside the module using hook_perm() and testing those permissions using a func-
tion. The name of the function to use is defined in the access callback key of the menu item
and is typically user_access. Let’s define a permission called receive greeting; if a user does not
have a role that has been granted this permission, the user will receive an “Access denied”
message if he or she tries to go to http://example.com/?q=menufun.

/**
* Implementation of hook_perm().
*/
function menufun_perm() {
return array('receive greeting');

}

/**
* Implementation of hook_menu().
*/
function menufun_menu() {
$items['menufun'] = array(
'title' => 'Greeting',
'page callback' => 'menufun_hello',
'access callback' => 'user_access',
'access arguments' => array('receive greeting'),
'weight' => -10,

);
$items['menufun/farewell'] = array(
'title' => 'Farewell',
'page callback' => 'menufun_goodbye',

);

return $items;
}

CHAPTER 4 ! THE MENU SYSTEM70

09898ch04final 7/30/08 2:55 PM Page 70

http://example.com/?q=menufun

In the preceding code, access will be determined by the result of a call to user_access
('receive greeting'). In this way, the menu system serves as a gatekeeper determining
which paths may be accessed and which will be denied based on the user’s role.

!Tip The user_access() function is the default access callback. If you do not define an access callback,
your access arguments will be passed to user_access() by the menu system.

Child menu items do not inherit access callbacks and access arguments from their par-
ents. The access arguments key must be defined for every menu item. The access callback
key must only be defined if it differs from user_access. The exception to this is any menu
item of type MENU_DEFAULT_LOCAL_TASK, which will inherit the parent access callback and
access arguments, though for clarity it is best to explicitly define these keys even for default
local tasks.

Title Localization and Customization
Drupal supports multiple languages. Translation of strings is done by the t() function. So you
might think that defining a title key in a menu item should look like this:

'title' => t('Greeting') // No! don't use t() in menu item titles or descriptions.

However, menu title strings are stored in the menu_router table as original strings, and the
translation of menu items is deferred until runtime. What’s really happening is that Drupal has
a default translation function (the t() function) that is being assigned to translate the title.
You’ll see later how to change the default translation function to a function of your choosing
and how to pass arguments to that function. The function that does translation is called the
title callback, and any arguments that are passed along are called title arguments.

Defining a Title Callback
If no title callback is defined in the menu item, Drupal will default to using the t() function.
We can make the name of the callback function explicit by specifying it in the title callback
key:

function menufun_menu() {
$items['menufun'] = array(
'title' => 'Greeting',
'title callback' => 't',
'description' => 'A salutation.',
'page callback' => 'menufun_hello',
'access arguments' => array('receive greeting'),

);
}

CHAPTER 4 ! THE MENU SYSTEM 71

09898ch04final 7/30/08 2:55 PM Page 71

!Note The description key is always translated using t(), no matter what the value of the title
callback key. There is no description callback key.

Hmm. What would happen if we specified our own function for the title callback? Let’s
find out:

function menufun_menu() {
$items['menufun'] = array(
'title' => 'Greeting',
'title callback' => 'menufun_title',
'description' => 'A salutation.',
'page callback' => 'menufun_hello',
'access callback' => TRUE,

);

return $items;
}

/**
* Page callback.
*/
function menufun_hello() {
return t('Hello!');

}

/**
* Title callback.
*/
function menufun_title() {
$now = format_date(time());
return t('It is now @time', array('@time' => $now));

}

As shown in Figure 4-10, setting of the menu item title at runtime can be achieved
through the use of a custom title callback. But what if we want to decouple the menu item title
from the title of the page? Easy. We set the page title using drupal_set_title():

function menufun_title() {
drupal_set_title(t('The page title'));
$now = format_date(time());
return t('It is now @time', array('@time' => $now));

}

CHAPTER 4 ! THE MENU SYSTEM72

09898ch04final 7/30/08 2:55 PM Page 72

Figure 4-10. Title callback setting the title of a menu item

This results in one title for the page and another for the menu item, as shown in
Figure 4-11.

Figure 4-11. Separate titles for the menu item and the page

Title Arguments
Drupal’s translation function accepts a string and a keyed array of replacements (for detailed
information on how t() works, see Chapter 18), for example:

t($string, $keyed_array);
t('It is now @time', array('@time' => $now));

So if the title key in a menu item is the string that is to be passed through t(), where is
the array of replacements? Good question. That’s what the title arguments key is for:

CHAPTER 4 ! THE MENU SYSTEM 73

09898ch04final 7/30/08 2:55 PM Page 73

function menufun_menu() {
$items['menufun'] = array(
'title' => 'Greeting for Dr. @name',
'title callback' => 't',
'title arguments' => array('@name' => 'Foo'),
'page callback' => 'menufun_hello',
'access callback' => TRUE,

);

return $items;
}

During runtime, the translation function runs and the placeholder is filled, as shown in
Figure 4-12.

Figure 4-12. Title arguments are passed to the title callback function.

This kind of substitution has a flaw, though. Because items defined in the menu hook are
saved into the database during the menu building process (see Figure 4-2), any code in title
arguments is executed at menu-building time, not at runtime. If you need to modify your
menu titles at runtime, it is best to define the title callback key; the function defined there
will run at runtime.

!Caution The values of the title arguments key must be strings. Integers will be stripped out; thus
'title arguments' => array('@name' => 3) will not work but 'title arguments' =>
array('@name' => '3') will. This is because integers have special meaning, as you’ll see shortly.

CHAPTER 4 ! THE MENU SYSTEM74

09898ch04final 7/30/08 2:55 PM Page 74

Wildcards in Menu Items
So far, we have been using regular Drupal path names in our menu items, names like menufun
and menufun/farewell. But Drupal often uses paths like user/4/track or node/15/edit where
part of the path is dynamic. Let’s look at how that works.

Basic Wildcards
The % character is a special character in Drupal menu items. It means “any string up to the
next / character.” Here’s a menu item that uses a wildcard:

function menufun_menu() {
$items['menufun/%'] = array(
'title' => 'Hi',
'page callback' => 'menufun_hello',
'access callback' => TRUE,

);

return $items;
}

This menu item will work for the Drupal paths menufun/hi, menufun/foo/bar, menufun/
123, and menufun/file.html. It will not work for the path menufun; a separate menu item
would have to be written for that path because it consists of only one part, and the wildcard
menufun/% will only match a string with two parts. Note that although % is often used to desig-
nate a number (as in user/%/edit for user/2375/edit) it will match any text in that position.

!Note A menu item with a wildcard in its path will no longer show up in navigation menus, even if the
menu item’s type is set to MENU_NORMAL_ITEM. It should be obvious why this is: since the path contains a
wildcard, Drupal doesn’t know how to construct the URL for the link. But see “Building Paths from Wildcards
Using to_arg() Functions” later in this chapter to find out how you can tell Drupal what URL to use.

Wildcards and Page Callback Parameters
A wildcard at the end of the menu path does not interfere with the passing of additional parts
of the URL to the page callback, because the wildcard matches only up to the next slash. Con-
tinuing with our example of the menufun/% path, the URL http://example.com/?q=menufun/
foo/Fred would have the string foo matched by the wildcard, and the last portion of the path
(Fred) would be passed as a parameter to the page callback.

CHAPTER 4 ! THE MENU SYSTEM 75

09898ch04final 7/30/08 2:55 PM Page 75

http://example.com/?q=menufun

Using the Value of a Wildcard
To use the part of the path that matched, specify the number of the path’s part in the page
arguments key:

function menufun_menu() {
$items['menufun/%/bar/baz'] = array(
'title' => 'Hi',
'page callback' => 'menufun_hello',
'page arguments' => array(1), // The matched wildcard.
'access callback' => TRUE,

);

return $items;
}

/**
* Page callback.
*/
function menufun_hello($a = NULL, $b = NULL) {
return t('Hello. $a is @a and $b is @b', array('@a' => $a, '@b' => $b));

}

The parameters received by our page callback function menufun_hello() will be as shown
in Figure 4-13.

Figure 4-13. The first parameter is from the matched wildcard, and the second is from the end of
the URL.

The first parameter, $a, is being passed via the page callback. The entry array(1) for the
page callback means, “please pass part 1 of the path, whatever that is.” We start counting at 0,
so part 0 is 'menufun', part 1 is whatever the wildcard matched, part 2 would be 'bar', and so
on. The second parameter, $b, is being passed because of Drupal’s behavior of passing the
portion of the path beyond the Drupal path as a parameter (see “Page Callback Arguments”
earlier in this chapter).

CHAPTER 4 ! THE MENU SYSTEM76

09898ch04final 7/30/08 2:55 PM Page 76

Wildcards and Parameter Replacement
In practice, parts of a Drupal path are generally used to view or change an object, such as a
node or a user. For example, the path node/%/edit is used to edit a node, and the path user/%
is used to view information about a user by user ID. Let’s take a look at the menu item for the
latter, which can be found in the hook_menu() implementation in modules/user/user.module.
The corresponding URL that this path matches would be something like http://example.com/
?q=user/2375. That’s the URL you would click to see the “My account” page on a Drupal site.

$items['user/%user_uid_optional'] = array(
'title' => 'My account',
'title callback' => 'user_page_title',
'title arguments' => array(1),
'page callback' => 'user_view',
'page arguments' => array(1),
'access callback' => 'user_view_access',
'access arguments' => array(1),
'file' => 'user_pages.inc',

);

Whoa! What kind of path is user/%user_uid_optional? It’s shorthand for this:

1. Split the path into segments at each occurrence of a slash (/).

2. In the second segment, match the string after the % and before the next possible slash.
In this case, the string would be user_uid_optional.

3. Append _load to the string to generate the name of a function. In this case, the name of
the function is user_uid_optional_load.

4. Call the function and pass it, as a parameter, the value of the wildcard in the Drupal
path. So if the URL is http://example.com/?q=user/2375, the Drupal path is user/2375,
and the wildcard matches the second segment, which is 2375. So a call is made to
user_uid_optional_load('2375').

5. The result of this call is then used in place of the wildcard. So when the title callback is
called with the title arguments of array(1), instead of passing part 1 of the Drupal path
(2375), we pass the result of the call to user_uid_optional_load('2375'), which is a
user object. Think of it as a portion of the Drupal path being replaced by the object it
represents.

6. Note that the page and access callbacks will also use the replacement object. So in the
previous menu item, user_view_access() will be called for access and user_view() will
be called to generate the page content, and both will be passed the user object for user
2375.

!Tip It is easier to think about object replacement in a Drupal path like node/%node/edit if you think
about %node as being a wildcard with an annotation right there in the string. In other words, node/%node/
edit is node/%/edit with the implicit instruction to run node_load() on the wildcard match.

CHAPTER 4 ! THE MENU SYSTEM 77

09898ch04final 7/30/08 2:55 PM Page 77

http://example.com
http://example.com/?q=user/2375

Passing Additional Arguments to the Load Function
If additional arguments need to be passed to the load function, they can be defined in the load
arguments key. Here’s an example from the node module: the menu item for viewing a node
revision. Both the node ID and the ID of the revision need to be passed to the load function,
which is node_load().

$items['node/%node/revisions/%/view'] = array(
'title' => 'Revisions',
'load arguments' => array(3),
'page callback' => 'node_show',
'page arguments' => array(1, NULL, TRUE),
'type' => MENU_CALLBACK,

);

The menu item specifies array(3) for the load arguments key. This means that in addition
to the wildcard value for the node ID, which is passed automatically to the load function as
outlined previously, a single additional parameter will be passed to the load function, since
array(3) has one member; that is, the integer 3. As you saw in the “Using the Value of a Wild-
card” section, this means that the part of the path in position 3 will be used. The position and
path arguments for the example URL http://example.com/?q=node/56/revisions/4/view are
shown in Table 4-2.

Table 4-2. Position and Arguments for Drupal Path node/%node/revisions/%/view When Viewing
the Page http://example.com/?q=node/56/revisions/4/view

Position Argument Value from URL
0 node node

1 %node 56

2 revisions revisions

3 % 4

4 view view

Thus, defining the load arguments key means that the call node_load('56', '4') will be
made instead of node_load('56').

When the page callback runs, the load function will have replaced the value '56' with the
loaded node object, so the page callback call will be node_show($node, NULL, TRUE).

Special, Predefined Load Arguments: %map and %index
There are two special load arguments. The %map token passes the current Drupal path as an
array. In the preceding example, if %map were passed as a load argument its value would be
array('node', '56', 'revisions', '4', 'view'). The values of the map can be manipulated
by the load function if it declares the parameter as a reference. For example, user_category_
load($uid, &$map, $index) in modules/user/user.module does this to handle slashes in cate-
gory names.

CHAPTER 4 ! THE MENU SYSTEM78

09898ch04final 7/30/08 2:55 PM Page 78

http://example.com/?q=node/56/revisions/4/view
http://example.com/?q=node/56/revisions/4/view

The %index token is the position of the wildcard denoting the load function. So for the
preceding example, the token’s value would be 1 because the wildcard is at position 1, as
shown in Table 4-2.

Building Paths from Wildcards Using to_arg() Functions
Recall that I said that Drupal cannot produce a valid link from a Drupal path that contains a
wildcard, like user/% (after all, how would Drupal know what to replace the % with)? That’s not
strictly true. We can define a helper function that produces a replacement for the wildcard that
Drupal can then use when building the link. In the “My account” menu item, the path for the
“My account” link is produced with the following steps:

1. The Drupal path is originally user/%user_uid_optional.

2. When building the link, Drupal looks for a function with the name user_uid_optional_
to_arg(). If this function is not defined, Drupal cannot figure out how to build the path
and does not display the link.

3. If the function is found, Drupal uses the result of the function as a replacement for the
wildcard in the link. The user_uid_optional_to_arg() function returns the user ID of
the current user, so if you are user 4, Drupal connects the “My account” link to
http://example.com/?q=user/4.

The use of a to_arg() function is not specific to the execution of a given path. In other
words, the to_arg() function is run during link building on any page, not the specific page
that matches the Drupal path of a menu item. The “My account” link is shown on all pages,
not just when the page http://example.com/?q=user/3 page is being viewed.

Special Cases for Wildcards and to_arg() Functions
The to_arg() function that Drupal will look for when building a link for a menu item is based
on the string following the wildcard in the Drupal path. This can be any string, for example:

/**
* Implementation of hook_menu().
*/
function_menufun_menu() {
$items['menufun/%a_zoo_animal'] = array(
'title' => 'Hi',
'page callback' => 'menufun_hello',
'page arguments' => array(1),
'access callback' => TRUE,
'type' => MENU_NORMAL_ITEM,
'weight' => -10

);

CHAPTER 4 ! THE MENU SYSTEM 79

09898ch04final 7/30/08 2:55 PM Page 79

http://example.com/?q=user/4
http://example.com/?q=user/3

return $items;
}

function a_zoo_animal_to_arg($arg) {
// $arg is '%' since it is a wildcard
// Let's replace it with a zoo animal.
return 'tiger';

}

This causes the link “Hi” to appear in the navigation block. The URL for the link is http://
example.com/?q=menufun/tiger. Normally, you would not replace the wildcard with a static
string as in this simple example. Rather the to_arg() function would produce something
dynamic, like the uid of the current user or the nid of the current node.

Altering Menu Items from Other Modules
When Drupal rebuilds the menu_router table and updates the menu_link tables (for example,
when a new module is enabled), modules are given a chance to change any menu item by
implementing hook_menu_alter(). For example, the “Log off” menu item logs out the cur-
rent user by calling user_logout(), which destroys the user’s session and then redirects
the user to the site’s home page. The user_logout() function lives in modules/user/
user.pages.inc, so the menu item for the Drupal path has a file key defined. So normally
Drupal loads the file modules/user/user.pages.inc and runs the user_logout() page call-
back when a user clicks the “Log out” link from the Navigation block. Let’s change that to
redirect users who are logging out to drupal.org.

/**
* Implementation of hook_menu_alter().
*
* @param array $items
* Menu items keyed by path.
*/
function menufun_menu_alter(&$items) {
// Replace the page callback to 'user_logout' with a call to
// our own page callback.
$items['logout']['page callback'] = 'menufun_user_logout';
// Drupal no longer has to load the user.pages.inc file
// since it will be calling our menufun_user_logout(), which
// is in our module -- and that's already in scope.
unset($items['logout']['file']);

}

CHAPTER 4 ! THE MENU SYSTEM80

09898ch04final 7/30/08 2:55 PM Page 80

http://example.com/?q=menufun/tiger
http://example.com/?q=menufun/tiger

/**
* Menu callback; logs the current user out, and redirects to drupal.org.
* This is a modified version of user_logout().
*/
function menufun_user_logout() {
global $user;

watchdog('menufun', 'Session closed for %name.', array('%name' => $user->name));

// Destroy the current session:
session_destroy();
// Run the 'logout' operation of the user hook so modules can respond
// to the logout if they want to.
module_invoke_all('user', 'logout', NULL, $user);

// Load the anonymous user so the global $user object will be correct
// on any hook_exit() implementations.
$user = drupal_anonymous_user();

drupal_goto('http://drupal.org/');
}

Before our hook_menu_alter() implementation ran, the menu item for the logout path
looked like this:

array(
'access callback' => 'user_is_logged_in',
'file' => 'user.pages.inc',
'module' => 'user',
'page callback' => 'user_logout',
'title' => 'Log out',
'weight' => 10,

)

and after we have altered it, it looks like this:

array(
'access callback' => 'user_is_logged_in',
'module' => 'user',
'page callback' => 'menufun_user_logout',
'title' => 'Log out',
'weight' => 10,

)

CHAPTER 4 ! THE MENU SYSTEM 81

09898ch04final 7/30/08 2:55 PM Page 81

http://drupal.org

Altering Menu Links from Other Modules
When Drupal saves a menu item to the menu_link table, modules are given a chance to change
the link by implementing hook_menu_link_alter(). Here is how the “Log out” menu item
could be changed to be titled “Sign off.”

/**
* Implementation of hook_link_alter().
*
* @param $item
* Associative array defining a menu link as passed into menu_link_save().
* @param $menu
* Associative array containing the menu router returned from
* menu_router_build().
*/
function menufun_menu_link_alter(&$item, $menu) {
if ($item['link_path'] == 'logout') {
$item['link_title'] = 'Sign off';

}
}

This hook should be used to modify the title or weight of a link. If you need to modify
other properties of a menu item, such as the access callback, use hook_menu_alter() instead.

!Note The changes made to a menu item in hook_menu_link_alter() are not overrideable by the user
interface that menu.module presents at Administer " Site building " Menus.

Kinds of Menu Items
When you are adding a menu item in the menu hook, one of the possible keys you can use is
the type. If you do not define a type, the default type MENU_NORMAL_ITEM will be used. Drupal
will treat your menu item differently according to the type you assign. Each menu item type is
composed of a series of flags, or attributes. Table 4-2 lists the menu item type flags.

Table 4-2. Menu Item Type Flags

Binary Hexadecimal Decimal Constant
000000000001 0x0001 1 MENU_IS_ROOT

000000000010 0x0002 2 MENU_VISIBLE_IN_TREE

000000000100 0x0004 4 MENU_VISIBLE_IN_BREADCRUMB

000000001000 0x0008 8 MENU_LINKS_TO_PARENT

000000100000 0x0020 32 MENU_MODIFIED_BY_ADMIN

000001000000 0x0040 64 MENU_CREATED_BY_ADMIN

000010000000 0x0080 128 MENU_IS_LOCAL_TASK

CHAPTER 4 ! THE MENU SYSTEM82

09898ch04final 7/30/08 2:55 PM Page 82

For example, the constant MENU_NORMAL_ITEM has the flags MENU_VISIBLE_IN_TREE and
MENU_VISIBLE_IN_BREADCRUMB, as shown in Table 4-3. Do you see how the separate flags can be
expressed in a single constant?

Table 4-3. Flags of the Menu Item Type MENU_NORMAL_ITEM

Binary Constant
000000000010 MENU_VISIBLE_IN_TREE

000000000100 MENU_VISIBLE_IN_BREADCRUMB

000000000110 MENU_NORMAL_ITEM

Therefore, MENU_NORMAL_ITEM has the following flags: 000000000110. Table 4-4 shows the
available menu item types and the flags they express.

Table 4-4. Flags Expressed by Menu Item Types

Menu Flags Menu Type Constants
MENU_ MENU_ MENU_ MENU_
NORMAL_ MENU_ SUGGESTED_ LOCAL_ DEFAULT_
ITEM CALLBACK ITEM* TASK LOCAL_TASK

MENU_IS_ROOT

MENU_VISIBLE_IN_TREE X

MENU_VISIBLE_IN_BREADCRUMB X X X

MENU_LINKS_TO_PARENT X

MENU_MODIFIED_BY_ADMIN

MENU_CREATED_BY_ADMIN

MENU_IS_LOCAL_TASK X X

*This constant is created with an additional bitwise OR with 0x0010.

So which constant should you use when defining the type of your menu item? Look at
Table 4-4 and see which flags you want enabled, and use the constant that contains those
flags. For a detailed description of each constant, see the comments in includes/menu.inc.
The most commonly used are MENU_CALLBACK, MENU_LOCAL_TASK, and MENU_DEFAULT_LOCAL_TASK.
Read on for details.

Common Tasks
This section lays out some typical approaches to common problems confronting developers
when working with menus.

Assigning Callbacks Without Adding a Link to the Menu
Often, you may want to map a URL to a function without creating a visible menu item. For
example, maybe you have a JavaScript function in a web form that needs to get a list of states

CHAPTER 4 ! THE MENU SYSTEM 83

09898ch04final 7/30/08 2:55 PM Page 83

from Drupal, so you need to wire up a URL to a PHP function but have no need of including
this in any navigation menu. You can do this by assigning the MENU_CALLBACK type to your
menu item, as in the first example in this chapter.

Displaying Menu Items As Tabs
In Drupal’s admittedly obscure menu lingo, a callback that is displayed as a tab is known as
a local task and has the type MENU_LOCAL_TASK or MENU_DEFAULT_LOCAL_TASK. The title of a local
task should be a short verb, such as “add” or “list.” Local tasks usually act on some kind of
object, such as a node, or user. You can think of a local task as being a semantic declaration
about a menu item, which is normally rendered as a tab—similar to the way that the
tag is a semantic declaration and is usually rendered as boldfaced text.

Local tasks must have a parent item in order for the tabs to be rendered. A common prac-
tice is to assign a callback to a root path like milkshake, and then assign local tasks to paths
that extend that path, like milkshake/prepare, milkshake/drink, and so forth. Drupal has built-
in theming support for two levels of tabbed local tasks. (Additional levels are supported by the
underlying system, but your theme would have to provide support for displaying these addi-
tional levels.)

The order in which tabs are rendered is determined by alphabetically sorting on the value
of title for each menu item. If this order is not to your liking, you can add a weight key to
your menu items, and they will be sorted by weight instead.

The following example shows code that results in two main tabs and two subtabs under
the default local task. Create sites/all/modules/custom/milkshake/milkshake.info as follows:

; Id
name = Milkshake
description = Demonstrates menu local tasks.
package = Pro Drupal Development
core = 6.x

Then enter the following for sites/all/modules/custom/milkshake/milkshake.module:

<?php
// Id

/**
* @file
* Use this module to learn about Drupal's menu system,
* specifically how local tasks work.
*/

/**
* Implementation of hook_perm().
*/
function milkshake_perm() {
return array('list flavors', 'add flavor');

}

CHAPTER 4 ! THE MENU SYSTEM84

09898ch04final 7/30/08 2:55 PM Page 84

/**
* Implementation of hook_menu().
*/
function milkshake_menu() {
$items['milkshake'] = array(
'title' => 'Milkshake flavors',
'access arguments' => array('list flavors'),
'page callback' => 'milkshake_overview',
'type' => MENU_NORMAL_ITEM,

);
$items['milkshake/list'] = array(
'title' => 'List flavors',
'access arguments' => array('list flavors'),
'type' => MENU_DEFAULT_LOCAL_TASK,
'weight' => 0,

);
$items['milkshake/add'] = array(
'title' => 'Add flavor',
'access arguments' => array('add flavor'),
'page callback' => 'milkshake_add',
'type' => MENU_LOCAL_TASK,
'weight' => 1,

);
$items['milkshake/list/fruity'] = array(
'title' => 'Fruity flavors',
'access arguments' => array('list flavors'),
'page callback' => 'milkshake_list',
'page arguments' => array(2), // Pass 'fruity'.
'type' => MENU_LOCAL_TASK,

);
$items['milkshake/list/candy'] = array(
'title' => 'Candy flavors',
'access arguments' => array('list flavors'),
'page callback' => 'milkshake_list',
'page arguments' => array(2), // Pass 'candy'.
'type' => MENU_LOCAL_TASK,

);

return $items;
}

function milkshake_overview() {
$output = t('The following flavors are available...');
// ... more code here
return $output;

}

CHAPTER 4 ! THE MENU SYSTEM 85

09898ch04final 7/30/08 2:55 PM Page 85

function milkshake_add() {
return t('A handy form to add flavors might go here...');

}

function milkshake_list($type) {
return t('List @type flavors', array('@type' => $type));

}

Figure 4-14 shows the result in the Bluemarine Drupal theme.

Figure 4-14. Local tasks and tabbed menus

Note that the title of the page is taken from the parent callback, not from the default local
task. If you want a different title, you can use drupal_set_title() to set it.

Hiding Existing Menu Items
Existing menu items can be hidden by changing the hidden attribute of their link item. Sup-
pose you want to remove the “Create content” menu item for some reason. Use our old friend
hook_menu_link_alter():

/**
* Implementation of hook_menu_link_alter().
*/
function menufun_menu_link_alter(&$item, $menu) {
// Hide the Create content link.
if ($item['link_path'] == 'node/add') {
$item['hidden'] = 1;

}
}

CHAPTER 4 ! THE MENU SYSTEM86

09898ch04final 7/30/08 2:55 PM Page 86

Using menu.module
Enabling Drupal’s menu module provides a handy user interface for the site administrator to
customize existing menus such as the navigation menu or primary/secondary links menus or
to add new menus. When the menu_rebuild() function in includes/menu.inc is run, the data
structure that represents the menu tree is stored in the database. This happens when you
enable or disable modules or otherwise mess with things that affect the composition of the
menu tree. The data is saved into the menu_router table of the database, and the information
about links is stored in the menu_links table.

During the process of building the links for a page, Drupal first builds the tree based on
path information received from modules’ menu hook implementations and stored in the
menu_router table, and then it overlays that information with the menu information from the
database. This behavior is what allows you to use menu.module to change the parent, path, title,
and description of the menu tree—you are not really changing the underlying tree; rather, you
are creating data that is then overlaid on top of it.

!Note The menu item type, such as MENU_CALLBACK or DEFAULT_LOCAL_TASK, is represented in the
database by its decimal equivalent.

menu.module also adds a section to the node form to add the current post as a menu item
on the fly.

Common Mistakes
You’ve just implemented the menu hook in your module, but your callbacks aren’t firing,
your menus aren’t showing up, or things just plain aren’t working. Here are a few common
things to check:

• Have you set an access callback key to a function that is returning FALSE?

• Did you forget to add the line return $items; at the end of your menu hook?

• Did you accidentally make the value of access arguments or page arguments a string
instead of an array?

• Have you cleared your menu cache and rebuilt the menu?

• If you’re trying to get menu items to show up as tabs by assigning the type as
MENU_LOCAL_TASK, have you assigned a parent item that has a page callback?

• If you’re working with local tasks, do you have at least two tabs on a page (this is
required for them to appear)?

CHAPTER 4 ! THE MENU SYSTEM 87

09898ch04final 7/30/08 2:55 PM Page 87

Summary
After reading this chapter, you should be able to

• Map URLs to functions in your module or other modules or .inc files.

• Understand how access control works.

• Understand how wildcards work in paths.

• Create pages with tabs (local tasks) that map to functions.

• Modify existing menu items and links programmatically.

For further reading, the comments in menu.inc are worth checking out. Also, see http://
drupal.org/node/102338 and http://api.drupal.org/?q=api/group/menu/6.

CHAPTER 4 ! THE MENU SYSTEM88

09898ch04final 7/30/08 2:55 PM Page 88

http://drupal.org/node/102338
http://drupal.org/node/102338
http://api.drupal.org/?q=api/group/menu/6

Working with Databases

Drupal depends on a database to function correctly. Inside Drupal, a lightweight data-
base abstraction layer exists between your code and the database. In this chapter, you’ll
learn about how the database abstraction layer works and how to use it. You’ll see how
queries can be modified by modules. Then, you’ll look at how to connect to additional
databases (such as a legacy database). Finally, you’ll examine how the queries necessary to
create and update database tables can be included in your module’s .install file by using
Drupal’s schema API.

Defining Database Parameters
Drupal knows which database to connect to and what username and password to issue when
establishing the database connection by looking in the settings.php file for your site. This file
typically lives at sites/example.com/settings.php or sites/default/settings.php. The line
that defines the database connection looks like this:

$db_url = 'mysql://username:password@localhost/databasename';

This example is for connecting to a MySQL database. PostgreSQL users would prefix the
connection string with pgsql instead of mysql. Obviously, the username and password used
here must be valid for your database. They are database credentials, not Drupal credentials,
and they are established when you set up the database account using your database’s tools.
Drupal’s installer asks for the username and password so that it can build the $db_url string
in your settings.php file.

Understanding the Database Abstraction Layer
Working with a database abstraction API is something you will not fully appreciate until you
try to live without one again. Have you ever had a project where you needed to change data-
base systems and you spent days sifting through your code to change database-specific
function calls and queries? With an abstraction layer, you no longer have to keep track of
nuances in function names for different database systems, and as long as your queries are
American National Standards Institute (ANSI) SQL compliant, you will not need to write sepa-
rate queries for different databases. For example, rather than calling mysql_query() or
pg_query(), Drupal uses db_query(), which keeps the business logic database-agnostic.

89

C H A P T E R 5

09898ch05final 7/30/08 2:51 PM Page 89

mysql://username:password@localhost/databasename

Drupal’s database abstraction layer is lightweight and serves two main purposes. The
first is to keep your code from being tied to any one database. The second is to sanitize
user-submitted data placed into queries to prevent SQL injection attacks. This layer was
built on the principle that writing SQL is more convenient than learning a new abstraction
layer language.

Drupal also has a schema API, which allows you to describe your database schema (that
is, which tables and fields you will be using) to Drupal in a general manner and have Drupal
translate that into specifics for the database you are using. We’ll cover that in a bit when we
talk about .install files.

Drupal determines the type of database to connect to by inspecting the $db_url variable
inside your settings.php file. For example, if $db_url begins with mysql, then Drupal will
include includes/database.mysql.inc. If it begins with pgsql, Drupal will include includes/
database.pgsql.inc. This mechanism is shown in Figure 5-1.

As an example, compare the difference in db_fetch_object() between the MySQL and
PostgreSQL abstraction layers:

// From database.mysqli.inc.
function db_fetch_object($result) {
if ($result) {
return mysql_fetch_object($result);

}
}

// From database.pgsql.inc.
function db_fetch_object($result) {
if ($result) {
return pg_fetch_object($result);

}
}

If you use a database that is not yet supported, you can write your own driver by imple-
menting the wrapper functions for your database. For more information, see “Writing Your
Own Database Driver” at the end of this chapter.

CHAPTER 5 ! WORKING WITH DATABASES90

09898ch05final 7/30/08 2:51 PM Page 90

Figure 5-1. Drupal determines which database file to include by examining $db_url.

Connecting to the Database
Drupal automatically establishes a connection to the database as part of its normal bootstrap
process, so you do not need to worry about doing that.

If you are working outside Drupal itself (for example, you’re writing a stand-alone PHP
script or have existing PHP code outside of Drupal that needs access to Drupal’s database),
you would use the following approach.

CHAPTER 5 ! WORKING WITH DATABASES 91

09898ch05final 7/30/08 2:51 PM Page 91

// Make Drupal PHP's current directory.
chdir('/full/path/to/your/drupal/installation');

// Bootstrap Drupal up through the database phase.
include_once('./includes/bootstrap.inc');
drupal_bootstrap(DRUPAL_BOOTSTRAP_DATABASE);

// Now you can run queries using db_query().
$result = db_query('SELECT title FROM {node}');
...

!Caution Drupal is often configured to have multiple folders in the sites directory so that the site can be
moved from staging to production without changing database credentials. For example, you might have
sites/staging.example.com/settings.php with database credentials for your testing database
server and sites/www.example.com/settings.php with database credentials for your production data-
base server. When establishing a database connection as shown in this section, Drupal will always use
sites/default/settings.php, because there is no HTTP request involved.

Performing Simple Queries
Drupal’s db_query() function is used to execute a query to the active database connection.
These queries include SELECT, INSERT, UPDATE, and DELETE.

There is some Drupal-specific syntax you need to know when it comes to writing SQL
statements. First, table names are enclosed within curly brackets so that table names can be
prefixed to give them unique names, if necessary. This convention allows users who are
restricted by their hosting provider in the number of databases they can create to install
Drupal within an existing database and avoid table name collisions by specifying a database
prefix in their settings.php file. Here is an example of a simple query to retrieve the name of
role 2:

$result = db_query('SELECT name FROM {role} WHERE rid = %d', 2);

Notice the use of the %d placeholder. In Drupal, queries are always written using place-
holders, with the actual value following as a parameter. The %d placeholder will automatically
be replaced with the value of the parameter—in this case, 2. Additional placeholders mean
additional parameters:

db_query('SELECT name FROM {role} WHERE rid > %d AND rid != %d', 1, 7);

The preceding line will become the following when it is actually executed by the database:

SELECT FROM role WHERE rid > 1 and rid != 7

CHAPTER 5 ! WORKING WITH DATABASES92

09898ch05final 7/30/08 2:51 PM Page 92

http://www.example.com/settings.php

User-submitted data must always be passed in as separate parameters so the values can
be sanitized to avoid SQL injection attacks. Drupal uses the printf syntax (see http://
php.net/printf) as placeholders for these values within queries. There are different % modi-
fiers depending on the data type of the user-submitted information.

Table 5-1 lists the database query placeholders and their meaning.

Table 5-1. Database Query Placeholders and Meanings

Placeholder Meaning
%s String

%d Integer

%f Float

%b Binary data; do not enclose in ' '

%% Inserts a literal % sign (e.g., SELECT * FROM {users} WHERE name LIKE '%%%s%%')

The first parameter for db_query() is always the query itself. The remaining parameters
are the dynamic values to validate and insert into the query string. The values can be in an
array, or each value can be its own parameter. The latter is the more common format.

We should note that using this syntax will typecast TRUE, FALSE, and NULL to their decimal
equivalents (0 or 1). In most cases this should not cause problems.

Let’s look at some examples. In these examples, we’ll use a database table called joke that
contains three fields: a node ID (integer), a version ID (integer), and a text field containing a
punch line (for more information on the joke module, see Chapter 7).

Let’s start with an easy query. Get all rows of all fields from the table named joke where
the field vid has an integer value that is the same as the value of $node->vid:

db_query('SELECT * FROM {joke} WHERE vid = %d', $node->vid);

Insert a new row into the table named joke. The new row will contain two integers and
a string value. Note the string value’s placeholder is in single quotes; this helps prevent SQL
injection vulnerabilities. Because we have single quotes in the query itself, we use double
quotes to enclose the query:

db_query("INSERT INTO {joke} (nid, vid, punchline) VALUES (%d, %d, '%s')",
$node->nid, $node->vid, $node->punchline);

Change all rows in the table named joke where the field vid has an integer value that is
the same as the value of $node->vid. The rows will be changed by setting the punchline field
equal to the string value contained in $node->punchline:

db_query("UPDATE {joke} SET punchline = '%s' WHERE vid = %d",
$node->punchline, $node->vid);

Delete all rows from the table named joke where the nid column contains an integer
value that is the same as the value of $node->nid:

db_query('DELETE FROM {joke} WHERE nid = %d', $node->nid);

CHAPTER 5 ! WORKING WITH DATABASES 93

09898ch05final 7/30/08 2:51 PM Page 93

http://php.net/printf
http://php.net/printf

Retrieving Query Results
There are various ways to retrieve query results depending on whether you need a single row
or the whole result set or whether you are planning to get a range of results for internal use or
for display as a paged result set.

Getting a Single Value
If all you need from the database is a single value, you can use db_result() to retrieve that
value. Here is an example of retrieving the total number of users who have not been blocked
by the administrator (excluding the anonymous user):

$count = db_result(db_query('SELECT COUNT(uid) FROM {users} WHERE status = 1
AND uid != 0'));

Getting Multiple Rows
In most cases, you will want to return more than a single field from the database. Here is a
typical iteration pattern for stepping through the result set:

$type = 'blog';
$status = 1; // In the node table, a status of 1 means published.
$sql = "SELECT * FROM {node} WHERE type = '%s' AND status = %d";
$result = db_query(db_rewrite_sql($sql), $type, $status);
while ($data = db_fetch_object($result)) {
$node = node_load($data->nid);
print node_view($node, TRUE);

}

The preceding code snippet will print out all published nodes that are of type blog (the
status field in the node table is 0 for unpublished nodes and 1 for published nodes). We will
cover db_rewrite_sql() shortly. The db_fetch_object() function grabs a row from the result
set as an object. To retrieve the result as an array, use db_fetch_array(). The practice of
retrieving rows as objects, as opposed to arrays, is common since most developers prefer its
less verbose syntax.

Getting a Limited Range of Results
As you might guess, running the preceding query on a site with, say, 10,000 blog entries is a
dangerous idea. We’ll limit the result of this query to only the ten newest blog entries:

$type = 'blog';
$status = 1; // In the node table, a status of 1 means published.
$sql = "SELECT * FROM {node} n WHERE type = '%s' AND status = %d ORDER BY
n.created DESC";

$result = db_query_range(db_rewrite_sql($sql), $type, $status, 0, 10);
while ($data = db_fetch_object($result)) {
$node = node_load($data->nid);
print node_view($node, TRUE);

}

CHAPTER 5 ! WORKING WITH DATABASES94

09898ch05final 7/30/08 2:51 PM Page 94

Instead of passing the query to db_query() and using the LIMIT clause, we instead use
db_query_range(). Why? Because not all databases agree on the format of the LIMIT syntax, so
we need to use db_query_range() as a wrapper function.

Note that you pass the variables that will fill placeholders before the range (so the type
and status are passed before 0 and 10 in the example just shown).

Getting Results for Paged Display
We can present these blog entries in a better way: as a page of formatted results with links to
more results. We can do that using Drupal’s pager (see Figure 5-2). Let’s grab all of the blog
entries again, only this time we’ll display them as a paged result, with links to additional pages
of results and “first” and “last” links at the bottom of the page.

$type = 'blog';
$status = 1;
$sql = "SELECT * FROM {node} n WHERE type = '%s' AND status = %d ORDER BY
n.created DESC";

$pager_num = 0; // This is the first pager on this page. We number it 0.
$result = pager_query(db_rewrite_sql($sql), 10, $pager_num, NULL, $type,
$status);

while ($data = db_fetch_object($result)) {
$node = node_load($data->nid);
print node_view($node, TRUE);

}
// Add links to remaining pages of results.
print theme('pager', NULL, 10, $pager_num);

Although pager_query() is not really part of the database abstraction layer, it is good to
know when you need to create a paged result set with navigation. A call to theme('pager') at
the end will display the navigation links to the other pages. You don’t need to pass the total
number of results to theme('pager'), because the number of results is remembered internally
from the pager_query() call.

Figure 5-2. Drupal’s pager gives built-in navigation through a result set.

The Schema API
Drupal supports multiple databases (MySQL, PostreSQL, etc.) through its database abstrac-
tion layer. Each module that wants to have a database table describes that table to Drupal
using a schema definition. Drupal then translates the definition into syntax that is appropriate
for the database.

CHAPTER 5 ! WORKING WITH DATABASES 95

09898ch05final 7/30/08 2:51 PM Page 95

Using Module .install Files
As shown in Chapter 2, when you write a module that needs to create one or more database
tables for storage, the instructions to create and maintain the table structure go into an
.install file that is distributed with the module.

Creating Tables
The install hook usually hands off the installation of the database tables to drupal_
install_schema(), which gets the schema definition from the module’s schema hook and
modifies the database, as shown in Figure 5-3. Then the install hook does any other neces-
sary installation chores. Here’s an example from the modules/book/book.install file
showing the handoff to drupal_install_schema(). Because the book module deals with the
book node type, it creates that node type after the database installation is complete.

/**
* Implementation of hook_install().
*/
function book_install() {
// Create tables.
drupal_install_schema('book');

// Add the node type.
_book_install_type_create();

}
The schema is defined in the following general way:

$schema['tablename'] = array(
// Table description.
'description' => t('Description of what the table is used for.'),
'fields' => array(
// Field definition.
'field1' => array(
'type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'default' => 0,
'description' => t('Description of what this field is used for.'),

),
),
// Index declarations.
'primary key' => array('field1'),

);

CHAPTER 5 ! WORKING WITH DATABASES96

09898ch05final 7/30/08 2:51 PM Page 96

Figure 5-3. The schema definition is used to create the database tables.

Let’s take a look at the schema definition for Drupal’s book table, found in modules/
book/book.install:

/**
* Implementation of hook_schema().
*/
function book_schema() {
$schema['book'] = array(
'description' => t('Stores book outline information. Uniquely connects each node

in the outline to a link in {menu_links}'),
'fields' => array(
'mlid' => array(
'type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'default' => 0,
'description' => t("The book page's {menu_links}.mlid."),

),

CHAPTER 5 ! WORKING WITH DATABASES 97

09898ch05final 7/30/08 2:51 PM Page 97

'nid' => array(
'type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'default' => 0,
'description' => t("The book page's {node}.nid."),

),
'bid' => array(
'type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'default' => 0,
'description' => t("The book ID is the {book}.nid of the top-level page."),

),
),
'primary key' => array('mlid'),
'unique keys' => array(
'nid' => array('nid'),

),
'indexes' => array(
'bid' => array('bid'),

),
);

return $schema;
}

This schema definition describes the book table, which has three fields of type int. It
also has a primary key, a unique index (which means all entries in that field are unique)
and a regular index. Notice that when a field from another table is referred to in the field
description curly brackets are used. That enables the schema module (see the next section)
to build handy hyperlinks to table descriptions.

Using the Schema Module
At this point, you may be thinking, “What a pain! Building these big descriptive arrays to tell
Drupal about my tables is going to be sheer drudgery.” But do not fret. Simply download the
schema module from http://drupal.org/project/schema and enable it on your site. Going to
Administer " Site building " Schema will give you the ability to see a schema definition for
any database table by clicking the Inspect tab. So if you have used SQL to create your table,
you can get the schema definition by using the schema module, then copy and paste it into
your .install file.

!Tip You should rarely have to write a schema from scratch. Instead, use your existing table(s) and the
schema module’s Inspect tab to have the schema module build the schema for you.

CHAPTER 5 ! WORKING WITH DATABASES98

09898ch05final 7/30/08 2:51 PM Page 98

http://drupal.org/project/schema

The schema module also allows you to view the schema of any module. For example,
Figure 5-4 shows the schema module’s display of the book module’s schema. Note how the
table names that were in curly brackets in the table and field descriptions have been turned
into helpful links.

Figure 5-4. The schema module displays the schema of the book module.

Field Type Mapping from Schema to Database
The field type that is declared in the schema definition maps to a native field type in the
database. For example, an integer field with the declared size of tiny becomes a TINYINT
field in MySQL but a smallint field in PostgreSQL. The actual map can be viewed in the
db_type_map() function of the database driver file, such as includes/database.pgsql.php
(see Table 5-2, later in this chapter).

Textual
Textual fields contain text.

Varchar

The varchar, or variable length character field, is the most frequently used field type for stor-
ing text less than 256 characters in length. A maximum length, in characters, is defined by the

CHAPTER 5 ! WORKING WITH DATABASES 99

09898ch05final 7/30/08 2:51 PM Page 99

length key. MySQL varchar field lengths are 0–255 characters (MySQL 5.0.2 and earlier) and
0–65,535 characters (MySQL 5.0.3 and later); PostgreSQL varchar field lengths may be larger.

$field['fieldname'] = array(
'type' => 'varchar', // Required.
'length' => 255, // Required.
'not null' => TRUE, // Defaults to FALSE.
'default' => 'chocolate', // See below.
'description' => t('Always state the purpose of your field.'),

);

If the default key has not been set and the not null key has been set to FALSE, the default
will be set to NULL.

Char

Char fields are fixed-length character fields. The length of the field, in characters, is defined by
the length key. MySQL char field lengths are 0–255 characters.

$field['fieldname'] = array(
'type' => 'char', // Required.
'length' => 64, // Required.
'not null' => TRUE, // Defaults to FALSE.
'default' => 'strawberry', // See below.
'description' => t('Always state the purpose of your field.'),

);

If the default key has not been set and the not null key has been set to FALSE, the default
will be set to NULL.

Text

Text fields are used for textual data that can be quite large. For example, the body field of the
node_revisions table (where node body text is stored) is of this type. Default values may not
be used for text fields.

$field['fieldname'] = array(
'type' => 'text', // Required.
'size' => 'small', // tiny | small | normal | medium | big
'not null' => TRUE, // Defaults to FALSE.
'description' => t('Always state the purpose of your field.'),

);

Numerical
Numerical data types are used for storing numbers and include the integer, serial, float, and
numeric types.

CHAPTER 5 ! WORKING WITH DATABASES100

09898ch05final 7/30/08 2:51 PM Page 100

Integer

This field type is used for storing integers, such as node IDs. If the unsigned key is TRUE, nega-
tive integers will not be allowed.

$field['fieldname'] = array(
'type' => 'int', // Required.
'unsigned' => TRUE, // Defaults to FALSE.
'size' => 'small', // tiny | small | medium | normal | big
'not null' => TRUE, // Defaults to FALSE.
'description' => t('Always state the purpose of your field.'),

);

Serial

A serial field keeps a number that increments. For example, when a node is added, the nid
field of the node table is incremented. This is done by inserting a row and calling db_last_
insert_id(). If a row is added by another thread between the insertion of a row and the
retrieval of the last ID, the correct ID is still returned because it is tracked on a per-connection
basis. A serial field must be indexed; it is usually indexed as the primary key.

$field['fieldname'] = array(
'type' => 'serial', // Required.
'unsigned' => TRUE, // Defaults to FALSE. Serial numbers are usually positive.
'size' => 'small', // tiny | small | medium | normal | big
'not null' => TRUE, // Defaults to FALSE. Typically TRUE for serial fields.
'description' => t('Always state the purpose of your field.'),

);

Float

Floating point numbers are stored using the float data type. There is typically no difference
between the tiny, small, medium, and normal sizes for a floating point number; in contrast,
the big size specifies a double-precision field.

$field['fieldname'] = array(
'type' => 'float', // Required.
'unsigned' => TRUE, // Defaults to FALSE.
'size' => 'normal', // tiny | small | medium | normal | big
'not null' => TRUE, // Defaults to FALSE.
'description' => t('Always state the purpose of your field.'),

);

Numeric

The numeric data type allows you to specify the precision and scale of a number. Precision
is the total number of significant digits in the number; scale is the total number of digits to
the right of the decimal point. For example, 123.45 has a precision of 5 and a scale of 2. The
size key is not used. At the time of this writing, numeric fields are not used in the schema of
the Drupal core.

CHAPTER 5 ! WORKING WITH DATABASES 101

09898ch05final 7/30/08 2:51 PM Page 101

$field['fieldname'] = array(
'type' => 'numeric', // Required.
'unsigned' => TRUE, // Defaults to FALSE.
'precision' => 5, // Significant digits.
'scale' => 2, // Digits to the right of the decimal.
'not null' => TRUE, // Defaults to FALSE.
'description' => t('Always state the purpose of your field.'),

);

Date and Time: Datetime
The Drupal core does not use this data type, preferring to use Unix timestamps in integer
fields. The datetime format is a combined format containing both the date and the time.

$field['fieldname'] = array(
'type' => 'datetime', // Required.
'not null' => TRUE, // Defaults to FALSE.
'description' => t('Always state the purpose of your field.'),

);

Binary: Blob
The binary large object data (blob) type is used to store binary data (for example, Drupal’s
cache table to store the cached data). Binary data may include music, images, or video. Two
sizes are available, normal and big.

$field['fieldname'] = array(
'type' => 'blob', // Required.
'size' => 'normal' // normal | big
'not null' => TRUE, // Defaults to FALSE.
'description' => t('Always state the purpose of your field.'),

);

Declaring a Specific Column Type with mysql_type
If you know the exact column type for your database engine, you can set the mysql_type (or
pgsql_type) key in your schema definition. This will override the type and size keys for that
database engine. For example, MySQL has a field type called TINYBLOB for small binary large
objects. To specify that Drupal should use TINYBLOB if it is running on MySQL but fall back to
using the regular BLOB type if it is running on a different database engine, the field could be
declared like so:

$field['fieldname'] = array(
'mysql_type' > 'TINYBLOB', // MySQL will use this.
'type' => 'blob', // Other databases will use this.
'size' => 'normal', // Other databases will use this.
'not null' => TRUE,
'description' => t('Wee little blobs.')

);

CHAPTER 5 ! WORKING WITH DATABASES102

09898ch05final 7/30/08 2:51 PM Page 102

The native types for MySQL and PostgreSQL are shown in Table 5-2.

Table 5-2. How Type and Size Keys in Schema Definitions Map to Native Database Types

Schema Definition Native Database Field Type
Type Size MySQL PostgreSQL
varchar normal VARCHAR varchar

char normal CHAR character

text tiny TINYTEXT text

text small TINYTEXT text

text medium MEDIUMTEXT text

text big LONGTEXT text

text normal TEXT text

serial tiny TINYINT serial

serial small SMALLINT serial

serial medium MEDIUMINT serial

serial big BIGINT bigserial

serial normal INT serial

int tiny TINYINT smallint

int small SMALLINT smallint

int medium MEDIUMINT int

int big BIGINT bigint

int normal INT int

float tiny FLOAT real

float small FLOAT real

float medium FLOAT real

float big DOUBLE double precision

float normal FLOAT real

numeric normal DECIMAL numeric

blob big LONGBLOB bytea

blob normal BLOB bytea

datetime normal DATETIME timestamp

Maintaining Tables
When you create a new version of a module, you might have to change the database schema.
Perhaps you’ve added a column or added an index to a column. You can’t just drop and re-
create the table, because the table contains data. Here’s how to ensure that the database is
changed smoothly:

CHAPTER 5 ! WORKING WITH DATABASES 103

09898ch05final 7/30/08 2:51 PM Page 103

1. Update the hook_schema() implementation in your .install file so that new users who
install your module will have the new schema installed. The schema definition in your
.install file will always be the latest schema for your module’s tables and fields.

2. Give existing users an upgrade path by writing an update function. Update func-
tions are named sequentially, starting with a number that is based on the Drupal
version. For example, the first update function for Drupal 6 would be modulename_
update_6000() and the second would be modulename_update_6001(). Here’s an exam-
ple from modules/comment/comment.install where an index was added to the parent
ID (pid) column of the comments table:

/**
* Add index to parent ID field.
*/
function comment_update_6003() {
$ret = array(); // Query results will be collected here.
// $ret will be modified by reference.
db_add_index($ret, 'comments', 'pid', array('pid'));
return $ret;

}

This function will be run when the user runs http://example.com/update.php after
upgrading the module.

!Caution Because the schema definition found in your hook_schema() implementation changes every
time you want a new table, field, or index, your update functions should never use the schema definition
found there. Think of your hook_schema() implementation as being in the present and your update func-
tions as being in the past. See http://drupal.org/node/150220.

A full list of functions for dealing with schemas can be found at http://api.drupal.org/
api/group/schemaapi/6.

!Tip Drupal keeps track of which schema version a module is currently using. This information is in the
system table. After the update shown in this section has run, the row for the comment module will have a
schema_version value of 6003.To make Drupal forget, use the Reinstall Modules option of the devel mod-
ule, or delete the module’s row from the system table.

Deleting Tables on Uninstall
When a module is disabled, any data that the module has stored in the database is left
untouched, in case the administrator has a change of heart and reenables the module. The

CHAPTER 5 ! WORKING WITH DATABASES104

09898ch05final 7/30/08 2:51 PM Page 104

http://example.com/update.php
http://drupal.org/node/150220
http://api.drupal.org

Administer " Site building " Modules page has an Uninstall tab that removes the data from
the database. If you want to enable the deletion of your module’s tables on this page,
implement the uninstall hook in your module’s .install file. You might want to delete any
variables you’ve defined at the same time. Here’s an example for the annotation module we
wrote in Chapter 2:

/**
* Implementation of hook_uninstall().
*/
function annotate_uninstall() {
// Use schema API to delete database table.
drupal_uninstall_schema('annotate');

// Clean up our entry in the variables table.
variable_del('annotate_nodetypes');

}

Changing Existing Schemas with hook_schema_alter()
Generally modules create and use their own tables. But what if your module wants to alter an
existing table? Suppose your module absolutely has to add a column to the node table. The
simple way would be to go to your database and add the column. But then Drupal’s schema
definitions, which should reflect the actual database table, would be inconsistent. There is a
better way: hook_schema_alter().

!Caution hook_schema_alter() is new to Drupal, and there is still some debate over what the best
practices are for using this hook. Check http://api.drupal.org/api/group/hooks/6 for further details.

Suppose you have a module that marks nodes in some way, and for performance reasons,
you are dead set on using the existing node table instead of using your own table and joining it
using node IDs. Your module will have to do two things: alter the node table during your mod-
ule’s installation and modify the schema so that it actually reflects what is in the database. The
former is accomplished with hook_install(), the latter with hook_schema_alter(). Assuming
your module is called markednode.module, your markednode.install file would include the fol-
lowing functions:

/**
* Implementation of hook_install().
*/
function markednode_install() {
$field = array(
'type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'default' => 0,

CHAPTER 5 ! WORKING WITH DATABASES 105

09898ch05final 7/30/08 2:51 PM Page 105

http://api.drupal.org/api/group/hooks/6

'initial' => 0, // Sets initial value for preexisting nodes.
'description' => t('Whether the node has been marked by the
markednode module.'),

);

// Create a regular index called 'marked' on the field named 'marked'.
$keys['indexes'] = array(
'marked' => array('marked')

);

$ret = array(); // Results of the SQL calls will be stored here.
db_add_field($ret, 'node', 'marked', $field, $keys);

}

/**
* Implementation of hook_schema_alter(). We alter $schema by reference.
*
* @param $schema
* The system-wide schema collected by drupal_get_schema().
*/
function markednode_schema_alter(&$schema) {
// Add field to existing schema.
$schema['node']['fields']['marked'] = array(
'type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'default' => 0,
'description' => t('Whether the node has been marked by the
markednode module.'),

);
}

Inserts and Updates with drupal_write_record()
A common problem for programmers is handling inserts of new database rows and updates to
existing rows. The code typically tests whether the operation is an insert or an update, then
performs the appropriate operation.

Because each table that Drupal uses is described using a schema, Drupal knows what
fields a table has and what the default values are for each field. By passing a keyed array of
fields and values to drupal_write_record(), you can let Drupal generate and execute the SQL
instead of writing it by hand.

Suppose you have a table that keeps track of your collection of giant bunnies. The schema
hook for your module which describes the table looks like this:

CHAPTER 5 ! WORKING WITH DATABASES106

09898ch05final 7/30/08 2:51 PM Page 106

/**
* Implementation of hook_schema().
*/
function bunny_schema() {
$schema['bunnies'] = array(
'description' => t('Stores information about giant rabbits.'),
'fields' => array(
'bid' => array(
'type' => 'serial',
'unsigned' => TRUE,
'not null' => TRUE,
'description' => t("Primary key: A unique ID for each bunny."),

),
'name' => array(
'type' => 'varchar',
'length' => 64,
'not null' => TRUE,
'description' => t("Each bunny gets a name."),

),
'tons' => array(
'type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'description' => t('The weight of the bunny to the nearest ton.'),

),
),
'primary key' => array('bid'),
'indexes' => array(
'tons' => array('tons'),

),
);

return $schema;
}

Inserting a new record is easy, as is updating a record:

$table = 'bunnies';
$record = new stdClass();
$record->name = t('Bortha');
$record->tons = 2;
drupal_write_record($table, $record);

// The new bunny ID, $record->bid, was set by drupal_write_record()
// since $record is passed by reference.
watchdog('bunny', 'Added bunny with id %id.', array('%id' => $record->bid));

CHAPTER 5 ! WORKING WITH DATABASES 107

09898ch05final 7/30/08 2:51 PM Page 107

// Change our mind about the name.
$record->name = t('Bertha');
// Now update the record in the database.
// For updates we pass in the name of the table's primary key.
drupal_write_record($table, $record, 'bid');

watchdog('bunny', 'Updated bunny with id %id.', array('%id' => $record->bid));

Array syntax is also supported, though if $record is an array drupal_write_record() will
convert the array to an object internally.

Exposing Queries to Other Modules with
hook_db_rewrite_sql()
This hook is used to modify queries created elsewhere in Drupal so that you do not have to
hack modules directly. If you are sending a query to db_query() and you believe others may
want to modify it, you should wrap it in the function db_rewrite_sql() to make the query
accessible to other developers. When such a query is executed, it first checks for all modules
that implement hook_db_rewrite_sql() and gives them a chance to modify the query. For
example, the node module modifies queries for listings of nodes to exclude nodes that are
protected by node access rules.

!Caution If you execute a node listing query (i.e., you are querying the node table for some subset of
nodes) and you fail to wrap your query in db_rewrite_sql(), the node access rules will be bypassed
because the node module will not have a chance to modify the query to exclude protected nodes. This may
lead to nodes being shown to users who should not be allowed to see them.

If you are not the one issuing queries, but you want your module to have a chance to
modify others’ queries, implement hook_db_rewrite_sql() in your module.

Table 5-3 summarizes the two ways to use SQL rewriting.

Table 5-3. Using the db_rewrite_sql() Function vs.Using the hook_db_rewrite_sql() Hook

Name When to Use
db_rewrite_sql() When issuing node listing queries or other queries that you want others

to be able to modify

hook_db_rewrite_sql() When you want to modify queries that other modules have issued

Using hook_db_rewrite_sql()
Here’s the function signature for hook_db_rewrite_sql():

function hook_db_rewrite_sql($query, $primary_table = 'n', $primary_field = 'nid',
$args = array())

CHAPTER 5 ! WORKING WITH DATABASES108

09898ch05final 7/30/08 2:51 PM Page 108

The parameters are as follows:

• $query: This is the SQL query available to be rewritten.

• $primary_table: This is the name or alias of the table that has the primary key field
for this query. Example values are n for the node table or c for the comment table (e.g.,
for SELECT nid FROM {node} n, the value would be n). Common values are shown in
Table 5-4.

• $primary_field: This is the name of the primary field in the query. Example values are
nid, tid, vid, and cid (e.g., if you are querying to get a list of node IDs, the primary field
would be nid).

• $args: This array of arguments is passed along to each module’s implementation of
hook_db_rewrite_sql().

Table 5-4. Common Values of $primary_table Aliases

Table Alias
blocks b

comments c

forum f

node n

menu m

term_data t

vocabulary v

Changing Other Modules’ Queries
Let’s take a look at an implementation of the hook_db_rewrite_sql(). The following example
takes advantage of the moderate column in the node table to rewrite node queries. After we’ve
modified the query, nodes that are in the moderated state (i.e., the moderate column is 1) will
be hidden from users who do not have the “administer content” permission.

/**
* Implementation of hook_db_rewrite_sql().
*/
function moderate_db_rewrite_sql($query, $primary_table, $primary_field, $args) {
switch ($primary_field) {
case 'nid':
// Run only if the user does not already have full access.
if (!user_access('administer content')) {
$array = array();

CHAPTER 5 ! WORKING WITH DATABASES 109

09898ch05final 7/30/08 2:51 PM Page 109

if ($primary_table == 'n') {
// Node table is already present;
// just add a WHERE to hide moderated nodes.
$array['where'] = "(n.moderate = 0)";

}
// Test if node table is present but alias is not 'n'.
elseif (preg_match('@{node} ([A-Za-z_]+)@', $query, $match)) {
$node_table_alias = $match[1];

// Add a JOIN so that the moderate column will be available.
$array['join'] = "LEFT JOIN {node} n ON $node_table_alias.nid = n.nid";

// Add a WHERE to hide moderated nodes.
$array['where'] = "($node_table_alias.moderate = 0)";

}

return $array;
}

}
}

Notice that we are inspecting any query where nid is the primary key and inserting addi-
tional information into those queries. Let’s take a look at this in action.

Here’s the original query before moderate_db_rewrite_sql():

SELECT * FROM {node} n WHERE n.type = 'blog' AND n.status = 1

Here’s the query after moderate_db_rewrite_sql():

SELECT * FROM {node} n WHERE n.type = 'blog' AND n.status = 1 AND n.moderate = 0

After moderate_db_rewrite_sql() was called, it appended AND n.moderate = 0 to the
incoming query. Other uses of this hook usually relate to restricting access to viewing nodes,
vocabularies, terms, or comments.

db_rewrite_sql() is limited in the SQL syntax it can understand. When joining tables you
need to use the JOIN syntax rather than joining tables within the FROM clause.

The following is incorrect:

SELECT * FROM {node} AS n, {comment} AS c WHERE n.nid = c.nid

This is correct:

SELECT * FROM {node} n INNER JOIN {comment} c ON n.nid = c.nid

CHAPTER 5 ! WORKING WITH DATABASES110

09898ch05final 7/30/08 2:51 PM Page 110

Connecting to Multiple Databases Within Drupal
While the database abstraction layer makes remembering function names easier, it also adds
built-in security to queries. Sometimes, we need to connect to third-party or legacy databases,
and it would be great to use Drupal’s database API for this need as well and get the security
benefits. The good news is that we can! For example, your module can open a connection to
a non-Drupal database and retrieve data.

In the settings.php file, $db_url can be either a string (as it usually is) or an array com-
posed of multiple database connection strings. Here’s the default syntax, specifying a single
connection string:

$db_url = 'mysql://username:password@localhost/databasename';

When using an array, the key is a shortcut name you will refer to while activating the
database connection, and the value is the connection string itself. Here’s an example where
we specify two connection strings, default and legacy:

$db_url['default'] = 'mysql://user:password@localhost/drupal6';

$db_url['legacy'] = 'mysql://user:password@localhost/legacydatabase';

!Note The database that is used for your Drupal site should always be keyed as default.

When you need to connect to one of the other databases in Drupal, you activate it by its
key name and switch back to the default connection when finished:

// Get some information from a non-Drupal database.
db_set_active('legacy');
$result = db_query("SELECT * FROM ldap_user WHERE uid = %d", $user->uid);

// Switch back to the default connection when finished.
db_set_active('default');

!Note Make sure to always switch back to the default connection, so Drupal can cleanly finish the request
life cycle and write to its own tables.

Because the database abstraction layer is designed to use identical function names for
each database, multiple kinds of database back-ends (e.g., both MySQL and PostgreSQL)
cannot be used simultaneously. However, see http://drupal.org/node/19522 for more
information on how to allow both MySQL and PostgreSQL connections from within the
same site.

CHAPTER 5 ! WORKING WITH DATABASES 111

09898ch05final 7/30/08 2:51 PM Page 111

mysql://username:password@localhost/databasename
mysql://user:password@localhost/drupal6
mysql://user:password@localhost/legacydatabase
http://drupal.org/node/19522

Using a Temporary Table
If you are doing a lot of processing, you may need to create a temporary table during the
course of the request. You can do that using db_query_temporary() with a call of the follow-
ing form:

$result = db_query_temporary($sql, $arguments, $temporary_table_name);

You can then query the temporary table using the temporary table name. It is good prac-
tice to build the temporary table name from “temp” plus the name of your module plus a
specific name.

$final_result = db_query('SELECT foo FROM temp_mymodule_nids');

Notice how the temporary tables never require curly brackets for table prefixing, as a
temporary table is short-lived and does not go through the table prefixing process. In con-
trast, names of permanent tables are always surrounded by curly brackets to support table
prefixing.

!Note Temporary tables are not used in the Drupal core, and the database user that Drupal is using to
connect to the database may not have permission to create temporary tables. Thus, module authors should
not assume that everyone running Drupal will have this permission.

Writing Your Own Database Driver
Suppose we want to write a database abstraction layer for a new, futuristic database system
named DNAbase that uses molecular computing to increase performance. Rather than start
from scratch, we’ll copy an existing abstraction layer and modify it. We’ll use the PostgreSQL
implementation, since the MySQL driver is split up into includes/database.mysql-common.inc
and a separate file for the mysql and mysqli drivers.

First, we make a copy of includes/database.pgsql.inc and rename it as includes/
database.dnabase.inc. Then we change the logic inside each wrapper function to map to
DNAbase’s functionality instead of PostgreSQL’s functionality. When all is said and done, we
have the following functions declared in our file:

_db_query($query, $debug = 0)
db_add_field(&$ret, $table, $field, $spec, $new_keys = array())
db_add_index(&$ret, $table, $name, $fields)
db_add_primary_key(&$ret, $table, $fields)
db_add_unique_key(&$ret, $table, $name, $fields)
db_affected_rows()
db_change_field(&$ret, $table, $field, $field_new, $spec, $new_keys = array())
db_check_setup()

CHAPTER 5 ! WORKING WITH DATABASES112

09898ch05final 7/30/08 2:51 PM Page 112

db_column_exists($table, $column)
db_connect($url)
db_create_table_sql($name, $table)
db_decode_blob($data)
db_distinct_field($table, $field, $query)
db_drop_field(&$ret, $table, $field)
db_drop_index(&$ret, $table, $name)
db_drop_primary_key(&$ret, $table)
db_drop_table(&$ret, $table)
db_drop_unique_key(&$ret, $table, $name)
db_encode_blob($data)
db_error()
db_escape_string($text)
db_fetch_array($result)
db_fetch_object($result)
db_field_set_default(&$ret, $table, $field, $default)
db_field_set_no_default(&$ret, $table, $field)
db_last_insert_id($table, $field)
db_lock_table($table)
db_query_range($query)
db_query_temporary($query)
db_query($query)
db_rename_table(&$ret, $table, $new_name)
db_result($result)
db_status_report()
db_table_exists($table)
db_type_map()
db_unlock_tables()
db_version()

We test the system by connecting to the DNAbase database within Drupal by updating
$db_url in settings.php. It looks something like this:

$db_url = 'dnabase://john:secret@localhost/mydnadatabase';

where john is the username; secret is the password; and mydnadatabase is the name of the
database to which we will connect. You’ll also want to create a test module that calls these
functions directly to ensure that they work as expected.

Summary
After reading this chapter, you should be able to

• Understand Drupal’s database abstraction layer.

• Perform basic queries.

CHAPTER 5 ! WORKING WITH DATABASES 113

09898ch05final 7/30/08 2:51 PM Page 113

• Get single and multiple results from the database.

• Get a limited range of results.

• Use the pager.

• Understand Drupal’s schema API.

• Write queries so other developers can modify them.

• Cleanly modify the queries from other modules.

• Connect to multiple databases, including legacy databases.

• Write an abstraction layer driver.

CHAPTER 5 ! WORKING WITH DATABASES114

09898ch05final 7/30/08 2:51 PM Page 114

Working with Users

Users are the reason for using Drupal. Drupal can help users create, collaborate, communi-
cate, and form an online community. In this chapter, we look behind the scenes and see how
users are authenticated, logged in, and represented internally. We start with an examination of
what the $user object is and how it’s constructed. Then we walk through the process of user
registration, user login, and user authentication. We finish by examining how Drupal ties in
with external authentication systems such as Lightweight Directory Access Protocol (LDAP)
and Pubcookie.

The $user Object
Drupal requires that the user have cookies enabled in order to log in; a user with cookies
turned off can still interact with Drupal as an anonymous user.

During the session phase of the bootstrap process, Drupal creates a global $user object
that represents the identity of the current user. If the user is not logged in (and so does not
have a session cookie), then he or she is treated as an anonymous user. The code that creates
an anonymous user looks like this (and lives in includes/bootstrap.inc):

function drupal_anonymous_user($session = '') {
$user = new stdClass();
$user->uid = 0;
$user->hostname = ip_address();
$user->roles = array();
$user->roles[DRUPAL_ANONYMOUS_RID] = 'anonymous user';
$user->session = $session;
$user->cache = 0;
return $user;

}

On the other hand, if the user is currently logged in, the $user object is created by joining
the users table and sessions table on the user’s ID. Values of all fields in both tables are placed
into the $user object.

!Note The user’s ID is an integer that is assigned when the user registers or the user account is created
by the administrator. This ID is the primary key of the users table.

115

C H A P T E R 6

09898ch06final 7/30/08 3:34 PM Page 115

The $user object is easily inspected by adding global $user; print_r($user); to
index.php. The following is what a $user object generally looks like for a logged-in user:

stdClass Object (
[uid] => 2
[name] => Joe Example
[pass] => 7701e9e11ac326e98a3191cd386a114b
[mail] => joe@example.com
[mode] => 0
[sort] => 0
[threshold] => 0
[theme] => bluemarine
[signature] => Drupal rocks!
[created] => 1201383973
[access] => 1201384439
[login] => 1201383989
[status] => 1
[timezone] => -21600
[language] =>
[picture] => sites/default/files/pictures/picture-1.jpg
[init] => joe@example.com
[data] =>
[roles] => Array ([2] => authenticated user)
[sid] => fq5vvn5ajvj4sihli314ltsqe4
[hostname] => 127.0.0.1
[timestamp] => 1201383994
[cache] => 0
[session] => user_overview_filter|a:0:{}

)

In the $user object just displayed, italicized field names denote that the origin of the data
is the sessions table. The components of the $user object are explained in Table 6-1.

Table 6-1. Components of the $user Object

Component Description

Provided by the users Table

uid The user ID of this user. This is the primary key of the users table and is
unique to this Drupal installation.

name The user’s username, typed by the user when logging in.

pass An MD5 hash of the user’s password, which is compared when the user
logs in. Since the actual passwords aren’t saved, they can only be reset
and not restored.

mail The user’s current e-mail address.

mode, sort, and threshold User-specific comment viewing preferences.

theme If multiple themes are enabled, the user’s chosen theme. If a user’s
theme is uninstalled, Drupal will revert to the site’s default theme.

CHAPTER 6 ! WORKING WITH USERS116

09898ch06final 7/30/08 3:34 PM Page 116

mailto:joe@example.com
mailto:joe@example.com

Component Description
signature The signature the user entered on his or her account page. Used when

the user adds a comment and only visible when the comment module
is enabled.

created A Unix timestamp of when this user account was created.

access A Unix timestamp denoting the user’s last access time.

login A Unix timestamp denoting the user’s last successful login.

status Contains 1 if the user is in good standing or 0 if the user has been
blocked.

timezone The number of seconds that the user’s time zone is offset from GMT.

language The user’s default language. Empty unless multiple languages are
enabled on a site and the user has chosen a language by editing
account preferences.

picture The path to the image file the user has associated with the account.

init The initial e-mail address the user provided when registering.

data Arbitrary data can be stored here by modules (see the next section,
“Storing Data in the $user Object”).

Provided by the user_roles Table

roles The roles currently assigned to this user.

Provided by the sessions Table

sid The session ID assigned to this user session by PHP.

hostname The IP address from which the user is viewing the current page.

timestamp A Unix timestamp representing time at which the user’s browser last
received a completed page.

cache A timestamp used for per-user caching (see includes/cache.inc).

session Arbitrary, transitory data stored for the duration of the user’s session
can be stored here by modules.

Storing Data in the $user Object
The users table contains a field called data that holds extra information in a serialized array. If
you add your own data to the $user object, it will be stored in this field by user_save():

// Add user's disposition.
global $user;
$extra_data = array('disposition' => t('Grumpy'));
user_save($user, $extra_data);

The $user object now has a permanent attribute:

global $user;
print $user->disposition;

Grumpy

CHAPTER 6 ! WORKING WITH USERS 117

09898ch06final 7/30/08 3:34 PM Page 117

While this approach is convenient, it creates additional overhead when the user logs in
and the $user object is instantiated, since any data stored in this way must be unserialized.
Thus, throwing large amounts of data willy-nilly into the $user object can create a perform-
ance bottleneck. An alternate and preferred method, in which attributes are added to the
$user object when the object is loaded, is discussed shortly in the section titled “Adding Data
to the $user Object at Load Time.”

Testing If a User Is Logged In
During a request, the standard way of testing if a user is logged in is to test whether
$user->uid is 0. Drupal has a convenience function called user_is_logged_in() for this pur-
pose (there is a corresponding user_is_anonymous() function):

if (user_is_logged_in()) {
$output = t('User is logged in.');

else {
$output = t('User is an anonymous user.');

}

Introduction to hook_user()
Implementing hook_user() gives your modules a chance to react to the different operations
performed on a user account and to modify the $user object. Let’s examine the function
signature:

function hook_user($op, &$edit, &$account, $category = NULL)

The $op parameter is used to describe the current operation being performed on the user
account and can have many different values:

• after_update: This is called after the $user object has been saved to the database.

• categories: This returns an array of categories that appear as Drupal menu local tasks
(typically rendered as clickable tabs) when the user edits the user account. These are
actually Drupal menu items. See profile_categories() in profile.module for a sample
implementation.

• delete: A user has just been deleted from the database. This is an opportunity for the
module to remove information related to the user from the database.

• form: Inject additional form field elements to the user edit form being displayed.

• insert: The row for the new user account has been inserted into the database;
$user->data is about to be saved and roles assigned. After that, the finished $user
object will be loaded.

CHAPTER 6 ! WORKING WITH USERS118

09898ch06final 7/30/08 3:34 PM Page 118

• load: The user account was successfully loaded. The module may add additional infor-
mation into the $user object (passed to the user hook by reference as the $account
parameter).

• login: The user has successfully logged in.

• logout: The user just logged out and his or her session has been destroyed.

• register: The user account registration form is about to be displayed. The module may
add additional form elements to the form.

• submit: The user edit form has been submitted. Modify the account information before
it is sent to user_save().

• update: The existing user account is about to be saved to the database.

• validate: The user account has been modified. The module should validate its custom
data and raise any necessary errors.

• view: The user’s account information is being displayed. The module should return its
custom additions to the display as a structured element of $user->content. The view
operation ultimately calls theme_user_profile() to format the user profile page (more
details on this shortly).

The $edit parameter is an array of the form values submitted when a user account is
being created or updated. Notice that it’s passed by reference, so any changes you make will
actually change the form values.

The $account object (which is really a $user object) is also passed by reference, so any
changes you make will actually change the $user information.

The $category parameter is the active user account category being edited. Think of
categories as separate groups of information that relate to the user. For example, if you go
to your “My account” page while logged in to drupal.org and click the Edit tab, you’ll see
separate categories for account settings, personal information, newsletter subscriptions,
and so on.

!Caution Don’t confuse the $account parameter within hook_user() with the global $user object. The
$account parameter is the user object for the account currently being manipulated. The global $user object
is the user currently logged in. Often, but not always, they are the same.

Understanding hook_user(‘view’)
hook_user('view') is used by modules to add information to user profile pages (e.g., what you
see at http://example.com/?q=user/1; see Figure 6-1).

CHAPTER 6 ! WORKING WITH USERS 119

09898ch06final 7/30/08 3:34 PM Page 119

http://example.com/?q=user/1

Figure 6-1. The user profile page, with the blog module and the user module implementing
hook_user(‘view’) to add additional information

Let’s examine how the blog module added its information to this page:

/**
* Implementation of hook_user().
*/
function blog_user($op, &$edit, &$user) {
if ($op == 'view' && user_access('create blog entries', $user)) {
$user->content['summary']['blog'] = array(
'#type' => 'user_profile_item',
'#title' => t('Blog'),
'#value' => l(t('View recent blog entries'), "blog/$user->uid",
array('title' => t("Read @username's latest blog entries.",
array('@username' => $user->name)))),

'#attributes' => array('class' => 'blog'),
);

}
}

The view operation stashes some information into $user->content. User profile infor-
mation is organized into categories, with each category representing a page of information
about a user. In Figure 6-1, there is just one category, called History. The outer array
should be keyed by category name. In the preceding example, the name of the key is
summary, which corresponds to the History category (admittedly, it would make more sense
to name the key and the category the same thing). The interior array(s) should have a
unique textual key (blog in this case) and have #type, #title, #value, and #attributes
elements. The type user_profile_item points Drupal’s theming layer to modules/user/
user-profile-item.tpl.php. By comparing the code snippet with Figure 6-1, you can see
how these elements are rendered. Figure 6-2 shows the contents of the $user->content
array, which became the page shown in Figure 6-1.

CHAPTER 6 ! WORKING WITH USERS120

09898ch06final 7/30/08 3:34 PM Page 120

Figure 6-2. The structure of $user->content

Your module may also implement hook_profile_alter() to manipulate the profile items
in the $user->content array before they are themed. The following is an example of simply
removing the blog profile item from the user profile page. The function is named as if it were
in the hypothetical hide.module:

/**
* Implementation of hook_profile_alter().
*/
function hide_profile_alter(&$account) {
unset($account->content['summary']['blog']);

}

The User Registration Process
By default, user registration on a Drupal site requires nothing more than a username and a
valid e-mail address. Modules can add their own fields to the user registration form by imple-
menting the user hook. Let’s write a module called legalagree.module that provides a quick
way to make your site play well in today’s litigious society.

First, create a folder at sites/all/modules/custom/legalagree, and add the following files
(see Listings 6-1 and 6-2) to the legalagree directory. Then, enable the module via
Administer " Site building " Modules.

Listing 6-1. legalagree.info

; Id
name = Legal Agreement
description = Displays a dubious legal agreement during user registration.
package = Pro Drupal Development
core = 6.x

CHAPTER 6 ! WORKING WITH USERS 121

09898ch06final 7/30/08 3:34 PM Page 121

Listing 6-2. legalagree.module

<?php
// Id

/**
* @file
* Support for dubious legal agreement during user registration.
*/

/**
* Implementation of hook_user().
*/
function legalagree_user($op, &$edit, &$user, $category = NULL) {
switch($op) {
// User is registering.
case 'register':
// Add a fieldset containing radio buttons to the
// user registration form.
$fields['legal_agreement'] = array(
'#type' => 'fieldset',
'#title' => t('Legal Agreement')

);
$fields['legal_agreement']['decision'] = array(
'#type' => 'radios',
'#description' => t('By registering at %site-name, you agree that

at any time, we (or our surly, brutish henchmen) may enter your place of
residence and smash your belongings with a ball-peen hammer.',
array('%site-name' => variable_get('site_name', 'drupal'))),

'#default_value' => 0,
'#options' => array(t('I disagree'), t('I agree'))

);
return $fields;

// Field values for registration are being checked.
case 'validate':
// Make sure the user selected radio button 1 ('I agree').
// The validate op is reused when a user updates information on
// the 'My account' page, so we use isset() to test whether we are
// on the registration page where the decision field is present.
if (isset($edit['decision']) && $edit['decision'] != '1') {
form_set_error('decision', t('You must agree to the Legal Agreement
before registration can be completed.'));

}
break;

CHAPTER 6 ! WORKING WITH USERS122

09898ch06final 7/30/08 3:34 PM Page 122

// New user has just been inserted into the database.
case 'insert':
// Record information for future lawsuit.
watchdog('user', t('User %user agreed to legal terms',
array('%user' => $user->name)));

break;
}

}

The user hook gets called during the creation of the registration form, during the valida-
tion of that form, and after the user record has been inserted into the database. Our brief
module will result in a registration form similar to the one shown in Figure 6-3.

Figure 6-3. A modified user registration form

Using profile.module to Collect User Information
If you plan to extend the user registration form to collect information about users, you would
do well to try out profile.module before writing your own module. It allows you to create arbi-
trary forms to collect data, define whether or not the information is required and/or collected
on the user registration form, and designate whether the information is public or private.
Additionally, it allows the administrator to define pages so that users can be viewed by their
profile choices using a URL constructed from site URL plus profile/ plus name of profile
field plus value.

CHAPTER 6 ! WORKING WITH USERS 123

09898ch06final 7/30/08 3:34 PM Page 123

For example, if you define a textual profile field named profile_color, you could view
all the users who chose black for their favorite color at http://example.com/?q=profile/
profile_color/black. Or suppose you are creating a conference web site and are responsi-
ble for planning dinner for attendees. You could define a check box profile field named
profile_vegetarian and view all users who are vegetarians at http://example.com/
?q=profile/profile_vegetarian (note that for check box fields, the value is implicit and
thus ignored; that is, there is no value appended to the URL like the value black was for the
profile_color field).

As a real-world example, the list of users at http://drupal.org who attended the 2008
Drupal conference in Boston, Massachusetts, can be viewed at http://drupal.org/
profile/conference-boston-2008 (in this case, the name of the field is not prefixed with
profile_).

!Tip Automatic creation of profile summary pages works only if the field Page title is filled out in the
profile field settings and is not available for textarea, URL, or date fields.

The Login Process
The login process begins when a user fills out the login form (typically at http://example.com/
?q=user or displayed in a block) and clicks the “Log in” button.

The validation routines of the login form check whether the username has been blocked,
whether an access rule has denied access, and whether the user has entered an incorrect user-
name or password. The user is duly notified of any of these conditions.

!Note Drupal has both local and external authentication. Examples of external authentication systems
include OpenID, LDAP, Pubcookie, and others. One type of external authentication is distributed authentica-
tion, where users from one Drupal site are permitted to log on to another Drupal site (see the site_network
module at http://drupal.org/project/site_network).

Drupal attempts to log in a user locally by searching for a row in the users table with the
matching username and password hash. A successful login results in the firing of two user
hooks (load and login), which your modules can implement, as shown in Figure 6-4.

CHAPTER 6 ! WORKING WITH USERS124

09898ch06final 7/30/08 3:34 PM Page 124

http://example.com/?q=profile
http://example.com
http://drupal.org
http://drupal.org
http://example.com
http://drupal.org/project/site_network

Figure 6-4. Path of execution for a local user login

CHAPTER 6 ! WORKING WITH USERS 125

09898ch06final 7/30/08 3:34 PM Page 125

Adding Data to the $user Object at Load Time
The load operation of the user hook is fired when a $user object is successfully loaded from
the database in response to a call to user_load(). This happens when a user logs in, when
authorship information is being retrieved for a node, and at several other points.

!Note Because invoking the user hook is expensive, user_load() is not called when the current $user
object is instantiated for a request (see the earlier “The $user Object” section). If you are writing your own
module, always call user_load() before calling a function that expects a fully loaded $user object, unless
you are sure this has already happened.

Let’s write a module named loginhistory that keeps a history of when the user logged in.
We’ll display the number of times the user has logged in on the user’s “My account” page.
Create a folder named loginhistory in sites/all/modules/custom/, and add the files in
Listings 6-3 through 6-5. First up is sites/all/modules/custom/loginhistory.info.

Listing 6-3. loginhistory.info

; Id
name = Login History
description = Keeps track of user logins.
package = Pro Drupal Development
core = 6.x

We need an .install file to create the database table to store the login information, so we
create sites/all/modules/custom/loginhistory.install.

Listing 6-4. loginhistory.install

<?php
// Id

/**
* Implementation of hook_install().
*/
function loginhistory_install() {
// Create tables.
drupal_install_schema('loginhistory');

}

CHAPTER 6 ! WORKING WITH USERS126

09898ch06final 7/30/08 3:34 PM Page 126

/**
* Implementation of hook_uninstall().
*/
function loginhistory_uninstall() {
// Remove tables.
drupal_uninstall_schema('loginhistory');

}

/**
* Implementation of hook_schema().
*/
function loginhistory_schema() {
$schema['login_history'] = array(
'description' => t('Stores information about user logins.'),
'fields' => array(
'uid' => array(
'type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'description' => t('The {user}.uid of the user logging in.'),

),
'login' => array(
'type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'description' => t('Unix timestamp denoting time of login.'),

),
),
'index' => array('uid'),

);

return $schema;
}

Listing 6-5. loginhistory.module

<?php
// Id

/**
* @file
* Keeps track of user logins.
*/

CHAPTER 6 ! WORKING WITH USERS 127

09898ch06final 7/30/08 3:34 PM Page 127

/**
* Implementation of hook_user().
*/
function loginhistory_user($op, &$edit, &$account, $category = NULL) {
switch($op) {
// Successful login.
case 'login':
// Record timestamp in database.
db_query("INSERT INTO {login_history} (uid, login) VALUES (%d, %d)",
$account->uid, $account->login);

break;

// $user object has been created and is given to us as $account parameter.
case 'load':
// Add the number of times user has logged in.
$account->loginhistory_count = db_result(db_query("SELECT COUNT(login) AS
count FROM {login_history} WHERE uid = %d", $account->uid));

break;

// 'My account' page is being created.
case 'view':
// Add a field displaying number of logins.
$account->content['summary']['login_history'] = array(
'#type' => 'user_profile_item',
'#title' => t('Number of Logins'),
'#value' => $account->loginhistory_count,
'#attributes' => array('class' => 'login-history'),
'#weight' => 10,

);
break;

}
}

After installing this module, each successful user login will fire the login operation of the
user hook, which the module will respond to by inserting a record into the login_history
table in the database. When the $user object is loaded, the user load hook will be fired, and the
module will add the current number of logins for that user to $account->loginhistory_count.
And when the user views the “My account” page, the login count will be displayed, as shown
in Figure 6-5.

CHAPTER 6 ! WORKING WITH USERS128

09898ch06final 7/30/08 3:34 PM Page 128

Figure 6-5. Login history tracking user logins

!Note It’s always a good idea to prefix any properties you are adding to objects like $user or $node
with the name of your module to avoid namespace collisions. That’s why the example used
$account->loginhistory_count instead of $account->count.

Although we presented the extra information that we added to the $user object on the
“My account” page, remember that because the $user object is global, any other module
can access it. I leave it as a useful exercise for the reader to modify the preceding module to
provide a nicely formatted list of past logins as a block in a sidebar for security purposes
(“Hey! I didn’t log in this morning at 3:00 a.m.!”).

Providing User Information Categories
If you have an account on http://drupal.org, you can see the effects of providing categories
of user information by logging in and clicking the “My account” link, and then selecting the
Edit tab. In addition to editing your account information, such as your password, you can pro-
vide information about yourself in several other categories. At the time of this writing, http://
drupal.org supported editing of CVS information, Drupal involvement, personal information,
work information, and preferences for receiving newsletters.

You can add information categories like these by using profile.module or by responding
to the categories operation of the user hook; see the implementation in profile.module.

External Login
Sometimes, you may not want to use Drupal’s local users table. For example, maybe you
already have a table of users in another database or in LDAP. Drupal makes it easy to integrate
external authentication into the login process.

CHAPTER 6 ! WORKING WITH USERS 129

09898ch06final 7/30/08 3:34 PM Page 129

http://drupal.org
http://drupal.org
http://drupal.org

Simple External Authentication
Let’s implement a very simple external authentication module to illustrate how external
authentication works. Suppose your company only hires people named Dave, and usernames
are assigned based on first and last names. This module authenticates anyone whose user-
name begins with the string dave, so the users davebrown, davesmith, and davejones will all
successfully log in. Our approach will be to use form_alter() to alter the user login validation
handler so that it runs our own validation handler. Here is sites/all/modules/custom/
authdave/authdave.info:

; Id
name = Authenticate Daves
description = External authentication for all Daves.
package = Pro Drupal Development
core = 6.x

And here is the actual authdave.module:

<?php
// Id

/**
* Implementation of hook_form_alter().
* We replace the local login validation handler with our own.
*/
function authdave_form_alter(&$form, $form_state, $form_id) {
// In this simple example we authenticate on username only,
// so password is not a required field. But we leave it in
// in case another module needs it.
if ($form_id == 'user_login' || $form_id == 'user_login_block') {
$form['pass']['#required'] = FALSE;

// If the user login form is being submitted, add our validation handler.
if (isset($form_state['post']['name'])) {
// Find the local validation function's entry so we can replace it.
$array_key = array_search('user_login_authenticate_validate',
$form['#validate']);

if ($array_key === FALSE) {
// Could not find it. Some other module must have run form_alter().
// We will simply add our validation just before the final validator.
$final_validator = array_pop($form['#validate']);
$form['#validate'][] = 'authdave_login_validate';
$form['#validate'][] = $final_validator;

}

CHAPTER 6 ! WORKING WITH USERS130

09898ch06final 7/30/08 3:34 PM Page 130

else {
// Found the local validation function. Replace with ours.
$form['#validate'][$array_key] = 'authdave_login_validate';

}
}

}
}

/**
* Form validation handler.
*/
function authdave_login_validate($form, &$form_state) {
global $user;
if (!empty($user->uid)) {
// Another module has already handled authentication.
return;

}
// Call our custom authentication function.
if (!authdave_authenticate($form_state['values'])) {
// Authentication failed; username did not begin with 'dave'.
form_set_error('name', t('Unrecognized username.'));

}
}

/**
* Custom authentication function. This could be much more complicated,
* checking an external database, LDAP, etc.
*/
function authdave_authenticate($form_values) {
global $authdave_authenticated;
$username = $form_values['name'];
if (substr(drupal_strtolower($username), 0, 4) == 'dave') {
// Log user in, or register new user if not already present.
user_external_login_register($username, 'authdave');

// Write session, update timestamp, run user 'login' hook.
user_authenticate_finalize($form_state['values']);
// Use a global variable to save the fact that we did authentication.
// (See use of this global in hook_user() implementation of next
// code listing.)
$authdave_authenticated = TRUE;
return TRUE;

}

CHAPTER 6 ! WORKING WITH USERS 131

09898ch06final 7/30/08 3:34 PM Page 131

else {
// Not a Dave.
return FALSE;

}
}

Figure 6-4 shows Drupal’s local login process. It consists of three form validation
handlers:

• user_login_name_validate(): Set a form error if the username has been blocked or if
access rules (Administer " User management " Access rules) deny the username or
host.

• user_login_authenticate_validate(): Set a form error if a search of the users table for
a user with this username, password, and a status setting of 1 (that is, unblocked) fails.

• user_login_final_validate(): If the user has not been successfully loaded, set the error
“Sorry, unrecognized username or password. Have you forgotten your password?” and
write a watchdog entry: “Login attempt failed for user”.

In the authdave module (see Figure 6-6), we simply swap out the second validation han-
dler for our own. Compare Figure 6-6 with Figure 6-4, which shows the local user login
process.

CHAPTER 6 ! WORKING WITH USERS132

09898ch06final 7/30/08 3:34 PM Page 132

Figure 6-6. Path of execution for external login with a second validation handler provided by the
authdave module (compare with Figure 6-4)

CHAPTER 6 ! WORKING WITH USERS 133

09898ch06final 7/30/08 3:34 PM Page 133

The function user_external_login_register() is a helper function that registers the user
if this is the first login and then logs the user in. The path of execution is shown in Figure 6-7
for a hypothetical user davejones logging in for the first time.

If the username begins with “dave” and this is the first time this user has logged in, a row
in the users table does not exist for this user, so one will be created. However, no e-mail
address has been provided like it was for Drupal’s default local user registration, so a module
this simple is not a real solution if your site relies on sending e-mail to users. You’ll want to set
the mail column of the users table so you will have an e-mail address associated with the user.
To do this, you can have your module respond to the insert operation of the user hook, which
is fired whenever a new user is inserted:

/**
* Implementation of hook_user().
*/
function authdave_user($op, &$edit, &$account, $category = NULL) {
switch($op) {
case 'insert':
// New user was just added; if we did authentication,
// look up e-mail address of user in a legacy database.
global $authdave_authenticated;
if ($authdave_authenticated) {
$email = mycompany_email_lookup($account->name);
// Set e-mail address in the users table for this user.
db_query("UPDATE {users} SET mail = '%s' WHERE uid = %d", $email,
$account->uid);

}
break;

...
}

}

Savvy readers will notice that there is no way for the code running under the insert oper-
ation to tell whether the user is locally or externally authenticated, so we’ve cleverly saved a
global indicating that our module did authentication. We could also have queried the authmap
table like so:

db_query("SELECT uid FROM {authmap} WHERE uid = %d AND module = '%s'",
$account->uid, 'authdave');

All users who were added via external authentication will have a row in the authmap table
as well as the users table. However, in this case the authentication and the user hook run dur-
ing the same request, so a global variable is a good alternative to a database query.

CHAPTER 6 ! WORKING WITH USERS134

09898ch06final 7/30/08 3:34 PM Page 134

Figure 6-7. Detail of the external user login/registration process

CHAPTER 6 ! WORKING WITH USERS 135

09898ch06final 7/30/08 3:34 PM Page 135

Summary
After reading this chapter, you should be able to

• Understand how users are represented internally in Drupal.

• Understand how to store information associated with a user in several ways.

• Hook into the user registration process to obtain more information from a registering
user.

• Hook into the user login process to run your own code at user login time.

• Understand how external user authentication works.

• Implement your own external authentication module.

For more information on external authentication, see the openid.module (part of the
Drupal core) or the contributed pubcookie.module.

CHAPTER 6 ! WORKING WITH USERS136

09898ch06final 7/30/08 3:34 PM Page 136

Working with Nodes

This chapter will introduce nodes and node types. I’ll show you how to create a node type in
two different ways. I’ll first show you the programmatic solution by writing a module that uses
Drupal hooks. This approach allows for a greater degree of control and flexibility when defin-
ing what the node can and can’t do. Then I’ll show you how to build a node type from within
the Drupal administrative interface and briefly discuss the Content Construction Kit (CCK),
which is slowly making its way into the Drupal core distribution. Finally, we’ll investigate
Drupal’s node access control mechanism.

!Tip Developers often use the terms node and node type. In Drupal’s user interface, they are referred to as
posts and content types, respectively, in an effort to use terms that will resonate with site administrators.

So What Exactly Is a Node?
One of the first questions asked by those new to Drupal development is, “What is a node?”
A node is a piece of content. Drupal assigns each piece of content an ID number called a node
ID (abbreviated in the code as $nid). Generally each node has a title also, to allow an adminis-
trator to view a list of nodes by title.

!Note If you’re familiar with object orientation, think of a node type as a class and an individual node as
an object instance. However, Drupal’s code is not 100 percent object oriented, and there’s good reason for
this (see http://api.drupal.org/api/HEAD/file/developer/topics/oop.html). Future versions of
Drupal promise to become more object oriented when the need is justified, since PHP 4 (with its poor object
support) will no longer be supported.

There are many different kinds of nodes, or node types. Some common node types are
“blog entry,” “poll,” and “book page.” Often the term content type is used as a synonym for
node type, although a node type is really a more abstract concept and can be thought of as a
derivation of a base node, as Figure 7-1 represents.

137

C H A P T E R 7

09898ch07final 7/30/08 2:24 PM Page 137

http://api.drupal.org/api/HEAD/file/developer/topics/oop.html

The beauty of all content types being nodes is that they’re based on the same underlying
data structure. For developers, this means that for many operations you can treat all content
the same programmatically. It’s easy to perform batch operations on nodes, and you also get
a lot of functionality for custom content types out of the box. Searching, creating, editing, and
managing content are supported natively by Drupal because of the underlying node data
structure and behavior. This uniformity is apparent to end users too. The forms for creating,
editing, and deleting nodes have a similar look and feel, leading to a consistent and thus
easier-to-use interface.

Figure 7-1. Node types are derived from a basic node and may add fields.

Node types extend the base node, usually by adding their own data attributes. A node of
type poll stores voting options such as the duration of the poll, whether the poll is currently
active and whether the user is allowed to vote. A node of type forum loads the taxonomy term
for each node so it will know where it fits in the forums defined by the administrator. blog
nodes, on the other hand, don’t add any other data. Instead, they just add different views into
the data by creating blogs for each user and RSS feeds for each blog. All nodes have the follow-
ing attributes stored within the node and node_revisions database table:

• nid: A unique ID for the node.

• vid: A unique revision ID for the node, needed because Drupal can store content revi-
sions for each node. The vid is unique across all nodes and node revisions.

• type: Every node has a node type; for example, blog, story, article, image, and so on.

• language: The language for the node. Out of the box, this column is empty, indicating
language-neutral nodes.

• title: A short 255-character string used as the node’s title, unless the node type
declares that it does not have a title, indicated by a 0 in the has_title field of the
node_type table.

CHAPTER 7 ! WORKING WITH NODES138

09898ch07final 7/30/08 2:24 PM Page 138

• uid: The user ID of the author. By default, nodes have a single author.

• status: A value of 0 means unpublished; that is, content is hidden from those who don’t
have the “administer nodes” permission. A value of 1 means the node is published and
the content is visible to those users with the “access content” permission. The display
of a published node may be vetoed by Drupal’s node-level access control system (see
the “Limiting Access to a Node Type with hook_access()” and “Restricting Access to
Nodes” sections later in this chapter). A published node will be indexed by the search
module if the search module is enabled.

• created: A Unix timestamp of when the node was created.

• changed: A Unix timestamp of when the node was last modified. If you’re using the
node revisions system, the same value is used for the timestamp field in the
node_revisions table.

• comment: An integer field describing the status of the node’s comments, with three
possible values:

• 0: Comments have been disabled for the current node. This is the default value for
existing nodes when the comment module is disabled. In the user interface of the
node editing form’s “Comment settings” section, this is referred to as Disabled.

• 1: No more comments are allowed for the current node. In the user interface of the
node editing form’s “Comment settings” section, this is referred to as “Read only.”

• 2: Comments can be viewed, and users can create new comments. Controlling who
can create comments and how comments appear visually is the responsibility of
the comment module. In the user interface of the node editing form’s “Comment
settings” section, this is referred to as Read/Write.

• promote: An integer field to determine whether to show the node on the front page, with
two values:

• 1: Promoted to the front page. The node is promoted to the default front page of
your site. The node will still appear at its normal page, for example, http://
example.com/?q=node/3. It should be noted here that, because you can change
which page is considered the front page of your site at Administer " Site con-
figuration " Site information, “front page” can be a misnomer. It’s actually more
accurate to say the http://example.com/?q=node page will contain all nodes
whose promote field is 1. The URL http://example.com/?q=node is the front page by
default.

• 0: Node isn’t shown on http://example.com/?q=node.

• moderate: An integer field where a 0 value means moderation is disabled and a value
of 1 enables moderation. And now the caveat: there is no interface in the core Drupal
installation for this field. In other words, you can change the value back and forth, and
it does absolutely nothing by default. So it’s up to the developer to program any func-
tionality he or she desires into this field. Contributed modules, such as http://
drupal.org/project/modr8 and http://drupal.org/project/revision_moderation,
use this field.

CHAPTER 7 ! WORKING WITH NODES 139

09898ch07final 7/30/08 2:25 PM Page 139

http://example.com/?q=node/3
http://example.com/?q=node/3
http://example.com/?q=node
http://example.com/?q=node
http://example.com/?q=node
http://drupal.org/project/modr8
http://drupal.org/project/modr8
http://drupal.org/project/revision_moderation

• sticky: When Drupal displays a listing of nodes on a page, the default behavior is to
list first those nodes marked as sticky, and then list the remaining unsticky nodes in
the list by date created. In other words, sticky nodes stick to the top of node listings.
A value of 1 means sticky, and a value of 0 means, well, unsticky. You can have multi-
ple sticky nodes within the same list.

• tnid: When a node serves as the translated version of another node, the nid of the
source node being translated is stored here. For example, if node 3 is in English and
node 5 is the same content as node 3 but in Swedish, the tnid field of node 5 will be 3.

• translate: A value of 1 indicates that the translation needs to be updated; a value of 0
means translation is up to date.

If you’re using the node revisions system, Drupal will create a revision of the content as
well as track who made the last edit.

Not Everything Is a Node
Users, blocks, and comments are not nodes. Each of these specialized data structures has its
own hook system geared towards its intended purpose. Nodes (usually) have title and body
content, and a data structure representing a user doesn’t need that. Rather, users need an
e-mail address, a username, and a safe way to store passwords. Blocks are lightweight storage
solutions for smaller pieces of content such as menu navigation, a search box, a list of recent
comments, and so on. Comments aren’t nodes either, which keeps them lightweight as well.
It’s quite possible to have 100 or more comments per page, and if each of those comments
had to go through the node hook system when being loaded, that would be a tremendous
performance hit.

In the past, there have been great debates about whether users or comments should be
nodes, and some contributed modules actually implement this. Be warned that raising this
argument is like shouting “Emacs is better!” at a programming convention.

Creating a Node Module
Traditionally, when you wanted to create a new content type in Drupal, you would write a
node module that took responsibility for providing the new and interesting things your con-
tent type needed. We say “traditionally” because recent advents within the Drupal framework
allow you to create content types within the administrative interface and extend their func-
tionality with contributed modules rather than writing a node module from scratch. We’ll
cover both solutions within this chapter.

Let’s write a node module that lets users add jokes to a site. Each joke will have a title, the
joke itself, and a punch line. You should easily be able to use the built-in node title attribute
for your joke titles and the node body for the joke contents, but you’ll need to make a new
database table to store the punch lines. We’ll do that by using a .install file.

Start by creating a folder a named joke in your sites/all/modules/custom directory.

CHAPTER 7 ! WORKING WITH NODES140

09898ch07final 7/30/08 2:25 PM Page 140

Creating the .install File
You will need to store some information in your database table. First, you’ll need the node
ID, so you can associate the data stored here with a node in the node_revisions table, which
stores the title and body. Second, you’ll need to store the revision ID of the node so that your
module will work with Drupal’s built-in revision control. And of course, you’ll store the punch
line. Because you now know the database schema, let’s go ahead and create the joke.install
file and place it inside the sites/all/modules/custom/joke directory. See Chapter 2 for more
information on creating install files.

<?php
// Id

/**
* Implementation of hook_install().
*/
function joke_install() {
drupal_install_schema('joke');

}

/**
* Implementation of hook_uninstall().
*/
function joke_uninstall() {
drupal_uninstall_schema('joke');

}

/**
* Implementation of hook_schema().
*/
function joke_schema() {
$schema['joke'] = array(
'description' => t("Stores punch lines for nodes of type 'joke'."),
'fields' => array(

'nid' => array(
'type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'default' => 0,
'description' => t("The joke's {node}.nid."),
),

'vid' => array(
'type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'default' => 0,
'description' => t("The joke's {node_revisions}.vid."),
),

CHAPTER 7 ! WORKING WITH NODES 141

09898ch07final 7/30/08 2:25 PM Page 141

'punchline' => array(
'type' => 'text',
'not null' => TRUE,
'description' => t('Text of the punchline.'),
),

),
'primary key' => array('nid', 'vid'),
'unique keys' => array(

'vid' => array('vid')
),
'indexes' => array(

'nid' => array('nid')
),

);

return $schema;
}

Creating the .info File
Let’s also create the joke.info file and add it to the joke folder.

; Id
name = Joke
description = A content type for jokes.
package = Pro Drupal Development
core = 6.x

Creating the .module File
Last, you need the module file itself. Create a file named joke.module, and place it inside
sites/all/modules/custom/joke. After you’ve completed the module, you can enable the
module on the module listings page (Administer " Site building " Modules). You begin with
the opening PHP tag, CVS placeholder, and Doxygen comments.

<?php
// Id

/**
* @file
* Provides a "joke" node type.
*/

CHAPTER 7 ! WORKING WITH NODES142

09898ch07final 7/30/08 2:25 PM Page 142

Providing Information About Our Node Type
Now you’re ready to add hooks to joke.module. The first hook you’ll want to implement is
hook_node_info(). Drupal calls this hook when it’s discovering which node types are available.
You’ll provide some metadata about your custom node.

/**
* Implementation of hook_node_info().
*/
function joke_node_info() {
// We return an array since a module can define multiple node types.
// We're only defining one node type, type 'joke'.
return array(
'joke' => array(
'name' => t('Joke'), // Required.
'module' => 'joke', // Required.
'description' => t('Tell us your favorite joke!'), // Required.
'has_title' => TRUE,
'title_label' => t('Title'),
'has_body' => TRUE,
'body_label' => t('Joke'),
'min_word_count' => 2,
'locked' => TRUE

)
);

}

A single module can define multiple node types, so the return value should be an array.
Here’s the breakdown of metadata values that may be provided in the node_info() hook:

• name (required): The name of the node type to display on the site. For example, if the
value is 'Joke', Drupal will use this when titling the node submission form.

• module (required): The name of the prefix of the callback functions Drupal will look for.
We used 'joke', so Drupal will look for callback functions named joke_validate(),
joke_insert(), joke_delete(), and so on.

• description: This is generally used to add a brief description about what this content
type is used for. This text will be displayed as part of the list on the “Create content”
page (http://example.com/?q=node/add).

• has_title: Boolean value indicating whether or not this content type will use the title
field. The default value is TRUE.

• title_label: The text label for the title field in the node editing form. The text label is
only visible when has_title is TRUE. The default value is Title.

• has_body: Boolean value that indicates whether or not this content type will use the
body textarea field. The default value is TRUE.

CHAPTER 7 ! WORKING WITH NODES 143

09898ch07final 7/30/08 2:25 PM Page 143

http://example.com/?q=node/add

• body_label: The form field text label for the body textarea field. The label is only visible
when has_body is TRUE. The default value is Body.

• min_word_count: The minimum number of words the body textarea field needs to pass
validation. The default is 0. (We set it to 2 in our module to avoid one-word jokes.)

• locked: Boolean value indicating whether the internal name of this content type is
locked from being changed by a site administrator editing the content type’s options
at Administer " Content management " Content types. The default value for locked
is TRUE, meaning the name is locked and therefore not editable.

!Note The internal name field mentioned in the preceding list is used for constructing the URL of the “Cre-
ate content” links. For example, we’re using joke as the internal name of our node type (it’s the key to the
array we’re returning), so to create a new joke users will go to http://example.com/?q=node/add/joke.
Usually it’s not a good idea to make this modifiable by setting locked to FALSE. The internal name is stored
in the type column of the node and node_revisions tables.

Modifying the Menu Callback
Having a link on the “Create content” page isn’t necessary for implementing hook_menu().
Drupal will automatically discover your new content type and add its entry to the http://
example.com/?q=node/add page, as shown in Figure 7-2. A direct link to the node submission
form will be at http://example.com/?q=node/add/joke. The name and description are taken
from the values you defined in joke_node_info().

Figure 7-2. The content type appears on the page at http://example.com/node/add.

If you do not wish to have the direct link added, you could remove it by using
hook_menu_alter(). For example, the following code would remove the page for anyone
who does not have “administer nodes” permission.

CHAPTER 7 ! WORKING WITH NODES144

09898ch07final 7/30/08 2:25 PM Page 144

http://example.com/?q=node/add/joke
http://example.com/?q=node/add
http://example.com/?q=node/add
http://example.com/?q=node/add/joke
http://example.com/node/add

/**
* Implementation of hook_menu_alter().
*/
function joke_menu_alter(&$callbacks) {
// If the user does not have 'administer nodes' permission,
// disable the joke menu item by setting its access callback to FALSE.
if (!user_access('administer nodes')) {
$callbacks['node/add/joke']['access callback'] = FALSE;
// Must unset access arguments or Drupal will use user_access()
// as a default access callback.
unset($callbacks['node/add/joke']['access arguments']);

}
}

Defining Node-Type–Specific Permissions with hook_perm()
Typically the permissions for module-defined node types include the ability to create a node
of that type, edit a node you have created, and edit any node of that type. These are defined in
hook_perm() as create joke, edit own joke, and edit any joke, and so on. You’ve yet to define
these permissions within your module. Let’s create them now using hook_perm():

/**
* Implementation of hook_perm().
*/
function joke_perm() {
return array('create joke', 'edit own joke', 'edit any joke', 'delete own joke',
'delete any joke');

}

Now if you navigate over to Administer " User management " Permissions, the new
permissions you defined are there and ready to be assigned to user roles.

Limiting Access to a Node Type with hook_access()
You defined permissions in hook_perm(), but how are they enforced? Node modules can
limit access to the node types they define using hook_access(). The superuser (user ID 1)
will always bypass any access check, so this hook isn’t called in that case. If this hook isn’t
defined for your node type, all access checks will fail, so only the superuser and those with
“administer nodes” permissions will be able to create, edit, or delete content of that type.

/**
* Implementation of hook_access().
*/
function joke_access($op, $node, $account) {
$is_author = $account->uid == $node->uid;
switch ($op) {
case 'create':
// Allow if user's role has 'create joke' permission.
return user_access('create joke', $account);

CHAPTER 7 ! WORKING WITH NODES 145

09898ch07final 7/30/08 2:25 PM Page 145

case 'update':
// Allow if user's role has 'edit own joke' permission and user is
// the author; or if the user's role has 'edit any joke' permission.
return user_access('edit own joke', $account) && $is_author ||
user_access('edit any joke', $account);

case 'delete':
// Allow if user's role has 'delete own joke' permission and user is
// the author; or if the user's role has 'delete any joke' permission.
return user_access('delete own joke', $account) && $is_author ||
user_access('delete any joke', $account);

}
}

The preceding function allows users to create a joke node if their role has the “create joke”
permission. They can also update a joke if their role has the “edit own joke” permission and
they’re the node author, or if they have the “edit any joke” permission. Those with “delete own
joke” permission can delete their own jokes, and those with “delete any joke” permission can
delete any node of type joke.

One other $op value that’s passed into hook_access() is view, allowing you to control who
views this node. A word of warning, however: hook_access() is only called for single node view
pages. hook_access() will not prevent someone from viewing a node when it’s in teaser view,
such as a multinode listing page. You could get creative with other hooks and manipulate the
value of $node->teaser directly to overcome this, but that’s a little hackish. A better solution is
to use hook_node_grants() and hook_db_rewrite_sql(), which we’ll discuss shortly.

Customizing the Node Form for Our Node Type
So far, you’ve got the metadata defined for your new node type and the access permissions
defined. Next, you need to build the node form so that users can enter jokes. You do that by
implementing hook_form():

/**
* Implementation of hook_form().
*/
function joke_form($node) {
// Get metadata for this node type
// (we use it for labeling title and body fields).
// We defined this in joke_node_info().
$type = node_get_types('type', $node);

CHAPTER 7 ! WORKING WITH NODES146

09898ch07final 7/30/08 2:25 PM Page 146

$form['title'] = array(
'#type' => 'textfield',
'#title' => check_plain($type->title_label),
'#required' => TRUE,
'#default_value' => $node->title,
'#weight' => -5,
'#maxlength' => 255,

);
$form['body_filter']['body'] = array(
'#type' => 'textarea',
'#title' => check_plain($type->body_label),
'#default_value' => $node->body,
'#rows' => 7,
'#required' => TRUE,

);
$form['body_filter']['filter'] = filter_form($node->format);
$form['punchline'] = array(
'#type' => 'textfield',
'#title' => t('Punchline'),
'#required' => TRUE,
'#default_value' => isset($node->punchline) ? $node->punchline : '',
'#weight' => 5

);
return $form;

}

!Note If you are unfamiliar with the form API, see Chapter 10.

As the site administrator, if you’ve enabled your module you can now navigate to
Create content " Joke and view the newly created form. The first line inside the preceding
function returns the metadata information for this node type. node_get_types() will
inspect $node->type to determine the type of node to return metadata for (in our case,
the value of $node->type will be joke). Again, the node metadata is set within hook_
node_info(), and you set it earlier in joke_node_info().

The rest of the function contains three form fields to collect the title, body, and punch
line (see Figure 7-3). An important point here is how the #title keys of title and body are
dynamic. Their values are inherited from hook_node_info() but can also be changed by the
site administrators at http://example.com/?q=admin/content/types/joke as long as the
locked attribute defined in hook_node_info() is FALSE.

CHAPTER 7 ! WORKING WITH NODES 147

09898ch07final 7/30/08 2:25 PM Page 147

http://example.com/?q=admin/content/types/joke

Figure 7-3. The form for submission of a joke

Adding Filter Format Support
Because the body field is a textarea, and node body fields are aware of filter formats, the form
included Drupal’s standard content filter with the following line (filters transform text; see
Chapter 11 for more on using filters):

$form['body_filter']['filter'] = filter_form($node->format);

The $node->format property denotes the ID of the filter format being used for this node’s
body field. The value of this property is stored in the node_revisions table. If you wanted the
punchline field to also be able to use input filter formats, you’d need somewhere to store the
information about which filter that field is using. A good solution would be to add an integer
column named punchline_format to your joke database table to store the input filter format
setting per punch line.

Then you’d change your last form field definition to something similar to the following:

$form['punchline']['field'] = array(
'#type' => 'textarea',
'#title' => t('Punchline'),
'#required' => TRUE,
'#default_value' => $node->punchline,
'#weight' => 5

);
// Add filter support.
$form['punchline']['filter'] = filter_form($node->punchline_format);

When you’re working with a node form and not a generic form, the node module handles
validating and storing all the default fields it knows about within the node form (such as the

CHAPTER 7 ! WORKING WITH NODES148

09898ch07final 7/30/08 2:25 PM Page 148

title and body fields—we named the latter Joke but the node module still handles it as the
node body) and provides you, the developer, with hooks to validate and store your custom
fields. We’ll cover those next.

Validating Fields with hook_validate()
When a node of your node type is submitted, your module will be called via hook_validate().
Thus, when the user submits the form to create or edit a joke, the invocation of hook_
validate() will look for the function joke_validate() so that you can validate the input
in your custom field(s). You can make changes to the data after submission—see form_
set_value(). Errors should be set with form_set_error(), as follows:

/**
* Implementation of hook_validate().
*/
function joke_validate($node) {
// Enforce a minimum word length of 3 on punch lines.
if (isset($node->punchline) && str_word_count($node->punchline) < 3) {
$type = node_get_types('type', $node);
form_set_error('punchline', t('The punch line of your @type is too short. You
need at least three words.', array('@type' => $type->name)));

}
}

Notice that you already defined a minimum word count for the body field in
hook_node_info(), and Drupal will validate that for you automatically. However, the
punchline field is an extra field you added to the node type form, so you are responsible
for validating (and loading and saving) it.

Saving Our Data with hook_insert()
When a new node is saved, hook_insert() is called. This is the place to handle storing cus-
tom data to related tables. This hook is only called for the module that is defined in the node
type metadata. This information is defined in the module key of hook_node_info() (see the
“Providing Information About Our Node Type” section). For example, if the module key is
joke, then joke_insert() is called. If you enabled the book module and created a new node
of type book, joke_insert() would not be called; book_insert() would be called instead
because book.module defines its node type with a module key of book.

!Note If you need to do something with a node of a different type when it’s inserted, use
hook_nodeapi() to hook into the general node submittal process. See the “Manipulating Nodes
That Are Not Our Type with hook_nodeapi()” section.

CHAPTER 7 ! WORKING WITH NODES 149

09898ch07final 7/30/08 2:25 PM Page 149

Here’s the hook_insert() function for joke.module:

/**
* Implementation of hook_insert().
*/
function joke_insert($node) {
db_query("INSERT INTO {joke} (nid, vid, punchline) VALUES (%d, %d, '%s')",
$node->nid, $node->vid, $node->punchline);

}

Keeping Data Current with hook_update()
The update() hook is called when a node has been edited and the core node data has
already been written to the database. This is the place to write database updates for related
tables. Like hook_insert(), this hook is only called for the current node type. For example,
if the node type’s module key in hook_node_info() is joke, then joke_update() is called.

/**
* Implementation of hook_update().
*/
function joke_update($node) {
if ($node->revision) {
// New revision; treat it as a new record.
joke_insert($node);

}
else {
db_query("UPDATE {joke} SET punchline = '%s' WHERE vid = %d",
$node->punchline, $node->vid);

}
}

In this case, you check if the node revision flag is set, and if so, you create a new copy
of the punch line to preserve the old one.

Cleaning Up with hook_delete()
Just after a node is deleted from the database, Drupal lets modules know what has happened
via hook_delete(). This hook is typically used to delete related information from the database.
This hook is only called for the current node type being deleted. If the node type’s module key
in hook_node_info() is joke, then joke_delete() is called.

/**
* Implementation of hook_delete().
*/
function joke_delete(&$node) {
// Delete the related information we were saving for this node.
db_query('DELETE FROM {joke} WHERE nid = %d', $node->nid);

}

CHAPTER 7 ! WORKING WITH NODES150

09898ch07final 7/30/08 2:25 PM Page 150

!Note When a revision rather than the entire node is deleted, Drupal fires hook_nodeapi() with the $op
set to delete revision, and the entire node object is passed in. Your module is then able to delete its data
for that revision using $node->vid as the key.

Modifying Nodes of Our Type with hook_load()
Another hook you need for your joke module is the ability to add your custom node attributes
into the node object as it’s constructed. We need to inject the punch line into the node loading
process so it’s available to other modules and the theme layer. For that you use hook_load().

This hook is called just after the core node object has been built and is only called for the
current node type being loaded. If the node type’s module key in hook_node_info() is joke, then
joke_load() is called.

/**
* Implementation of hook_load().
*/
function joke_load($node) {
return db_fetch_object(db_query('SELECT punchline FROM {joke} WHERE vid = %d',
$node->vid));

}

The punchline: hook_view()
Now you have a complete system to enter and edit jokes. However, your users will be frus-
trated, because although punch lines can be entered on the node submission form, you
haven’t provided a way to make your module-provided punchline field visible when viewing
the joke! Let’s do that now with hook_view():

/**
* Implementation of hook_view().
*/
function joke_view($node, $teaser = FALSE, $page = FALSE) {
// If $teaser is FALSE, the entire node is being displayed.
if (!$teaser) {
// Use Drupal's default node view.
$node = node_prepare($node, $teaser);

// Add a random number of Ha's to simulate a laugh track.
$node->guffaw = str_repeat(t('Ha!'), mt_rand(0, 10));

// Now add the punch line.
$node->content['punchline'] = array(
'#value' => theme('joke_punchline', $node),
'#weight' => 2
);

}

CHAPTER 7 ! WORKING WITH NODES 151

09898ch07final 7/30/08 2:25 PM Page 151

// If $teaser is TRUE, node is being displayed as a teaser,
// such as on a node listing page. We omit the punch line in this case.
if ($teaser) {
// Use Drupal's default node view.
$node = node_prepare($node, $teaser);

}

return $node;
}

This code includes the punch line for the joke only if the node is not being rendered
as a teaser (that is, $teaser is FALSE). You’ve broken the formatting of the punch line out
into a separate theme function so that it can be easily overridden. This is a courtesy to the
overworked system administrators who will be using your module but who want to cus-
tomize the look and feel of the output. You declare to Drupal that you will be using the
joke_punchline theme function by implementing hook_theme() and provide a default imple-
mentation of the theme function:

/**
* Implementation of hook_theme().
* We declare joke_punchline so Drupal will look for a function
* named theme_joke_punchline().
*/
function joke_theme() {
return array(
'joke_punchline' => array(
'arguments' => array('node'),

),
);

}

function theme_joke_punchline($node) {
$output = '<div class="joke-punchline">'.
check_markup($node->punchline). '</div>
';

$output .= '<div class="joke-guffaw">'.
$node->guffaw .'</div>';

return $output;
}

You will need to clear the cached theme registry so that Drupal will look at your theme
hook. You can clear the cache using devel.module or by simply visiting the Administer " Site
building " Modules page. You should now have a fully functioning joke entry and viewing
system. Go ahead and enter some jokes and try things out. You should see your joke in a plain
and simple format, as in Figures 7-4 and 7-5.

CHAPTER 7 ! WORKING WITH NODES152

09898ch07final 7/30/08 2:25 PM Page 152

Figure 7-4. Simple theme of joke node

Figure 7-5. The punch line is not added when the node is shown in teaser view

Although this works, there’s a good chance the user will read the punch line right away
when viewing the node in full page view. What we’d really like to do is to have a collapsible
field that the user can click to display the punch line. The collapsible fieldset functionality
already exists within Drupal, so you’ll use that rather than create your own JavaScript file.
Adding this interaction is better done in a template file in your site’s theme instead of a theme
function, as it depends on markup and CSS classes. Your designers will love you if you use a
template file instead of a theme function, because to change the look and feel of joke nodes,
they’ll be able simply to edit a file.

Here’s what you’ll put into a file called node-joke.tpl.php in the directory containing the
theme you’re currently using. If you’re using the Bluemarine theme, then node-joke.tpl.php
would be placed in themes/bluemarine. Because we’re going to use a template file, the

CHAPTER 7 ! WORKING WITH NODES 153

09898ch07final 7/30/08 2:25 PM Page 153

hook_theme() implementation and the theme_joke_punchline() function are no longer
needed, so go ahead and comment them out in your module file. Remember to clear the
cached theme registry as we did before so that Drupal will no longer look for theme_joke_
punchline(). And comment out the assignment of the punch line to $node->content in
joke_view(), since the template file will take care of printing the punch line (otherwise, the
punch line will show up twice).

!Note After you visit Administer " Site building " Modules (which automatically rebuilds the theme reg-
istry), node-joke.tpl.php will automatically be discovered by the theme system, and Drupal will use that
file to change the look and feel of jokes rather than use the default node template, usually node.tpl.php.
To learn more about how the theme system makes these decisions, please see Chapter 8.

<div class="node<?php if ($sticky) { print " sticky"; } ?>
<?php if (!$status) { print " node-unpublished"; } ?>">
<?php if ($picture) {
print $picture;

}?>
<?php if ($page == 0) { ?><h2 class="title"><a href="<?php
print $node_url?>"><?php print $title?></h2><?php }; ?>

<?php print $submitted?>
<?php print $terms?>
<div class="content">
<?php print $content?>
<fieldset class="collapsible collapsed">
<legend>Punchline</legend>
<div class="form-item">
<label><?php if (isset($node->punchline)) print
check_markup($node->punchline)?></label>

<label><?php if (isset($node->guffaw)) print $node->guffaw?></label>
</div>

</legend>
</fieldset>

</div>
<?php if ($links) { ?><div class="links">» <?php print $links?></div>
<?php }; ?>

</div>

Drupal will automatically include the JavaScript file that enables collapsibility. The
JavaScript in misc/collapsible.js looks for collapsible CSS selectors for a fieldset and
knows how to take over from there, as shown in Figure 7-6. Thus, in node-joke.tpl.php it
sees the following and activates itself:

<fieldset class="collapsible collapsed">

This results in the kind of interactive joke experience that we were aiming for.

CHAPTER 7 ! WORKING WITH NODES154

09898ch07final 7/30/08 2:25 PM Page 154

Figure 7-6. Using Drupal’s collapsible CSS support to hide the punch line

Manipulating Nodes That Are Not Our Type with
hook_nodeapi()
The preceding hooks are only invoked based on the module key of the module’s hook_
node_info() implementation. When Drupal sees a blog node type, blog_load() is called.
What if you want to add some information to every node, regardless of its type? The hooks
we’ve reviewed so far aren’t going to cut it; for that, we need an exceptionally powerful hook:
hook_nodeapi().

This hook creates an opportunity for modules to react to the different operations dur-
ing the life cycle of any node. The nodeapi() hook is usually called by node.module just after
the node-type–specific callback is invoked. For example, first joke_insert() might be
called, then immediately the nodeapi hook would be called with $op set to insert. Here’s
the function signature:

hook_nodeapi(&$node, $op, $a3 = NULL, $a4 = NULL)

The $node object is passed by reference, so any changes you make will actually change
the node. The $op parameter is used to describe the current operation being performed on the
node, and can have many different values:

• prepare: The node form is about to be shown. This applies to both the node Add and
Edit forms.

• validate: The user has just finished editing the node and is trying to preview or submit
it. Here, your code should check to make sure the data is what you expect and should
call form_set_error() if something is wrong; that will return an error message to the
user. You can use this hook to check or even modify the data, though modifying data in
the validation hook is considered bad style.

• presave: The node passed validation and will soon be saved to the database.

• insert: A new node has just been inserted into the database.

CHAPTER 7 ! WORKING WITH NODES 155

09898ch07final 7/30/08 2:25 PM Page 155

• update: The node has just been updated in the database.

• delete: The node was deleted.

• delete revision: A revision of a node was deleted. Modules will respond to this if they
are keeping data related to the revision. The node ID can be found at $node->nid, and
the revision ID can be found at $node->vid.

• load: The basic node object has been loaded from the database, plus the additional
node properties set by the node type (in response to hook_load(), which has already
been run; see “Modifying Nodes of Our Type with hook_load()” earlier in this chapter).
You can add new properties or manipulate node properties.

• alter: The node’s content has gone through drupal_render() and been saved in
$node->body (if the node is being built for full view) or $node->teaser (if the node is
being built for teaser view), and the node is about to be passed to the theme layer.
Modules may modify the fully built node. Changes to fields in $node->content should
be done in the view operation, not this operation.

• view: The node is about to be presented to the user. This action is called after
hook_view(), so the module may assume the node is filtered and now contains HTML.
Additional items may be added to $node->content (see how we added a joke punch line
previously, for example).

• search result: The node is about to be displayed as a search result item.

• update index: The node is being indexed by the search module. If you want additional
information to be indexed that isn’t already visible through the nodeapi view operation,
you should return it here (see Chapter 12).

• prepare translation: The node is being prepared for translation by the translation
module. Modules may add custom translated fields.

• rss item: The node is being included as part of an RSS feed.

The last two parameters to a hook_nodeapi() function are variables whose values change
depending on which operation is being performed. When a node is being displayed and $op is
alter or view, $a3 will be $teaser, and $a4 will be $page (see node_view() in node.module). See
Table 7-1 for an overview.

Table 7-1. The Meaning of the $a3 and $a4 Parameters in hook_nodeapi() When $op Is alter or
view

Parameter Meaning
$teaser Whether to display the teaser only, such as on http://example.com/?q=node

$page True if the node is being displayed as a page by itself (e.g., at http://example.com/
?q=node/2)

When a node is being validated, the $a3 parameter is the $form parameter from node_
validate() (that is, the form definition array).

CHAPTER 7 ! WORKING WITH NODES156

09898ch07final 7/30/08 2:25 PM Page 156

http://example.com/?q=node
http://example.com

The order in which hooks are fired when displaying a node page such as http://
example.com/?q=node/3 is shown in Figure 7-7.

Figure 7-7. Path of execution for displaying a node page

How Nodes Are Stored
Nodes live in the database as separate parts. The node table contains most of the metadata
describing the node. The node_revisions table contains the node’s body and teaser, along with
revision-specific information. And as you’ve seen in the joke.module example, other nodes are

CHAPTER 7 ! WORKING WITH NODES 157

09898ch07final 7/30/08 2:25 PM Page 157

http://example.com/?q=node/3
http://example.com/?q=node/3

free to add data to the node at node load time and store whatever data they want in their
own tables.

A node object containing the most common attributes is pictured in Figure 7-8. Note that
the table you created to store punch lines is used to populate the node. Depending on which
other modules are enabled, the node objects in your Drupal installation might contain more
or fewer properties.

Figure 7-8. The node object

Creating a Node Type with CCK
Although creating a node module like you did with the joke.module offers exceptional control
and performance, it’s also a bit tedious. Wouldn’t it be nice to be able to assemble a new node
type without doing any programming? That’s what the CCK modules provide.

CHAPTER 7 ! WORKING WITH NODES158

09898ch07final 7/30/08 2:25 PM Page 158

!Note For more information about CCK, visit the CCK project at http://drupal.org/project/cck.

You can add new content types (such as a joke content type) through the administrative
interface at Administer " Content management " Content types. Make sure to use a different
name for the node type if you have joke.module enabled to prevent a namespace collision. The
part of CCK that is still being sorted out for core is the ability to add fields beyond title and
body to these new content types. In the joke.module example, you needed three fields: title,
joke, and punchline. You used Drupal’s hook_node_info() to relabel the body field as Joke and
provided the punchline field by implementing several hooks and creating your own table for
punch line storage. In CCK, you simply create a new text field called punchline and add it to
your content type. CCK takes care of storing, retrieving, and deleting the data for you.

!Note The Drupal contributions repository is full of CCK field modules for adding images, dates, e-mail
addresses, and so on. Visit http://drupal.org/project/Modules/category/88 to see all CCK-related
contributed modules.

Because CCK is under heavy development at the time of this writing, I won’t go into more
detail. However, it seems clear that in the future, writing a module to create a new node type
will become rarer, while the CCK approach of assembling content types through the web will
become more common.

Restricting Access to Nodes
There are several ways to restrict access to nodes. You have already seen how to restrict access
to a node type using hook_access() and permissions defined using hook_perm(). But Drupal
provides a much richer set of access controls using the node_access table and two more access
hooks: hook_node_grants() and hook_node_access_records().

When Drupal is first installed, a single record is written to the node_access table, which
effectively turns off the node access mechanism. Only when a module that uses the node
access mechanism is enabled does this part of Drupal kick in. The function node_access_
rebuild() in modules/node/node.module keeps track of which node access modules are
enabled, and if they are all disabled this function will restore the default record, which is
shown in Table 7-2.

Table 7-2. The Default Record for the node_access Table

nid gid realm grant_view grant_update grant_delete
0 0 all 1 0 0

CHAPTER 7 ! WORKING WITH NODES 159

09898ch07final 7/30/08 2:25 PM Page 159

http://drupal.org/project/cck
http://drupal.org/project/Modules/category/88

In general, if a node access module is being used (that is, one that modifies the
node_access table), Drupal will deny access to a node unless the node access module has
inserted a row into the node_access table defining how access should be treated.

Defining Node Grants
There are three basic permissions for operations on nodes: view, update, and delete. When
one of these operations is about to take place, the module providing the node type gets first
say with its hook_access() implementation. If that module doesn’t take a position on whether
the access is allowed (that is, it returns NULL instead of TRUE or FALSE), Drupal asks all modules
that are interested in node access to respond to the question of whether the operation ought
to be allowed. They do this by responding to hook_node_grants() with a list of grant IDs for
each realm for the current user.

What Is a Realm?
A realm is an arbitrary string that allows multiple node access modules to share the
node_access table. For example, acl.module is a contributed module that manages node
access via access control lists (ACLs). Its realm is acl. Another contributed module is
taxonomy_access.module, which restricts access to nodes based on taxonomy terms.
It uses the term_access realm. So, the realm is something that identifies your module’s
space in the node_access table; it’s like a namespace. When your module is asked to return
grant IDs, you’ll do so for the realm your module defines.

What Is a Grant ID?
A grant ID is an identifier that provides information about node access permissions for a
given realm. For example, a node access module—such as forum_access.module, which
manages access to nodes of type forum by user role—may use role IDs as grant IDs. A node
access module that manages access to nodes by US ZIP code could use ZIP codes as grant
IDs. In each case, it will be something that is determined about the user: Has the user been
assigned to this role? Or is this user in the ZIP code 12345? Or is the user on this access con-
trol list? Or is this user’s subscription older than 1 year?

Although each grant ID means something special to the node access module that pro-
vides grant IDs for the realm containing the grant ID, the mere presence of a row containing the
grant ID in the node_access table enables access, with the type of access being determined by
the presence of a 1 in the grant_view, grant_update, or grant_delete column.

Grant IDs get inserted into the node_access table when a node is being saved. Each
module that implements hook_node_access_records() is passed the node object. The mod-
ule is expected to examine the node and either simply return (if it won’t be handling access
for this node) or return an array of grants for insertion into the node_access table. The grants
are batch-inserted by node_access_acquire_grants(). The following is an example from
forum_access.module.

CHAPTER 7 ! WORKING WITH NODES160

09898ch07final 7/30/08 2:25 PM Page 160

/**
* Implementation of hook_node_access_records().
*
* Returns a list of grant records for the passed in node object.
*/
function forum_access_node_access_records($node) {
...

if ($node->type == 'forum') {
$result = db_query('SELECT * FROM {forum_access} WHERE tid = %d', $node->tid);
while ($grant = db_fetch_object($result)) {
$grants[] = array(
'realm' => 'forum_access',
'gid' => $grant->rid,
'grant_view' => $grant->grant_view,
'grant_update' => $grant->grant_update,
'grant_delete' => $grant->grant_delete

);
}
return $grants;

}
}

The Node Access Process
When an operation is about to be performed on a node, Drupal goes through the process
outlined in Figure 7-9.

CHAPTER 7 ! WORKING WITH NODES 161

09898ch07final 7/30/08 2:25 PM Page 161

Figure 7-9. Determining node access for a given node

CHAPTER 7 ! WORKING WITH NODES162

09898ch07final 7/30/08 2:25 PM Page 162

Summary
After reading this chapter, you should be able to

• Understand what a node is and what node types are.

• Write modules that create node types.

• Understand how to hook into node creation, saving, loading, and so on.

• Understand how access to nodes is determined.

CHAPTER 7 ! WORKING WITH NODES 163

09898ch07final 7/30/08 2:25 PM Page 163

09898ch07final 7/30/08 2:25 PM Page 164

The Theme System

Changing the HTML or other markup that Drupal produces requires knowledge of the layers
that make up the theme system. The theme system is an elegant architecture that’ll keep you
from hacking core code, but it does have a learning curve, especially when you’re trying to
make your Drupal site look different from other Drupal sites. I’ll teach you how the theme sys-
tem works and reveal some of the best practices hiding within the Drupal core. Here’s the first
one: you don’t need to (nor should you) edit the HTML within module files to change the look
and feel of your site. By doing that, you’ve just created your own proprietary content manage-
ment system and have thus lost one the biggest advantages of using a community-supported
open source software system to begin with. Override, don’t change!

Theme System Components
The theme system comprises several levels of abstraction: template languages, theme engines,
and themes.

Template Languages and Theme Engines
The theme system is abstracted to work with most templating languages. Smarty, PHPTAL,
and PHPTemplate can all be used to fill template files with dynamic data within Drupal. To use
these languages, a wrapper, called a theme engine, is needed to interface Drupal with the cor-
responding template language. You can find theme engines for the most popular templating
languages at http://drupal.org/project/Theme+engines. You install theme engines by placing
the respective theme engine directory inside the engines directory for your site at sites/
sitename/themes/engines. To have the theme engine accessible to all sites in a multisite setup,
place the theme engine directory inside sites/all/themes/engines as shown in Figure 8-1.

The Drupal community has created its own theme engine, optimized for Drupal. It’s
called PHPTemplate, and it relies on PHP to function as the templating language, which
removes the intermediary parsing step other template languages usually go through. This is
the most widely supported template engine for Drupal and ships with the core distribution.
It’s located at themes/engines/phptemplate, as shown in Figure 8-2.

165

C H A P T E R 8

09898ch08final 7/30/08 2:20 PM Page 165

http://drupal.org/project/Theme+engines

Figure 8-1. Directory structure for adding custom theme engines to Drupal

Figure 8-2. Directory structure for Drupal core theme engines. This location is reserved for core
theme engines.

!Note It’s entirely possible to skip using a templating language altogether and simply use pure PHP tem-
plate files. If you’re a speed freak or maybe just want to torture your designers, you can skip using a theme
engine and just wrap your entire theme inside PHP functions, using functions like themename_page() and
themename_node() instead of template files. For an example of a PHP-based theme, see themes/
chameleon/chameleon.theme.

Don’t expect to see any change to your site after dropping in a new theme engine.
Because a theme engine is only an interface library, you’ll also need to install a Drupal theme
that depends on that engine before the theme engine will be used.

Which template language should you use? If you’re converting a legacy site, perhaps it’s
easier to use the previous template language, or maybe your design team is more comfortable
working within WYSIWYG editors, in which case PHPTAL is a good choice because it prevents
templates from being mangled within those editors. You’ll find the most documentation and
support for PHPTemplate, and if you’re building a new site it’s probably your best bet in terms
of long-term maintenance and community support.

CHAPTER 8 ! THE THEME SYSTEM166

09898ch08final 7/30/08 2:20 PM Page 166

Themes
In Drupal-speak, themes are a collection of files that make up the look and feel of your site.
You can download preconstructed themes from http://drupal.org/project/Themes, or you
can roll your own, which is what you’ll learn to do in this chapter. Themes are made up of
most of the things you’d expect to see as a web designer: style sheets, images, JavaScript files,
and so on. The difference you’ll find between a Drupal theme and a plain HTML site is tar-
geted template files. These files typically contain large sections of HTML and smaller special
snippets that are replaced by dynamic content. They are responsible for the look-and-feel of
one specific component of your site. The syntax of a template file depends on the theme
engine that is being used. For example, take the template file snippets in Listings 8-1, 8-2, and
8-3, which output the exact same HTML but contain radically different template file content.

Listing 8-1. Smarty

<div id="top-nav">
{if count($secondary_links)}
<ul id="secondary">
{foreach from=$secondary_links item=link}
{$link}

{/foreach}

{/if}

{if count($primary_links)}
<ul id="primary">
{foreach from=$primary_links item=link}
{$link}

{/foreach}

{/if}
</div>

Listing 8-2. PHPTAL

<div id="top-nav">
<ul tal:condition="php:is_array(secondary_links)" id="secondary">
<li tal:repeat="link secondary_links" tal:content="link">secondary link

<ul tal:condition="php:is_array(primary_links)" id="primary">
<li tal:repeat="link primary_links" tal:content="link">primary link

</div>

CHAPTER 8 ! THE THEME SYSTEM 167

09898ch08final 7/30/08 2:20 PM Page 167

http://drupal.org/project/Themes

Listing 8-3. PHPTemplate

<div id="top-nav">
<?php if (count($secondary_links)) : ?>
<ul id="secondary">
<?php foreach ($secondary_links as $link): ?>
<?php print $link?>

<?php endforeach; ?>

<?php endif; ?>
<?php if (count($primary_links)) : ?>
<ul id="primary">
<?php foreach ($primary_links as $link): ?>
<?php print $link?>

<?php endforeach; ?>

<?php endif; ?>
</div>

Each template file will look different based on the template language in use. The file
extension of a template file denotes the template language, and thus the theme engine it
depends on (see Table 8-1).

Table 8-1. Template File Extensions Indicate the Template Language They Depend On

Template File Extension Theme Engine
.theme PHP

.tpl.php PHPTemplate*

.tal PHPTAL

.tpl Smarty

* PHPTemplate is Drupal’s default theme engine.

Installing a Theme
To have a new theme show up within the Drupal administrative interface, place the theme
in sites/all/themes. This makes the theme accessible to your Drupal site and to all sites on
a multisite setup. If you wish the theme to be used for a specific site only and you are using a
multisite setup, you should place it in sites/sitename/themes. You can install as many themes
as you want on your site, and themes are installed in much the same way modules are. Once
the theme files are in place, navigate to the administrative interface via Administer " Site
building " Themes. You can install multiple themes. You can even enable multiple themes at
once. What does that mean? By enabling multiple themes, users who have been given the
select different theme permission will be able to select any one of the enabled themes from
within their profile. Their chosen theme will be used when they are browsing the site.

CHAPTER 8 ! THE THEME SYSTEM168

09898ch08final 7/30/08 2:20 PM Page 168

When downloading or creating a new theme, it’s a best practice to keep the new theme
separate from the rest of the core and contributed themes. You can do this by creating another
level of folders inside your themes folder. Place custom themes inside a folder named custom,
and themes downloaded from the Drupal contributions repository inside a folder named
drupal-contrib. This practice is not as important to follow as with custom and contributed
modules, as you are unlikely to have many themes on one site but very likely to have many
modules.

Building a PHPTemplate Theme
There are several ways to create a theme, depending on your starting materials. Suppose your
designer has already given you the HTML and CSS for the site. How easy is it to take the
designer’s design and convert it into a Drupal theme? It’s actually not that bad, and you can
probably get 80 percent of the way there in short order. The other 20 percent—the final nips
and tucks—are what set apart Drupal theming ninjas from lackeys. So let’s knock out the easy
parts first. Here’s an overview:

1. Create or modify an HTML file for the site.

2. Create or modify a CSS file for the site.

3. Create a .info file to describe your new theme to Drupal.

4. Standardize the filenames according to what Drupal expects.

5. Insert available variables into your template.

6. Create additional files for individual node types, blocks, and so on.

!Note If you’re starting your design from scratch, there are many great designs at the Open Source Web
Design site at http://www.oswd.org/. (Note that these are HTML and CSS designs, not Drupal themes.)

Using Existing HTML and CSS Files
Let’s assume you’re given the HTML page and style sheet in Listings 8-4 and 8-5 to convert to
a Drupal theme. Obviously, the files you’d receive in a real project would be more detailed
than these, but you get the idea.

Listing 8-4. page.html

<html>
<head>
<title>Page Title</title>
<link rel="stylesheet" href="global.css" type="text/css" />

</head>

CHAPTER 8 ! THE THEME SYSTEM 169

09898ch08final 7/30/08 2:20 PM Page 169

http://www.oswd.org

<body>
<div id="container">
<div id="header">
<h1>Header</h1>

</div>

<div id="left">
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut.

</p>
</div>

<div id="main">
<h2>Subheading</h2>
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut.

</p>
</div>

<div id="footer">
Footer

</div>
</div>

</body>
</html>

Listing 8-5. global.css

#container {
width: 90%;
margin: 10px auto;
background-color: #fff;
color: #333;
border: 1px solid gray;
line-height: 130%;

}
#header {
padding: .5em;
background-color: #ddd;
border-bottom: 1px solid gray;

}
#header h1 {
padding: 0;
margin: 0;

}

CHAPTER 8 ! THE THEME SYSTEM170

09898ch08final 7/30/08 2:20 PM Page 170

#sidebar-left {
float: left;
width: 160px;
margin: 0;
padding: 1em;

}
#main {
margin-left: 200px;
border-left: 1px solid gray;
padding: 1em;
max-width: 36em;

}
#footer {
clear: both;
margin: 0;
padding: .5em;
color: #333;
background-color: #ddd;
border-top: 1px solid gray;

}
#sidebar-left p {
margin: 0 0 1em 0;

}
#main h2 {
margin: 0 0 .5em 0;

}

The design is shown in Figure 8-3.

Figure 8-3. Design before it has been converted to a Drupal theme

Let’s call this new theme greyscale, so make a folder at sites/all/themes/custom/
greyscale. You might need to create the themes/custom folders if you haven’t already. Copy
page.html and global.css into the greyscale folder. Next, rename page.html to page.tpl.php
so it serves as the new page template for every Drupal page.

CHAPTER 8 ! THE THEME SYSTEM 171

09898ch08final 7/30/08 2:20 PM Page 171

Creating a .info File for Your Theme
Each theme needs to include a file that describes the capabilities of the theme to Drupal.
This file is the theme’s .info file. Because we called our theme greyscale, our .info file will
be named greyscale.info. Create the file at sites/all/themes/custom/greyscale/
greyscale.info, and enter the ten lines shown in Listing 8-6.

Listing 8-6. .info File for the Greyscale Theme

; Id
name = Greyscale
core = 6.x
engine = phptemplate
regions[left] = Left sidebar
; We do not have a right sidebar.
; regions[right] = Right sidebar
regions[content] = Content
regions[header] = Header
regions[footer] = Footer

If we wanted to get more complicated, we could give Drupal a lot more information in
our .info file. Let’s take a moment to see what information can be included, which is shown
in Listing 8-7.

Listing 8-7. .info File with More Information

; Id
; Name and core are required; all else is optional.
name = Greyscale
description = Demurely grey tableless theme.
screenshot = screenshot.png
core = 6.x
engine = phptemplate

regions[left] = Left sidebar
; We do not have a right sidebar
; regions[right] = Right sidebar
regions[content] = Content
regions[header] = Header
regions[footer] = Footer

; Features not commented out here appear as checkboxes
; on the theme configuration page for this theme.
features[] = logo
features[] = name
features[] = slogan
features[] = mission

CHAPTER 8 ! THE THEME SYSTEM172

09898ch08final 7/30/08 2:20 PM Page 172

features[] = node_user_picture
features[] = comment_user_picture
features[] = search
features[] = favicon
features[] = primary_links
features[] = secondary_links

; Stylesheets can be declared here or, for more
; control, be added by drupal_add_css() in template.php.
; Add a stylesheet for media="all":
stylesheets[all][] = mystylesheet.css
; Add a stylesheet for media="print":
stylesheets[print][] = printable.css
; Add a stylesheet for media="handheld":
stylesheets[handheld][] = smallscreen.css
; Add a stylesheet for media="screen, projection, tv":
stylesheets[screen, projection, tv][] = screen.css
; Override an existing Drupal stylesheet with our own
; (in this case the forum module's stylesheet):
stylesheets[all][] = forum.css

; JavaScript files can be declared here or, for more
; control, be added by drupal_add_js() in template.php.
; scripts.js is added automatically (just like style.css
; is added automatically to stylesheets[]).
scripts[] = custom.js

; PHP version is rarely used; you might need it if your
; templates have code that uses very new PHP features.
php = 5.2.0

; Themes may be based on other themes; for example, they
; may simply override some of the parent theme's CSS.
; See the Minnelli theme at themes/garland/minnelli for
; an example of a theme that does this in Drupal core.
base theme = garland

Because the Greyscale theme now has a .info file (the simple one in Listing 8-6) and a
page.tpl.php file, you can enable it within the administrative interface. Go to Administer "
Site building " Themes and make it the default theme.

Congratulations! You should now see your design in action. The external style sheet won’t
yet load (we’ll address that later), and any page you navigate to within your site will be the
same HTML over and over again, but this is a great start! Any page you navigate to within your
site will just serve the static contents of page.tpl.php, so there’s no way to get to Drupal’s
administrative interface. We’ve just locked you out of your Drupal site! Whoops. Getting locked
out is bound to happen, and I’ll show you now how to recover from this situation. One solu-
tion is to rename the folder of the theme currently enabled. In this case, you can simply

CHAPTER 8 ! THE THEME SYSTEM 173

09898ch08final 7/30/08 2:20 PM Page 173

rename greyscale to greyscale_ , and you’ll be able to get back into the site. That’s a quick fix,
but because you know what the real problem is (that is, that we’re not including dynamic con-
tent yet), instead you’ll add the proper variables to page.tpl.php so that the dynamic Drupal
content is displayed rather than the static content.

Every PHPTemplate template file—such as page.tpl.php, node.tpl.php, block.tpl.php,
and so on—is passed a different set of dynamic content variables to use within the files. Open
page.tpl.php, and start replacing the static content with corresponding Drupal variables.
Don’t worry; I’ll cover what these variables actually do soon.

<html>
<head>
<title><?php print $head_title ?></title>
<link rel="stylesheet" href="global.css" type="text/css" />

</head>

<body>
<div id="container">
<div id="header">
<h1><?php print $site_name ?></h1>
<?php print $header ?>

</div>

<?php if ($left): ?>
<div id="sidebar-left">
<?php print $left ?>

</div>
<?php endif; ?>

<div id="main">
<?php print $breadcrumb ?>
<h2><?php print $title ?></h2>
<?php print $content ?>

</div>

<div id="footer">
<?php print $footer_message ?>
<?php print $footer ?>

</div>
</div>

<?php print $closure ?>
</body>
</html>

Reload your site, and you’ll notice that the variables are being replaced with the content
from Drupal. Yay! You’ll notice that the global.css style sheet isn’t loading because the path
to the file is no longer correct. You could manually adjust the path, or you could do this the
Drupal way and gain some flexibility and benefits.

CHAPTER 8 ! THE THEME SYSTEM174

09898ch08final 7/30/08 2:20 PM Page 174

The first step is to rename global.css to style.css. By convention, Drupal automatically
looks for a style.css file for every theme. Once found, it adds this information into the
$styles variable that’s passed into page.tpl.php. So let’s update page.tpl.php with this
information:

<html>
<head>
<title><?php print $head_title ?></title>
<?php print $styles ?>

</head>
...

Save your changes and reload the page. Voilà! You’ll also notice that if you view the source
code of the page, other style sheets from enabled modules have also been added, thanks to the
addition of this $styles variable:

<html>
<head>
<title>Example | Drupal 6</title>
<link type="text/css" rel="stylesheet" media="all"
href="modules/node/node.css?f" />

<link type="text/css" rel="stylesheet" media="all"
href="modules/system/defaults.css?f" />

<link type="text/css" rel="stylesheet" media="all"
href="modules/system/system.css?f" />

<link type="text/css" rel="stylesheet" media="all"
href="modules/system/system-menus.css?f" />

<link type="text/css" rel="stylesheet" media="all"
href="modules/user/user.css?f" />

<link type="text/css" rel="stylesheet" media="all"
href="sites/all/themes/greyscale/style.css?f" />

</head>
...

By naming your CSS file style.css, you also allow Drupal to apply its CSS preprocessing
engine to it to remove all line breaks and spaces from all CSS files, and instead of serving mul-
tiple style sheets, Drupal can now serve them as a single file. To learn more about this feature,
see Chapter 22.

!Note Drupal adds a dummy query string (?f in the preceding examples) to the end of the style sheet
URLs so that it can control caching. It changes the string when needed, such as after running update.php
or after a full cache clear from the Administer " Site configuration " Performance page.

When you refresh your browser after renaming global.css to style.css, you should
see a theme similar to that in Figure 8-3, with a header, footer, and left sidebar. Try going to
Administer " Site building " Blocks and assigning the “Who’s online” block to the left sidebar.

CHAPTER 8 ! THE THEME SYSTEM 175

09898ch08final 7/30/08 2:20 PM Page 175

There are plenty more variables to add to page.tpl.php and the other template files. So
let’s dive in! If you have not already done so, browse through the existing themes in your Drupal
installation’s themes directory to get a feel for how the variables are used.

Understanding Template Files
Some themes have all sorts of template files, while others only have page.tpl.php. So how do
you know which template files you can create that Drupal will recognize? What naming con-
ventions surround the creation of template files? You’ll learn the ins and outs of working with
template files in the following sections.

The Big Picture
page.tpl.php is the granddaddy of all template files, and provides the overall page layout
for the site. Other template files are inserted into page.tpl.php, as the diagram in
Figure 8-4 illustrates.

Figure 8-4. Other templates are inserted within the encompassing page.tpl.php file.

CHAPTER 8 ! THE THEME SYSTEM176

09898ch08final 7/30/08 2:20 PM Page 176

The insertion of block.tpl.php and node.tpl.php in Figure 8-4 happens automatically
by the theme system during page building. Remember when you created your own
page.tpl.php file in the previous example? Well, the $content variable contained the output
of the node.tpl.php calls, and $left contained the output from the block.tpl.php calls. Let’s
examine how this works.

Let’s add a node template file to our Greyscale theme. Rather than writing it from scratch,
we’ll copy Drupal’s default node template file; that is, the node template that is used if
node.tpl.php cannot be found in a theme. Copy modules/node/node.tpl.php to sites/all/
themes/custom/greyscale/node.tpl.php. Then visit Administer " Site building " Modules so
that the theme registry will be rebuilt. Drupal will find sites/all/themes/custom/greyscale/
node.tpl.php during the rebuilding process, and from now on, it will use this file as the node
template. Create a node using Create content " Page (fill out just the Title and Body fields).
Now change your node.tpl.php file slightly (maybe add “Hello world!” to the end of it). The
display of your node should change to use the new template with your modifications.

You could do the same thing with block.tpl.php (you can find the default block template
file at modules/system/block.tpl.php) or with any other template file that you find in Drupal.

Introducing the theme() Function
When Drupal wants to generate some HTML output for a themable item (like a node, a block,
a breadcrumb trail, a comment, or a user signature), it looks for a theme function or template
file that will generate HTML for that item. Almost all parts of Drupal are themable, which
means you can override the actual HTML that is generated for that item. We’ll look at some
examples soon.

!Tip For a list of themable items in Drupal, see http://api.drupal.org/api/group/themeable/6.

An Overview of How theme() Works
Here’s a high-level overview of what happens when a simple node page, such as http://
example.com/?q=node/3 is displayed:

1. Drupal’s menu system receives the request and hands off control to the node module.

2. After building the node data structure, theme('node', $node, $teaser, $page) is
called. This finds the correct theme function or template file, defines lots of variables
that the template may use, and applies the template, resulting in finished HTML for
the node. (If multiple nodes are being displayed, as happens with a blog, this process
happens for each node.)

CHAPTER 8 ! THE THEME SYSTEM 177

09898ch08final 7/30/08 2:20 PM Page 177

http://api.drupal.org/api/group/themeable/6
http://example.com/?q=node/3
http://example.com/?q=node/3

3. If the comment module is enabled, any comments are changed into HTML and
appended to the node’s HTML.

4. This whole glob of HTML is returned (you can see it as the $return variable in
index.php) and passed to the theme() function again as theme('page', $return).

5. Before processing the page template, Drupal does some preprocessing, such as dis-
covering which regions are available and which blocks should be shown in each
region. Each block is turned into HTML by calling theme('blocks', $region), which
defines variables and applies a block template. You should be starting to see a pattern
here.

6. Finally, Drupal defines lots of variables for the page template to use and applies the
page template.

You should be able to discern from the preceding list that the theme() function is very
important to Drupal. It is in charge of running preprocessing functions to set variables that
will be used in templates and dispatching a theme call to the correct function or finding
the appropriate template file. The result is HTML. The process is shown graphically in
Figure 8-5. We will take an in-depth look at how this function works later. Right now, it is
enough to understand that when Drupal wants to turn a node into HTML, theme('node')
is called. Depending on which theme is enabled, the theme_node() function will generate
the HTML or a template file named node.tpl.php will do it.

This process can be overridden at many levels. For example, themes can override built-
in theme functions, so when theme('node') is called a function called greyscale_node() might
handle it instead of theme_node(). Template files have naming conventions that we’ll explore
later too, so that a node-story.tpl.php template file would target only nodes of type Story.

CHAPTER 8 ! THE THEME SYSTEM178

09898ch08final 7/30/08 2:20 PM Page 178

Figure 8-5. Flow of execution for a call to the theme() function

Overriding Themable Items
The core philosophy behind Drupal’s theme system is similar to that of the hook system. By
adhering to a naming convention, functions can identify themselves as theme-related func-
tions that are responsible for formatting and returning your site’s content or template files
containing PHP can be used.

CHAPTER 8 ! THE THEME SYSTEM 179

09898ch08final 7/30/08 2:21 PM Page 179

Overriding with Theme Functions
As you’ve seen, themable items are identifiable by their function names, which all begin with
theme_, or by the presence of a template file. This naming convention gives Drupal the ability
to create a function-override mechanism for all themable functions. Designers can instruct
Drupal to execute an alternative function, which takes precedence over the theme functions
that module developers expose or over Drupal’s default template files. For example, let’s
examine how this process works when building the site’s breadcrumb trail.

Open includes/theme.inc, and examine the functions inside that file. Many functions in
there begin with theme_, which is the telltale sign that they can be overridden. In particular,
let’s examine theme_breadcrumb():

/**
* Return a themed breadcrumb trail.
*
* @param $breadcrumb
* An array containing the breadcrumb links.
* @return a string containing the breadcrumb output.
*/
function theme_breadcrumb($breadcrumb) {
if (!empty($breadcrumb)) {
return '<div class="breadcrumb">'. implode(' » ', $breadcrumb) .'</div>';

}
}

This function controls the HTML for the breadcrumb navigation within Drupal. Currently,
it adds a right-pointing double-arrow separator between each item of the trail. Suppose you
want to change the div tag to a span and use an asterisk (*) instead of a double arrow. How
should you go about it? One solution would be to edit this function within theme.inc, save it,
and call it good. (No! No! Do not do this!) There are better ways.

Have you ever seen how these theme functions are invoked within core? You’ll never see
theme_breadcrumb() called directly. Instead, it’s always wrapped inside the theme() helper
function. You’d expect the function to be called as follows:

theme_breadcrumb($breadcrumb)

But it’s not. Instead, you’ll see developers use the following invocation:

theme('breadcrumb', $breadcrumb);

This generic theme() function is responsible for initializing the theme layer and dispatch-
ing of function calls to the appropriate places, bringing us to the more elegant solution to our
problem. The call to theme() instructs Drupal to look for the breadcrumb functions shown in
Figure 8-5, in the following order.

Assuming the theme you’re using is Greyscale, which is a PHPTemplate-based theme,
Drupal would look for the following (we’ll ignore breadcrumb.tpl.php for a moment):

greyscale_breadcrumb()
phptemplate_breadcrumb()
sites/all/themes/custom/greyscale/breadcrumb.tpl.php
theme_breadcrumb()

CHAPTER 8 ! THE THEME SYSTEM180

09898ch08final 7/30/08 2:21 PM Page 180

Where would you put a function like phptemplate_breadcrumb() to override the built-in
breadcrumb function?

Easy—your theme’s template.php file is the place to override Drupal’s default theme func-
tions, and intercept and create custom variables to pass along to template files.

!Note Don’t use Garland as the active theme when doing these exercises, since Garland already has
a template.php file. Use Greyscale (or Bluemarine) instead.

To tweak the Drupal breadcrumbs, create sites/all/themes/custom/greyscale/
template.php file and copy and paste the theme_breadcrumb() function in there from
theme.inc. Be sure to include the starting <?php tag. Also, rename the function from
theme_breadcrumb to phptemplate_breadcrumb. Next, visit Administer " Site building "
Modules to rebuild the theme registry so Drupal will detect your new function.

<?php
/**
* Return a themed breadcrumb trail.
*
* @param $breadcrumb
* An array containing the breadcrumb links.
* @return a string containing the breadcrumb output.
*/
function phptemplate_breadcrumb($breadcrumb) {
if (!empty($breadcrumb)) {
return ''. implode(' * ', $breadcrumb) .'';

}
}

The next time Drupal is asked to format the breadcrumb trail, it’ll find your function first
and use it instead of the default theme_breadcrumb() function, and breadcrumbs will contain
your asterisks instead of Drupal’s double arrows. Pretty slick, eh? By passing all theme func-
tion calls through the theme() function, Drupal will always check if the current theme has
overridden any of the theme_ functions and call those instead. Developers, take note: any parts
of your modules that output HTML or XML should only be done within theme functions so
they become accessible for themers to override.

Overriding with Template Files
If you’re working with a designer, telling him or her to “just go in the code and find the
themable functions to override” is out of the question. Fortunately, there’s another way to
make this more accessible to designer types. You can instead map themable items to their
own template files. I’ll demonstrate with our handy breadcrumb example.

Before we begin, make sure that no theme function is overriding theme_breadcrumb(). So
if you created a phptemplate_breadcrumb() function in your theme’s template.php file in the

CHAPTER 8 ! THE THEME SYSTEM 181

09898ch08final 7/30/08 2:21 PM Page 181

preceding section, comment it out. Then, create a file at sites/all/themes/custom/greyscale/
breadcrumb.tpl.php. This is the new template file for breadcrumbs. Because we wanted to
change the <div> tag to a tag, go ahead and populate the file with the following:

<?php if (!empty($breadcrumb)): ?>
<?php print implode(' ! ', $breadcrumb) ?>

<?php endif; ?>

That’s easy enough for a designer to edit. Now you need to let Drupal know to call this
template file when looking to render its breadcrumbs. To do that, rebuild the theme registry
by visiting Administer " Site building " Modules. While rebuilding the theme registry, Drupal
will discover your breadcrumb.tpl.php file and map the breadcrumb themable item to that
template file.

Now you know how to override any themable item in Drupal in a way that will make your
designers happy.

Adding and Manipulating Template Variables
The question becomes this: if you can make your own template files and control the variables
being sent to them, how can you manipulate or add variables being passed into page and
node templates?

!Note Variables are only aggregated and passed into themable items that are implemented as template
files. Variables are not passed into themable items implemented as theme functions.

Every call to load a template file passes through a series of preprocess functions. These
functions are responsible for aggregating the variables to pass along to the correct template
file. Let’s continue with our example of using the breadcrumb trail. First, let’s modify sites/
all/themes/custom/greyscale/breadcrumb.tpl.php to use a variable called $breadcrumb_
delimiter for the breadcrumb delimiter:

<?php if (!empty($breadcrumb)): ?>

<?php print implode(' '. $breadcrumb_delimiter .' ', $breadcrumb) ?>

<?php endif; ?>

How are we going to set the value of $breadcrumb_delimiter? One option would be in a
module. We could create sites/all/modules/custom/crumbpicker.info:

; Id
name = Breadcrumb Picker
description = Provide a character for the breadcrumb trail delimiter.
package = Pro Drupal Development
core = 6.x

CHAPTER 8 ! THE THEME SYSTEM182

09898ch08final 7/30/08 2:21 PM Page 182

The module at sites/all/modules/custom/crumbpicker.module would be tiny:

<?php
// Id

/**
* @file
* Provide a character for the breadcrumb trail delimiter.
*/

/**
* Implementation of $modulename_preprocess_$hook().
*/
function crumbpicker_preprocess_breadcrumb(&$variables) {
$variables['breadcrumb_delimiter'] = '/';

}

After enabling the module at Administer " Site building " Modules, your breadcrumb
trail should look like Home / Administer / Site building.

The preceding example illustrates a module setting a variable for a template file to use.
But there must be an easier way than creating a module every time a variable needs to be set.
Sure enough, it’s template.php to the rescue. Let’s write a function to set the breadcrumb
delimiter. Add the following to your theme’s template.php file:

/**
* Implementation of $themeenginename_preprocess_$hook().
* Variables we set here will be available to the breadcrumb template file.
*/
function phptemplate_preprocess_breadcrumb(&$variables) {
$variables['breadcrumb_delimiter'] = '#';

}

That’s easier than creating a module, and frankly, the module approach is usually best for
existing modules to provide variables to templates; modules are not generally written solely
for this purpose. Now, we have a module providing a variable and a function in template.php
providing a variable. Which one will actually be used?

Actually, a whole hierarchy of preprocess functions run in a certain order, each one with
the potential to overwrite variables that have been defined by previous preprocess functions.
In the preceding example, the breadcrumb delimiter will be # because phptemplate_
preprocess_breadcrumb() will be executed after crumbpicker_preprocess_breadcrumb(), and
thus its variable assignment will override any previous variable assignment for $breadcrumb_
delimiter. The order of execution of preprocess functions is shown in Figure 8-6.

For the theming of a breadcrumb trail using the Greyscale theme, the actual order of
precedence (from first called to last called) would be:

CHAPTER 8 ! THE THEME SYSTEM 183

09898ch08final 7/30/08 2:21 PM Page 183

template_preprocess()
template_preprocess_breadcrumb()
crumbpicker_preprocess()
crumbpicker_preprocess_breadcrumb()
phptemplate_preprocess()
phptemplate_preprocess_breadcrumb()
greyscale_preprocess()
greyscale_preprocess_breadcrumb()

Thus greyscale_preprocess_breadcrumb() can override any variable that has been set; it’s
called last before the variables are handed to the template file. Calling all those functions
when only some of them are implemented may seem to you like a waste of time. If so, you are
correct, and when the theme registry is built, Drupal determines which functions are imple-
mented and calls only those.

Figure 8-6. Order of execution of preprocess functions

!Note One of the variables you can change within a preprocess function is $variables
['template_file'], which is the name of the template file Drupal is about to call. If you need to
load an alternate template file based on a more complex condition, this is the place to do it.

CHAPTER 8 ! THE THEME SYSTEM184

09898ch08final 7/30/08 2:21 PM Page 184

Variables for All Templates
Drupal prepopulates the following general variables before setting variables for specific
templates:

• $zebra: This value is either odd or even, and it toggles with each call to theme('node')
to allow for easy theming of node listings.

• $id: This integer is incremented with each call to this themable item. For example, each
time theme('node') is called, $id is incremented. So in a page that lists many node
teasers, the $id variable available to the node template that themes node teasers will
increment with each node teaser.

• $directory: This is the path to the theme, such as themes/bluemarine (or if a theme
is not providing a template file, the path to the module that is providing one, e.g.,
modules/node).

The following will be set if the database is active and the site is not in maintenance mode,
which is most of the time:

• $is_admin: The result of user_access('access administration pages')

• $is_front: TRUE if the front page is being built; FALSE otherwise

• $logged_in: TRUE if the current user is logged in; FALSE otherwise

• $user: The global $user object (do not use properties from this object directly in themes
without sanitizing them; see Chapter 20)

page.tpl.php
If you need to make a custom page template, you can start by cloning page.tpl.php from an
existing theme or from modules/system/page.tpl.php and then tweak it as needed. In fact, all
that is needed for a minimal theme is a .info file and a style.css file; Drupal will use modules/
system/page.tpl.php if no page.tpl.php file exists in your theme. For basic themes, this may
be all you need.

The following variables are passed into page templates:

• $base_path: The base path of the Drupal installation. At the very least, this will always
default to / if Drupal is installed in a root directory.

• $body_classes: A space-delimited string of CSS class names that will be used in the
body element. These classes can then be used to create smarter themes. For example,
the value of $body_classes for a page node type viewed at http://example.com/
?q=node/3 will be not-front logged-in page-node node-type-page one-sidebar
sidebar-left.

• $breadcrumb: Returns the HTML for displaying the navigational breadcrumbs on the
page.

CHAPTER 8 ! THE THEME SYSTEM 185

09898ch08final 7/30/08 2:21 PM Page 185

http://example.com

• $closure: Returns the output of hook_footer() and thus is usually displayed at the bot-
tom of the page, just before the close of the body tag. hook_footer() is used to allow
modules to insert HTML or JavaScript at the end of a page. Note that drupal_add_js()
will not work in hook_footer().

!Caution $closure is an essential variable and should be included in all page.tpl.php files, since vari-
ous modules depend on it being there. If it is not included, these modules may not work correctly, because
they will not be able to insert their HTML or JavaScript.

• $content: Returns the HTML content to be displayed. Examples include a node, an
aggregation of nodes, the content of the administrative interface, and so on.

• $css: Returns an array structure of all the CSS files to be added to the page. Use $styles
if you are looking for the HTML version of the $css array.

• $directory: The relative path to the directory the theme is located in; for example,
themes/bluemarine or sites/all/themes/custom/greyscale. You’ll commonly use this
variable in conjunction with the $base_path variable to build the absolute path to your
site’s theme:

<?php print $base_path . $directory ?>

will resolve to

<?php print '/' . 'sites/all/themes/custom/greyscale' ?>

• $feed_icons: Returns RSS feed links for the page. RSS feed links are added via
drupal_add_feed().

• $footer: Returns the HTML for the footer region, including the HTML for blocks
belonging to this region. Do not confuse this with hook_footer(), which is a Drupal
hook that lets modules add HTML or JavaScript that will appear in the $closure vari-
able just before the closing body tag.

• $footer_message: Returns the text of the footer message that was entered at Admin-
ister " Site configuration " Site information.

• $front_page: The output of url() with no parameters; for example, /drupal/.
Use $front_page instead of $base_path when linking to the front page of a site, because
$front_page will include the language domain and prefix when applicable.

• $head: Returns the HTML to be placed within the <head></head> section. Modules
append to $head by calling drupal_set_html_head() to add additional markup.

• $head_title: The text to be displayed in the page title, between the HTML
<title></title> tags. It is retrieved using drupal_get_title().

• $header: Returns the HTML for the header region, including the HTML for blocks
belonging to this region.

CHAPTER 8 ! THE THEME SYSTEM186

09898ch08final 7/30/08 2:21 PM Page 186

• $help: Help text, mostly for administrative pages. Modules can populate this variable
by implementing hook_help().

• $is_front: TRUE if the front page is currently being displayed.

• $language: An object containing the properties of the language in which the site is
being displayed. For example, $language->language may be en, and $language->name
may be English.

• $layout: This variable allows you to style different types of layouts, and the value
for $layout depends on the number of sidebars enabled. Possible values include none,
left, right, and both.

• $left: Returns the HTML for the left sidebar, including the HTML for blocks belonging
to this region.

• $logged_in: TRUE if the current user is logged in; FALSE otherwise.

• $logo: The path to the logo image, as defined in the theme configuration page of
enabled themes. It’s used as follows in Drupal’s default page template:

<img src="<?php print $logo; ?>" alt="<?php print t('Home'); ?>" />

• $messages: This variable returns the HTML for validation errors, success notices for
forms, and other messages as well. It’s usually displayed at the top of the page.

• $mission: Returns the text of the site mission that was entered at Administer " Site con-
figuration " Site information. This variable is only populated when $is_front is TRUE.

• $node: The entire node object, available when viewing a single node page.

• $primary_links: An array containing the primary links as they have been defined at
Administer " Site building " Menus. Usually $primary_links is styled through the
theme('links') function as follows:

<?php
print theme('links', $primary_links, array('class' => #

'links primary-links'))
?>

• $right: Returns the HTML for the right sidebar, including the HTML for blocks belong-
ing to this region.

• $scripts: Returns the HTML for adding the <script> tags to the page. This is also how
jQuery is loaded (see Chapter 17 for more on jQuery).

• $search_box: Returns the HTML for the search form. $search_box is empty when the
administrator has disabled the display on the theme configuration page of enabled
themes or if the search module is disabled.

• $secondary_links: An array containing the secondary links as they have been defined at
Administer " Site building " Menus. Usually $secondary_links is styled through the
theme('links') function as follows:

CHAPTER 8 ! THE THEME SYSTEM 187

09898ch08final 7/30/08 2:21 PM Page 187

<?php
print theme('links', $secondary_links, array('class' => #

'links primary-links'))
?>

• $show_blocks: This is an argument to the theme call theme('page', $content,
$show_blocks, $show_messages). It defaults to TRUE; when $show_blocks is FALSE the
$blocks variable which populates the left and right sidebars is set to the empty string,
suppressing block display.

• $show_messages: This is an argument to the theme call theme('page', $content,
$show_blocks, $show_messages). It defaults to TRUE; when $show_messages is FALSE the
$messages variable (see the $messages bullet point) is set to the empty string, suppress-
ing message display.

• $site_name: The name of the site, which is set at Administer " Site configuration " Site
information. $site_name is empty when the administrator has disabled the display on
the theme configuration page of enabled themes.

• $site_slogan: The slogan of the site, which is set at Administer " Site configuration "
Site information. $site_slogan is empty when the administrator has disabled the dis-
play of the slogan on the theme configuration page of enabled themes.

• $styles: Returns the HTML for linking to the necessary CSS files to the page. CSS files
are added to the $styles variable through drupal_add_css().

• $tabs: Returns the HTML for displaying tabs such as the View/Edit tabs for nodes. Tabs
are usually at the top of the page in Drupal’s core themes.

• $template_files: Suggestions of the names of template files that might be available
to theme the page being displayed. The names lack file extensions, for example,
page-node, page-front. See the “Multiple Page Templates” section for the default order
in which template files are searched for.

• $title: The main content title, different from $head_title. When on a single node view
page $title is the title of the node. When viewing Drupal’s administration pages,
$title is usually set by the menu item that corresponds to the page being viewed
(see Chapter 4 for more on menu items).

!Caution Even if you don’t output the region variables ($header, $footer, $left, $right) within
page.tpl.php, they are still being built. This is a performance issue because Drupal is doing all that block
building only to throw them away for a given page view. If custom page templates don’t require blocks, a
better approach than excluding the variable from the template file is to head over to the block administration
interface and disable those blocks from showing on your custom pages. See Chapter 9 for more details on
disabling blocks on certain pages.

CHAPTER 8 ! THE THEME SYSTEM188

09898ch08final 7/30/08 2:21 PM Page 188

node.tpl.php
Node templates are responsible for controlling individual pieces of content displayed within
a page. Rather than affecting the entire page, node templates only affect the $content vari-
able within page.tpl.php. They’re responsible for the presentation of nodes in teaser view
(when multiple nodes are listed on a single page) and also in body view (when the node fills
the entire $content variable in page.tpl.php and stands alone on its own page). The $page
variable within a node template file will be TRUE when you’re in body view or FALSE if you’re
in teaser view.

The node.tpl.php file is the generic template that handles the view of all nodes. What if
you want a different template for, say, blogs than forum posts? How can you make node tem-
plates for a specific node type rather than just a generic catch-all template file?

The good news is that node templates offer a refreshing level of granularity that’s not
entirely obvious out of the box. Simply cloning node.tpl.php and renaming the new file to
node-nodetype.tpl.php is enough for PHPTemplate to choose this template over the generic
one. So theming blog entries is as simple as creating node-blog.tpl.php. Any node type you
create via Administer " Content management " Content types can have a corresponding
node template file in the same fashion. You can use the following variables in node templates:

• $build_mode: Some information about the context in which the node is being built. The
value will be one of the following constants: NODE_BUILD_NORMAL, NODE_BUILD_PREVIEW,
NODE_BUILD_SEARCH_INDEX, NODE_BUILD_SEARCH_RESULT, or NODE_BUILD_RSS.

• $content: The body of the node or the teaser if it’s a paged result view.

• $date: The formatted date the node was created. You can choose a different format by
using $created, for example, format_date($created, 'large').

• $links: The links associated with a node, such as “Read more” and “Add new com-
ment.” Modules add additional links by implementing hook_link(). The links have
already gone through theme_links().

• $name: Formatted name of the user who authored the page, linked to his or her profile.

• $node: The entire node object and all its properties.

• $node_url: The URL path to this node; for example, for http://example.com/?q=node/3,
the value would be /node/3.

• $page: TRUE if the node is being displayed by itself as a page. FALSE if it is on a multiple
node listing view.

• $picture: If the “User pictures in posts” option has been chosen at Administer " Site
building " Themes " Configure and the “Display post information on” option for this
node type has been chosen in the global theme settings, the output of theme('user_
picture', $node) will be in $picture.

• $taxonomy: An array of the node’s taxonomy terms in a format suitable for passing to
theme_links(). In fact, the output of theme_links() is available in the $terms variable.

CHAPTER 8 ! THE THEME SYSTEM 189

09898ch08final 7/30/08 2:21 PM Page 189

http://example.com/?q=node/3

• $teaser: Boolean to determine whether or not the teaser is displayed. This variable
can be used to indicate whether $content consists of the node body (FALSE) or teaser
(TRUE).

• $terms: HTML containing the taxonomy terms associated with this node. Each term
is also linked to its own taxonomy term pages.

• $title: Title of the node. Will also be a link to the node’s body view when on a multiple
node listing page. The text of the title has been passed through check_plain().

• $submitted: “Submitted by” text from theme('node_submitted', $node). The adminis-
trator can configure display of this information in the theme configuration page on a
per-node-type basis.

• $picture: HTML for the user picture, if pictures are enabled and the user picture is set.

!Note Because node properties are merged with the variables that are passed to node templates, node
properties are available as variables. For a list of node properties, see Chapter 7. Using node properties
directly may be a security risk; see Chapter 20 for how to minimize risk.

Often the $content variable within node template files doesn’t structure the data the way
you’d like it to. This is especially true when using contributed modules that extend a node’s
attributes, such as Content Construction Kit (CCK) field-related modules.

Luckily, PHPTemplate passes the entire node object to the node template files. If you
write the following debug statement at the top of your node template file and reload a page
containing a node, you’ll discover all the properties that make up the node. It’s probably easier
to read if you view the source of the page you browse to.

<pre>
<?php print_r($node) ?>

</pre>

Now you can see all the components that make up a node, access their properties directly,
and thus mark them up as desired, rather than work with an aggregated $content variable.

!Caution When formatting a node object directly, you also become responsible for the security of your
site. Please see Chapter 20 to learn how to wrap user-submitted data in the appropriate functions to prevent
XSS attacks.

block.tpl.php
Blocks are listed on Administer " Site building " Blocks and are wrapped in the markup pro-
vided by block.tpl.php. If you’re not familiar with blocks, please see Chapter 9 for more

CHAPTER 8 ! THE THEME SYSTEM190

09898ch08final 7/30/08 2:21 PM Page 190

details. Like the page template and node template files, the block system uses a suggestion
hierarchy to find the template file to wrap blocks in. The hierarchy is as follows:

block-modulename-delta.tpl.php
block-modulename.tpl.php
block-region.tpl.php
block.tpl.php

In the preceding sequence, modulename is the name of the module that implements the
block. For example, here’s the sequence for the “Who’s Online” block, which is implemented
by user.module (assume the block’s delta is 1):

block-user-1.tpl.php
block-user.tpl.php
block-left.tpl.php
block.tpl.php

Blocks created by the site administrator are always tied to the block module, so the value
for modulename in the preceding suggestion hierarchy will be block for administrator-created
blocks. If you don’t know the module that implemented a given block, you can find all the
juicy details by doing some PHP debugging. By typing in the following one-liner at the top of
your block.tpl.php file, you print out the entire block object for each block that’s enabled on
the current page:

<pre>
<?php print_r($block); ?>

</pre>

This is easier to read if you view the source code of the web browser page. Here’s what it
looks like for the “Who’s online” block:

stdClass Object
(
[bid] => 42
[module] => user
[delta] => 3
[theme] => bluemarine
[status] => 1
[weight] => 0
[region] => footer
[custom] => 0
[throttle] => 0
[visibility] => 0
[pages] =>
[title] =>
[cache] => -1
[subject] => Who's online
[content] => There are currently ...

)

CHAPTER 8 ! THE THEME SYSTEM 191

09898ch08final 7/30/08 2:21 PM Page 191

Now that you have all the details of this block, you can easily construct one or more of the
following block template files, depending on the scope of what you want to target:

block-user-3.tpl.php // Target just the Who's online block.
block-user.tpl.php // Target all block output by user module.
block-footer.tpl.php // Target all blocks in the footer region.
block.tpl.php // Target all blocks on any page.

Here’s a list of the default variables you can access within block template files:

• $block: The entire block object. Generally, you will use $block->subject and
$block->content; see block.tpl.php in core themes for examples.

• $block_id: An integer that increments each time a block is generated and the block
template file is invoked.

• $block_zebra: Whenever $block_id is incremented, it toggles this variable back and
forth between odd and even.

comment.tpl.php
The comment.tpl.php template file adds markup to comments. The following variables are
passed into the comment template:

• $author: Hyperlink author name to the author’s profile page, if he or she has one.

• $comment: Comment object containing all comment attributes.

• $content: The body of the comment.

• $date: Formatted creation date of the post. A different format can be used by calling
format_date(), for example, format_date($comment->timestamp, 'large').

• $links: HTML for contextual links related to the comment such as “edit, “reply,” and
“delete.”

• $new: Returns “new” for a comment yet to be viewed by the currently logged in user and
“updated” for an updated comment. You can change the text returned from $new by
overriding theme_mark() in includes/theme.inc. Drupal doesn’t track which comments
have been read or updated for anonymous users.

• $node: The entire node object for the node to which this comment applies.

• $picture: HTML for the user picture. You must enable picture support at Administer "
User management " User settings, and you must check “User pictures in comments”
on each theme’s configuration page for enabled themes. Finally, either the site adminis-
trator must provide a default picture or the user must upload a picture so there is an
image to display.

• $signature: Filtered HTML of the user’s signature. Signature support must be enabled
at Administer " User management " User settings for this variable to be useful.

CHAPTER 8 ! THE THEME SYSTEM192

09898ch08final 7/30/08 2:21 PM Page 192

• $status: Reflects the comment’s status with one of the following values: comment-
preview, comment-unpublished, and comment-published.

• $submitted: “Submitted by” string with username and date, output from
theme('comment_submitted', $comment).

• $title: Hyperlinked title to this comment, including URL fragment.

box.tpl.php
The box.tpl.php template file is one of the more obscure template files within Drupal. It’s
used in the Drupal core to wrap the comment submission form and search results. Other
than that, it doesn’t have much use. It serves no function for blocks, as one might erroneously
think (because blocks created by the administrator are stored in a database table named
boxes). You have access to the following default variables within the box template:

• $content: The content of a box.

• $region: The region in which the box should be displayed. Examples include header,
left, and main.

• $title: The title of a box.

Other .tpl.php Files
The templates we’ve examined so far are the most commonly used templates. But there are
many other templates available. To view them, browse through the modules directory, and look
for files that end in .tpl.php. For example, modules/forum contains six such files. These files
are nicely documented and can be copied directly into your custom theme’s directory and
modified as needed. This is much more efficient than starting from scratch!

Multiple Page Templates
What if you want to create different layouts for different pages on your site, and a single
page layout isn’t going to cut it? Here is a best practice for creating additional page
templates.

You can create additional page templates within Drupal based on the current system URL
of the site. For example, if you were to visit http://example.com/?q=user/1, PHPTemplate
would look for the following page templates in this order, assuming you were using the
Greyscale theme:

sites/all/themes/custom/greyscale/page-user-1.tpl.php
modules/system/page-user-1.tpl.php
sites/all/themes/custom/greyscale/page-user.tpl.php
modules/system/page-user.tpl.php
sites/all/themes/custom/greyscale/page.tpl.php
modules/system/page.tpl.php

PHPTemplate stops looking for a page template as soon as it finds a template file
to include. The page-user.tpl.php file would execute for all user pages, whereas

CHAPTER 8 ! THE THEME SYSTEM 193

09898ch08final 7/30/08 2:21 PM Page 193

http://example.com/?q=user/1

page-user-1.tpl.php would only execute for the URLs of user/1, user/1/edit, and so on. If
Drupal cannot find a page template anywhere in the theme, it will fall back to its own plain
vanilla built-in template at modules/system/page.tpl.php.

!Note Drupal looks at the internal system URL only, so if you’re using the path or pathauto modules,
which allow you to alias URLs, the page templates will still need to reference Drupal’s system URL and not
the alias.

Let’s use the node editing page at http://example.com/?q=node/1/edit as an example.
Here’s the order of template files PHPTemplate would look for:

sites/all/themes/custom/greyscale/page-node-edit.tpl.php
modules/system/page-node-edit.tpl.php
sites/all/themes/custom/greyscale/page-node-1.tpl.php
modules/system/page-node-1.tpl.php
sites/all/themes/custom/greyscale/page-node.tpl.php
modules/system/page-node.tpl.php
sites/all/themes/custom/greyscale/page.tpl.php
modules/system/page.tpl.php

By looking at the preceding paths, you can see that if you are a module writer you can
easily provide default templates with your module; browse through the modules directory of
your Drupal installation for examples.

!Tip To create a custom page template for the front page of your site, simply create a template file named
page-front.tpl.php.

Advanced Drupal Theming
If you would like to fully understand how theming works in Drupal, there are two essential
areas to understand. You’ll start by learning about the engine that drives the theme system:
the theme registry. Then, you’ll follow a detailed walkthrough of the theme() function so that
you know how it works and where it can be tweaked.

The Theme Registry
The theme registry is where Drupal keeps track of all theming functions and templates. Each
themable item in Drupal is themed by either a function or a template. When Drupal builds the
theme registry, it discovers and maps information about each item. This means the process
does not have to occur at runtime, making Drupal faster.

CHAPTER 8 ! THE THEME SYSTEM194

09898ch08final 7/30/08 2:21 PM Page 194

http://example.com/?q=node/1/edit

How the Registry Is Built
When the theme registry is built, such as when a new theme is enabled, it looks around for
theme hooks in the following order:

1. First, it looks for hook_theme() implementations in modules to discover theme func-
tions and template files provided by modules.

2. If the theme is based on another theme, the hook_theme() implementation in the base
theme engine is called first. For example, Minnelli is a theme based on Garland. The
theme engine for the base theme is PHPTemplate. So phptemplate_theme() is called to
discover theme functions prefixed with phptemplate_ or garland_ and template files
named in a specific way in the base theme directory. For example, the template file
themes/garland/node.tpl.php is added here.

3. The hook_theme() implementation for the theme is called. So in the case of Minnelli,
phptemplate_theme() is called to discover theme functions prefixed with phptemplate_
or minnelli_ and template files in the theme directory. So if Minnelli provided a node
template at themes/garland/minnelli/node.tpl.php, it would be discovered.

Notice that at each step, newly discovered theme functions and template files override
those already in the registry. This is the mechanism for inheritance that allows you to override
any theme function or template file.

Let’s examine a hook_theme() implementation in a module more closely. The job of the
theme hook is to return an array of themable items. When an item is being themed by a theme
function, the arguments of the function are included. For example, the breadcrumb trail is
themed by the function theme_breadcrumb($breadcrumb). So in the theme hook of a hypotheti-
cal foo.module, the fact that breadcrumbs are themable is stated this way:

/**
* Implementation of hook_theme().
*/
foo_theme() {
return array(
'breadcrumb' => array(
'arguments' => array ('breadcrumb' => NULL),

);
);

}

The NULL here is the default value to use if the parameter that will be passed is empty. So
you’re really describing the item’s name and its parameters, complete with their default values.
If there is a file that needs to be included to bring the theme function or template preprocess
function into scope you can specify it using the file key:

CHAPTER 8 ! THE THEME SYSTEM 195

09898ch08final 7/30/08 2:21 PM Page 195

/**
* Implementation of hook_theme().
*/
function user_theme() {
return array(
'user_filter_form' => array(
'arguments' => array('form' => NULL),
'file' => 'user.admin.inc',

),
...

);
}

If you would like to declare that a themable item will utilize a template file instead of a
theme function, you define the name of the template file (without the .tpl.php ending) in
the theme hook:

/**
* Implementation of hook_theme().
*/
function user_theme() {
return array(
'user_profile_item' => array(
'arguments' => array('element' => NULL),
'template' => 'user-profile-item',
'file' => 'user.pages.inc',

),
...

);
}

In the preceding user_profile_item example, the template file that is referred to in the
template key can be inspected at modules/user/user-profile-item.tpl.php. The template
preprocess function can be found in modules/user/user.pages.inc and is called template_
preprocess_user_profile_item(). That preprocess function is passed the variables that were
defined by template_preprocess() as well as the $element variable defined in the arguments
key. The value of the $element variable is assigned during rendering.

A Detailed Walkthrough of theme()
In this section, we’ll go behind the scenes, so you can learn how the theme() function actually
works. Let’s walk through the details of the path of execution when the following theme call is
made and Drupal’s core Bluemarine theme is the active theme:

theme('node', $node, $teaser, $page)

CHAPTER 8 ! THE THEME SYSTEM196

09898ch08final 7/30/08 2:21 PM Page 196

First, Drupal looks at the first argument to find out what is being themed. In this, case it’s
node, so Drupal looks in the theme registry for an entry for node. The registry entry it finds
looks something like Figure 8-7.

Figure 8-7. Registry entry for node when the Bluemarine theme is chosen

If the registry path had a file entry, Drupal would run include_once() for the file to get
any necessary theme functions in scope, but in this case, there is no such entry.

Drupal checks to see if this theme call will be handled by a function or a template file.
If the call will be handled by a function, Drupal simply calls the function and returns the
output. But since no function is defined in the registry entry for this call, Drupal will pre-
pare some variables in order to hand them over to a template file.

To start with, the arguments that were passed in to the theme() function are made avail-
able. The arguments passed in this case were $node, $teaser, and $page. So for each argument
listed in the arguments registry entry, Drupal assigns a corresponding variable:

$variables['node'] = $node;
$variables['teaser'] = $teaser;
$variables['page'] = $page;

Next, the default render function is set to theme_render_template(), and the default
extension is set to .tpl.php (the standard file extension for PHPTemplate templates). The
render function is in charge of handing over the variables to the template file, as you’ll see
in a moment.

The rest of the variables that the template will use are provided by template preprocess
functions. The first, template_preprocess(), is always called for every themed item, whether
that item is a node, block, breadcrumb trail, or what have you. The second is specific to the
item being rendered (in this case, a node). Figure 8-7 shows the two preprocess functions
defined for node, and they are called as follows:

template_preprocess($variables, 'node');
template_preprocess_node($variables, 'node');

CHAPTER 8 ! THE THEME SYSTEM 197

09898ch08final 7/30/08 2:21 PM Page 197

The first function is template_preprocess(). You can see the code for the function at
http://api.drupal.org/api/function/template_preprocess/6 or by looking in includes/
theme.inc. This function sets the variables that are available to all templates (see the “Vari-
ables for All Templates” section).

Preprocess functions come in pairs. The end of the name of the second preprocess func-
tion corresponds with the thing being themed. So while template_preprocess() has just run,
template_preprocess_node() now runs. It adds the following variables: $taxonomy, $content,
$date, $links, $name, $node_url, $terms, and $title. This is shown in the code for template_
preprocess_node(). Note that each entry in the $variables array will become a stand-alone
variable for the template file to use. For example, $variables['date'] will be usable as simply
$date in the template file:

**
* Process variables for node.tpl.php
*
* Most themes utilize their own copy of node.tpl.php. The default is located
* inside "modules/node/node.tpl.php". Look in there for the full list of
* variables.
*
* The $variables array contains the following arguments:
* $node, $teaser, $page
*/
function template_preprocess_node(&$variables) {
$node = $variables['node'];
if (module_exists('taxonomy')) {
$variables['taxonomy'] = taxonomy_link('taxonomy terms', $node);

}
else {
$variables['taxonomy'] = array();

}

if ($variables['teaser'] && $node->teaser) {
$variables['content'] = $node->teaser;

}
elseif (isset($node->body)) {
$variables['content'] = $node->body;

}
else {
$variables['content'] = '';

}

$variables['date'] = format_date($node->created);
$variables['links'] = !empty($node->links) ?
theme('links', $node->links, array('class' => 'links inline')) : '';

$variables['name'] = theme('username', $node);

CHAPTER 8 ! THE THEME SYSTEM198

09898ch08final 7/30/08 2:21 PM Page 198

http://api.drupal.org/api/function/template_preprocess/6

$variables['node_url'] = url('node/'. $node->nid);
$variables['terms'] = theme('links', $variables['taxonomy'],
array('class' => 'links inline'));

$variables['title'] = check_plain($node->title);

// Flatten the node object's member fields.
$variables = array_merge((array)$node, $variables);
...

}

Details on what these variables mean have been provided earlier in this chapter.
After the assignment of variables, something crazy happens. The node itself is con-

verted from an object to an array and is merged with the variables we already have. So any
node property is available to the template file merely by prefixing the name of the property
with a dollar sign. For example, $node->nid is available as $nid. If a node property and a
variable have the same name, the variable takes precedence. For example, the $title vari-
able contains a plain text version of $node->title. When the merge happens, the plain text
version survives and is available to the template file. Note the original title is still accessible
at $variables['node']->title, though it should not be used without being passed through
a filter for security reasons (see Chapter 20).

OK, Drupal has run the preprocess functions. Now a decision needs to be made: which
template file is going to receive all these variables and be used as a template for the node?
To decide that, Drupal examines the following:

1. Are any template files defined in $variables['template_files']? The entries here are
names of the template files that will be looked for by Drupal. In our example, the node
is of type story, so node-story is defined there; Drupal attempts to match a content-
type-specific template before a general node template. See http://drupal.org/node/
190815 for more details.

2. Is $variables['template_file'] set? If so, that takes precedence.

The drupal_discover_template() function decides which template to use. It does so by
looking for the template files in theme paths that are defined in the theme registry entry. In
our case, it looks for themes/bluemarine/node-story.tpl.php and then modules/node/
node-story.tpl.php. If neither file exists (and in this example, neither does: the node mod-
ule does not provide per-node-type template files in its directory and the Bluemarine theme
does not provide a template for story nodes by default—just a general node template), then
the first round of template discovery has failed. Next, Drupal checks a concatenation of the
path, template file, and extension: themes/bluemarine/node.tpl.php. Satisfied that this file
exists, it calls the render function (remember, that’s theme_render_template()) and passes
in the template file choice and the variables’ array.

The render function hands the variables to the template and executes it, returning the
results. In this example, the result is the HTML from the execution of themes/bluemarine/
node.tpl.php.

CHAPTER 8 ! THE THEME SYSTEM 199

09898ch08final 7/30/08 2:21 PM Page 199

http://drupal.org/node

Defining New Block Regions
Regions in Drupal are areas in themes where blocks can be placed. You assign blocks to
regions and organize them within the Drupal administrative interface at Administer "
Site building " Blocks.

The default regions used in themes are left, right, content, header, and footer, although
you can create as many regions as you want. Once declared, they’re made available to your
page template files (for example, page.tpl.php) as a variable. For instance, use <?php print
$header ?> for the placement of the header region. You create additional regions by defining
them within your theme’s .info file.

Theming Drupal’s Forms
Changing the markup within Drupal forms isn’t as easy as creating a template file, because
forms within Drupal are dependent on their own API. Chapter 10 covers how to map theme
functions to forms in detail.

Using the Theme Developer Module
An invaluable resource for working with Drupal themes is the theme developer module. It is
part of devel.module and can be downloaded at http://drupal.org/project/devel. The theme
developer module lets you point to an element on a page and discover which templates or
theme functions were involved in creating that element as well as the variables (and their val-
ues) available to that element. Figure 8-8 gives an example of the information provided to you.

Figure 8-8. The theme developer module

CHAPTER 8 ! THE THEME SYSTEM200

09898ch08final 7/30/08 2:21 PM Page 200

http://drupal.org/project/devel

Summary
After reading this chapter you should be able to

• Understand what theme engines and themes are.

• Understand how PHPTemplate works within Drupal.

• Create template files.

• Override theme functions.

• Manipulate template variables.

• Create new page regions for blocks.

CHAPTER 8 ! THE THEME SYSTEM 201

09898ch08final 7/30/08 2:21 PM Page 201

09898ch08final 7/30/08 2:21 PM Page 202

Working with Blocks

Blocks are snippets of text or functionality that usually live outside the main content area
of a web site, such as in the left or right sidebars, in the header, in the footer, and so on. If
you’ve ever logged in to a Drupal site or navigated to a Drupal administrative interface, then
you’ve used a block. Block permissions and placement are controlled within the administra-
tive interface, simplifying the work of developers when creating blocks. The block configura-
tion page is located at Administer ! Site building ! Blocks (http://example.com/?q=admin/
build/block).

What Is a Block?
Blocks have a title and a description and are used mostly for advertising, code snippets, and
status indicators, not for full-fledged pieces of content; thus, blocks aren’t nodes and don’t
follow the same rules nodes do. Nodes have revision control, fine-grained permissions, the
ability to have comments attached to them, RSS feeds, and taxonomy terms; they are usually
reserved for the beefier content portions of a site.

Regions are sections of the site where blocks are placed. Regions are created and exposed
by themes (in the theme’s .info file) and aren’t defined by the block API. Blocks with no
regions assigned to them aren’t displayed.

Blocks have options to control who can see them and on which pages of the site they
should appear. If the throttle module is enabled, nonessential blocks can also be set to turn off
automatically during times of high traffic. The block overview page is shown in Figure 9-1.

Blocks are defined either through Drupal’s web interface (custom blocks) or programmat-
ically through the block API (module-provided blocks). How do you know which method to
use when creating a block? A one-off block such as a bit of static HTML related to the site is
a good candidate for a custom block. Blocks that are dynamic in nature, related to a module
you’ve written, or that consist of mostly PHP code are excellent candidates for using the block
API and for being implemented within a module. Try to avoid storing PHP code in custom
blocks, as code in the database is harder to maintain than code written in a module. A site
editor can come along and accidentally delete all that hard work too easily. Rather, if it doesn’t
make sense to create a block at the module level, just call a custom function from within the
block and store all that PHP code elsewhere.

203

C H A P T E R 9

09898ch09final 7/30/08 2:18 PM Page 203

http://example.com/?q=admin/build/block
http://example.com/?q=admin/build/block

Figure 9-1. The block overview page showing throttle options when the throttle module
is enabled

"Tip A common practice for blocks and other components that are site-specific is to create a site-specific
module and place the custom functionality for the site inside that module. For example, the developer of a
web site for the Jones Pies and Soda Company may create a jonespiesandsoda module.

Although the block API is simple and driven by a single function, hook_block(), don’t dis-
regard the complexity of what you can do within that framework. Blocks can display just about
anything you want (that is, they are written in PHP and thus are not limited in what they can
do), but they usually play a supporting role to the main content of the site. For example, you
could create a custom navigation block for each user role, or you could expose a block that
lists comments pending approval.

Block Configuration Options
Developers usually don’t need to worry about block visibility, as most of it can be handled
from the block administration pages at Administer ! Site building ! Blocks. Clicking the
“configure” link for a block (see Figure 9-1) will reveal the configuration page for the block.
Using the interface shown in Figure 9-2, you can control the following options:

CHAPTER 9 " WORKING WITH BLOCKS204

09898ch09final 7/30/08 2:18 PM Page 204

• User-specific visibility settings: Administrators can allow individual users to customize
the visibility of a given block for that user within their account settings. Users would
click on their “My account” link to modify block visibility.

• Role-specific visibility settings: Administrators can choose to make a block be visible to
only those users within certain roles.

• Page-specific visibility settings: Administrators can choose to make a block be visible or
hidden on a certain page or range of pages or when your custom PHP code determines
that certain conditions are true.

Figure 9-2. Configuration screen of a block in the administrative interface

CHAPTER 9 " WORKING WITH BLOCKS 205

09898ch09final 7/30/08 2:18 PM Page 205

Block Placement
I mentioned previously that the block administration page gives site administrators a choice
of regions where blocks can appear. On the same page, they can also choose in what order the
blocks are displayed within a region, as shown in Figure 9-1. Regions are defined by the theme
layer in the theme’s .info file, rather than through the block API, and different themes may
expose different regions. Please see Chapter 8 for more information on creating regions.

Defining a Block
Blocks are defined within modules by using hook_block(), and a module can implement mul-
tiple blocks within this single hook. Once a block is defined, it will be shown on the block
administration page. Additionally, a site administrator can manually create custom blocks
through the web interface. In this section, we’ll mostly focus on programmatically creating
blocks. Let’s take a look at the database schema for blocks, shown in Figure 9-3.

Figure 9-3. Database schema for blocks

Block properties for every block are stored in the blocks table. Additional data for blocks
created from within the block configuration interface, such as their content and input format
type, are stored in the boxes table. Lastly, blocks_roles stores the role-based permissions for
each block. The following properties are defined within the columns of the blocks table:

• bid: This is the unique ID of each block.

• module: This column contains the name of the module that defined the block. The user
login block was created by the user module, and so on. Custom blocks created by the
administrator at Administer ! Site building ! Blocks are considered to have been
created by the block module.

CHAPTER 9 " WORKING WITH BLOCKS206

09898ch09final 7/30/08 2:18 PM Page 206

• delta: Because modules can define multiple blocks within hook_block(), the delta
column stores a key for each block that’s unique only for each implementation of
hook_block(), and not for all blocks across the board. A delta can be an integer or
a string.

• theme: Blocks can be defined for multiple themes. Drupal therefore needs to store the
name of the theme for which the block is enabled. Every theme for which the block is
enabled will have its own row in the database. Configuration options are not shared
across themes.

• status: This tracks whether the block is enabled. A value of 1 means that it’s enabled,
while 0 means it’s disabled. When a block doesn’t have a region associated with it,
Drupal sets the status flag to 0.

• weight: The weight of the block determines its position relative to other blocks within
a region.

• region: This is the name of the region in which the block will appear, for example, footer.

• custom: This is the value of the user-specific visibility settings for this block (see Fig-
ure 9-2). A value of 0 means that users cannot control the visibility of this block; a value
of 1 means that the block is shown by default but users can hide it; and a value of 2
means that the block is hidden by default but users can choose to display it.

• throttle: When the throttle module is enabled, this column tracks which blocks
should be throttled. A value of 0 indicates that throttling is disabled, and 1 that it is
eligible to be throttled. The throttle module is used to automatically detect a surge in
incoming traffic and temporarily disable certain processor-intensive parts of a site
(see Chapter 22 for more about the throttle module).

• visibility: This value represents how the block’s visibility is determined. A value of 0
means the block will be shown on all pages except listed pages; a value of 1 means the
block will be shown only on listed pages; and a value of 2 means that Drupal will exe-
cute custom PHP code defined by the administrator to determine visibility.

• pages: The contents of this field depend on the setting in the visibility field. If the
value of the visibility field is 0 or 1, this field will contain a list of Drupal paths. If
the value of the visibility field is 2, the pages field will contain custom PHP code to
be evaluated to determine whether or not to display the block.

• title: This is a custom title for the block. If this field is empty, the block’s default title
(provided by the module that provides the block) will be used. If the field contains
<none>, no title will be displayed for the block. Otherwise, text in this field is used for
the block’s title.

• cache: This value determines how Drupal will cache this block. A value of –1 means the
block will not be cached. A value of 1 means that the block will be cached for each role,
and this is Drupal’s default setting for blocks that do not specify a cache setting. A value
of 2 means the block will be cached for each user. A value of 4 means that the block will
be cached for each page. A value of 8 means that the block will be cached but will be
cached the same way for everyone regardless of role, user, or page.

CHAPTER 9 " WORKING WITH BLOCKS 207

09898ch09final 7/30/08 2:18 PM Page 207

Understanding How Blocks Are Themed
During a page request, the theme system will ask the block system to return a list of blocks for
each region. It does this when generating the variables to send to the page template (usually
page.tpl.php). To gather the themed blocks for each region (such as the footer region),
Drupal executes something like this:

$variables['footer'] = theme('blocks', 'footer');

You might remember from Chapter 8 that theme('blocks') is actually a call to
theme_blocks(). Here’s what theme_blocks() actually does:

/**
* Return a set of blocks available for the current user.
*
* @param $region
* Which set of blocks to retrieve.
* @return
* A string containing the themed blocks for this region.
*/
function theme_blocks($region) {
$output = '';

if ($list = block_list($region)) {
foreach ($list as $key => $block) {
$output .= theme('block', $block);

}
}

// Add any content assigned to this region through drupal_set_content() calls.
$output .= drupal_get_content($region);

return $output;
}

In the preceding code snippet, we iterate through each block for the given region and
execute a theme function call for each block, which will usually result in a block.tpl.php file
being run. For details on how this works and how to override the look and feel of individual
blocks, see Chapter 8. Finally, we return all the themed blocks for that region back to the call-
ing code.

Using the Block Hook
The block hook, hook_block(), handles all the logic for programmatic block creation. Using
this hook, you can declare a single block or a set of blocks. Any module can implement
hook_block() to create blocks. Let’s take a look at the function signature:

function hook_block($op = 'list', $delta = 0, $edit = array())

CHAPTER 9 " WORKING WITH BLOCKS208

09898ch09final 7/30/08 2:18 PM Page 208

Parameter List
The block hook takes the parameters discussed in the sections that follow.

$op

This parameter defines the phases a block passes through. The model of passing an $op
parameter to define a phase of operation is common within the Drupal framework—for
example, hook_nodeapi() and hook_user() also use this model. Possible values for $op follow:

• list: Return an array of all blocks defined by the module. Array keys are the delta
(the unique identifier for this block among all the blocks defined by this module). Each
array value is, in turn, a keyed array that provides vital data about the block. Possible
list values, and their defaults, follow:

• info: This value is required. A translatable string (i.e., wrapping the string in the t()
function) provides a description of the block suitable for site administrators.

• cache: How should the block be cached? Possible values are BLOCK_NO_CACHE (do
not cache the block), BLOCK_CACHE_PER_ROLE (cache the block for each role),
BLOCK_CACHE_PER_USER (cache the block for each user—not a good idea on a site
with lots of users!), BLOCK_CACHE_PER_PAGE (cache the block for each page), and
BLOCK_CACHE_GLOBAL (cache the block just once for everyone).

• status: Should the block be enabled by default—TRUE or FALSE? The default is
FALSE.

• region: The default region may be set by the block. Of course, the block can be
moved by the administrator to a different region. The region value only has an
effect if the status value is TRUE; if the block is not enabled the region is set to None.

• weight: This controls the arrangement of a block when displayed within its region.
A block with lighter weight will rise to the top of the region vertically and left of the
region horizontally. A block with a heavy weight will sink to the bottom or to the
right of the region. The default weight is 0.

• pages: Defines the default pages on which the block should be visible. Default is an
empty string. The value of pages consists of Drupal paths separated by line breaks.
The * character is a wildcard. Example paths are blog for the blog page and blog/*
for every personal blog. <front> is the front page.

• custom: TRUE means this is a custom block, and FALSE means that it’s a block imple-
mented by a module.

• title: The default block title.

• configure: Return a form definition array of fields for block-specific settings. This is
merged with the overall form on the block configuration page, allowing you to extend
the ways in which the block can be configured. If you implement this, you also need to
implement the save operation (see the next list item).

CHAPTER 9 " WORKING WITH BLOCKS 209

09898ch09final 7/30/08 2:18 PM Page 209

• save: The save operation happens when the configuration form is submitted. This is
when your module can save custom block configuration information that you collected
in the configure operation. The data that you want to save is contained in the $edit
parameter. No return value is needed.

• view: The block is being displayed. Return an array containing the block’s title and
content.

$delta

This is ID of the block to return. You can use an integer or a string value for $delta. Note that
$delta is ignored when the $op parameter is list because it is in the list operation that
deltas are defined.

$edit

When $op is save, $edit contains the submitted form data from the block configuration form.

Building a Block
For this example, you’ll create two blocks that make content moderation easier to manage.
First, you’ll create a block to list comments being held pending approval, then you’ll create
a block to list unpublished nodes. Both blocks will also provide links to the edit form for each
piece of moderated content.

Let’s create a new module named approval.module to hold our block code. Create a new
folder named approval within sites/all/modules/custom (you might need to create the
modules and custom folders if they don’t exist).

Next, add approval.info to the folder:

; Id
name = Approval
description = Blocks for facilitating pending content workflow.
package = Pro Drupal Development
core = 6.x

Then, add approval.module as well:

<?php
// Id

/**
* @file
* Implements various blocks to improve pending content workflow.
*/

Once you’ve created these files, enable the module via Administer ! Site building !
Modules. You’ll continue to work within approval.module, so keep your text editor open.

CHAPTER 9 " WORKING WITH BLOCKS210

09898ch09final 7/30/08 2:18 PM Page 210

Let’s add our block hook and implement the list operation, so our block appears in the
list of blocks on the block administration page (see Figure 9-4):

/**
* Implementation of hook_block().
*/
function approval_block($op = 'list', $delta = 0, $edit = array()) {
switch ($op) {
case 'list':
$blocks[0]['info'] = t('Pending comments');
$blocks[0]['cache'] = BLOCK_NO_CACHE;
return $blocks;

}
}

Figure 9-4. “Pending comments” is now a block listed on the block overview page under the
Disabled heading. It can now be assigned to a region.

Note that the value of info isn’t the title of the block that shows up to users once the
block is enabled; rather, info is a description that only appears in the list of blocks the
administrator can configure. You’ll implement the actual block title later in the view case.
First, though, you’re going to set up additional configuration options. To do this, implement
the configure case as shown in the following code snippet. You create a new form field that’s
visible after clicking the configure link next to the block on the block administration page,
shown in Figure 9-5.

CHAPTER 9 " WORKING WITH BLOCKS 211

09898ch09final 7/30/08 2:18 PM Page 211

function approval_block($op = 'list', $delta = 0, $edit = array()) {
switch ($op) {
case 'list':
$blocks[0]['info'] = t('Pending comments');
$blocks[0]['cache'] = BLOCK_NO_CACHE;
return $blocks;

case 'configure':
$form['approval_block_num_posts'] = array(
'#type' => 'textfield',
'#title' => t('Number of pending comments to display'),
'#default_value' => variable_get('approval_block_num_posts', 5),

);
return $form;

}
}

Figure 9-5. Block configuration form with the block’s custom fields

When the block configuration form shown in Figure 9-6 is submitted, it will trigger the
next $op, which is save. You’ll use this next phase to save the value of the form field:

function approval_block($op = 'list', $delta = 0, $edit = array()) {
switch ($op) {
case 'list':
$blocks[0]['info'] = t('Pending comments');
$blocks[0]['cache'] = BLOCK_NO_CACHE;
return $blocks;

case 'configure':
$form['approval_block_num_posts'] = array(
'#type' => 'textfield',
'#title' => t('Number of pending comments to display'),
'#default_value' => variable_get('approval_block_num_posts', 5),

);
return $form;

CHAPTER 9 " WORKING WITH BLOCKS212

09898ch09final 7/30/08 2:18 PM Page 212

case 'save':
variable_set('approval_block_num_posts',
(int)$edit['approval_block_num_posts']);

break;
}

}

You save the number of pending comments to display using Drupal’s built-in variable
system with variable_set(). Note how we typecast the value to an integer as a sanity check.
Finally, add the view operation and return a list of pending comments when the block is
viewed:

function approval_block($op = 'list', $delta = 0, $edit = array()) {
switch ($op) {
case 'list':
$blocks[0]['info'] = t('Pending comments');
return $blocks;

case 'configure':
$form['approval_block_num_posts'] = array(
'#type' => 'textfield',
'#title' => t('Number of pending comments to display'),
'#default_value' => variable_get('approval_block_num_posts', 5),

);
return $form;

case 'save':
variable_set('approval_block_num_posts',
(int)$edit['approval_block_num_posts']);

break;

case 'view':
if (user_access('administer comments')) {
// Retrieve the number of pending comments to display that
// we saved earlier in the 'save' op, defaulting to 5.
$num_posts = variable_get('approval_block_num_posts', 5);

// Query the database for unpublished comments.
$result = db_query_range('SELECT c.* FROM {comments} c WHERE
c.status = %d ORDER BY c.timestamp', COMMENT_NOT_PUBLISHED, 0,
$num_posts);

// Preserve our current location so user can return after editing.
$destination = drupal_get_destination();

CHAPTER 9 " WORKING WITH BLOCKS 213

09898ch09final 7/30/08 2:18 PM Page 213

$items = array();
while ($comment = db_fetch_object($result)) {
$items[] = l($comment->subject, 'node/'. $comment->nid,

array('fragment' => 'comment-'. $comment->cid)) .' '.
l(t('[edit]'), 'comment/edit/'. $comment->cid,
array('query' => $destination));

}

$block['subject'] = t('Pending comments');
// We theme our array of links as an unordered list.
$block['content'] = theme('item_list', $items);

}
return $block;

}
}

Here, we’re querying the database for the comments that need approval and displaying
the comment titles as links, along with an edit link for each comment, as shown in Figure 9-6.

Take note of how we used drupal_get_destination() in the preceding code. This function
remembers the page you were on before you submitted a form, so after you update the com-
ment form to publish or delete a comment, you’ll be automatically redirected from whence
you came.

You also set the title of the block with the following line:

$block['subject'] = t('Pending comments');

Figure 9-6. The “Pending comments” listing block after it has been enabled. It shows two pending
comments.

Now that the “Pending comments” block is finished, let’s define another block within this
approval_block() function—one that lists all unpublished nodes and provides a link to their
edit page:

function approval_block($op = 'list', $delta = 0, $edit = array()) {
switch ($op) {
case 'list':
$blocks[0]['info'] = t('Pending comments');
$blocks[0]['cache'] = BLOCK_NO_CACHE;

CHAPTER 9 " WORKING WITH BLOCKS214

09898ch09final 7/30/08 2:18 PM Page 214

$blocks[1]['info'] = t('Unpublished nodes');
$blocks[1]['cache'] = BLOCK_NO_CACHE;
return $blocks;

}
}

Notice how the blocks are each assigned a key ($blocks[0], $blocks[1], . . . $blocks[n]).
The block module will subsequently use these keys as the $delta parameter. Here, we’ve
defined the $delta IDs to be 0 for the “Pending comments” block and 1 for the “Unpublished
nodes” block. These could just as easily have been pending and unpublished. It’s at the pro-
grammer’s discretion to decide which keys to use, and the keys need not be numeric.

Here’s the complete function; our new block is shown in Figure 9-7:

function approval_block($op = 'list', $delta = 0, $edit = array()) {
switch ($op) {
case 'list':
$blocks[0]['info'] = t('Pending comments');
$blocks[0]['cache'] = BLOCK_NO_CACHE;

$blocks[1]['info'] = t('Unpublished nodes');
$blocks[1]['cache'] = BLOCK_NO_CACHE;
return $blocks;

case 'configure':
// Only in block 0 (the Pending comments block) can one
// set the number of comments to display.
$form = array();
if ($delta == 0) {
$form['approval_block_num_posts'] = array(
'#type' => 'textfield',
'#title' => t('Number of pending comments to display'),
'#default_value' => variable_get('approval_block_num_posts', 5),

);
}
return $form;

case 'save':
if ($delta == 0) {
variable_set('approval_block_num_posts', (int)
$edit['approval_block_num_posts']);

}
break;

CHAPTER 9 " WORKING WITH BLOCKS 215

09898ch09final 7/30/08 2:18 PM Page 215

case 'view':
if ($delta == 0 && user_access('administer comments')) {
// Retrieve the number of pending comments to display that
// we saved earlier in the 'save' op, defaulting to 5.
$num_posts = variable_get('approval_block_num_posts', 5);
// Query the database for unpublished comments.
$result = db_query_range('SELECT c.* FROM {comments} c WHERE c.status = %d
ORDER BY c.timestamp', COMMENT_NOT_PUBLISHED, 0, $num_posts);

$destination = drupal_get_destination();
$items = array();
while ($comment = db_fetch_object($result)) {
$items[] = l($comment->subject, 'node/'. $comment->nid,

array('fragment' => 'comment-'. $comment->cid)) .' '.
l(t('[edit]'), 'comment/edit/'. $comment->cid,
array('query' => $destination));

}

$block['subject'] = t('Pending Comments');
// We theme our array of links as an unordered list.
$block['content'] = theme('item_list', $items);

}
elseif ($delta == 1 && user_access('administer nodes')) {
// Query the database for the 5 most recent unpublished nodes.
// Unpublished nodes have their status column set to 0.
$result = db_query_range('SELECT title, nid FROM {node} WHERE
status = 0 ORDER BY changed DESC', 0, 5);

$destination = drupal_get_destination();
while ($node = db_fetch_object($result)) {
$items[] = l($node->title, 'node/'. $node->nid). ' '.

l(t('[edit]'), 'node/'. $node->nid .'/edit',
array('query' => $destination));

}

$block['subject'] = t('Unpublished nodes');
// We theme our array of links as an unordered list.
$block['content'] = theme('item_list', $items);

}
return $block;

}
}

Because you have multiple blocks, you use the if . . . elseif construct under the view op.
In each case you check the $delta of the block being viewed to see if you should run the code.
In a nutshell, it looks like this:

CHAPTER 9 " WORKING WITH BLOCKS216

09898ch09final 7/30/08 2:18 PM Page 216

if ($delta == 0) {
// Do something to block 0

}
elseif ($delta == 1) {
// Do something to block 1

}
elseif ($delta == 2) {
// Do something to block 2

}
return $block;

The result of your new unpublished nodes block is shown in Figure 9-7.

Figure 9-7. A block listing unpublished nodes

Bonus Example: Adding a Pending Users Block
If you’d like to extend approval.module, you could add another block that displays a list of
user accounts that are pending administrative approval. It’s left as an exercise for you to
add this to the existing approval.module. Here it’s shown as a block in a hypothetical
userapproval.module.

function userapproval_block($op = 'list', $delta = 0, $edit = array()) {
switch ($op) {
case 'list':
$blocks[0]['info'] = t('Pending users');
return $blocks;

case 'view':
if (user_access('administer users')) {
$result = db_query_range('SELECT uid, name, created FROM {users}
WHERE uid != 0 AND status = 0 ORDER BY created DESC', 0, 5);

$destination = drupal_get_destination();
// Defensive coding: we use $u instead of $user to avoid potential namespace
// collision with global $user variable should this code be added to later.
while ($u = db_fetch_object($result)) {
$items[] = theme('username', $u). ' '.
l('[edit]', 'user/'. $u->uid. '/edit', array('query' => $destination));

}

CHAPTER 9 " WORKING WITH BLOCKS 217

09898ch09final 7/30/08 2:18 PM Page 217

$block['subject'] = t('Pending users');
$block['content'] = theme('item_list', $items);

}
return $block;

}
}

Enabling a Block When a Module Is Installed
Sometimes, you want a block to show up automatically when a module is installed. This is
fairly straightforward, and is done through a query that inserts the block settings directly into
the blocks table. The query goes within hook_install(), located in your module’s .install
file. Here’s an example of the user module enabling the user login block when Drupal is being
installed (see modules/system/system.install):

db_query("INSERT INTO {blocks} (module, delta, theme, status, weight, region,
pages, cache) VALUES ('%s', '%s', '%s', %d, %d, '%s', '%s', %d)",
'user', '0', 'garland', 1, 0, 'left', '', -1);

The preceding database query inserts the block into the blocks table and sets its status to
1 so it is enabled. It is assigned to the left region; that is, the left sidebar.

Block Visibility Examples
Within the block administrative interface, you can enter snippets of PHP code in the “Page vis-
ibility settings” section of the block configuration page. When a page is being built, Drupal will
run the PHP snippet to determine whether a block will be displayed. Examples of some of the
most common snippets follow; each snippet should return TRUE or FALSE to indicate whether
the block should be visible for that particular request.

Displaying a Block to Logged-In Users Only
Only return TRUE when $user->uid is not 0.

<?php
global $user;
return (bool) $user->uid;

?>

Displaying a Block to Anonymous Users Only
Only return TRUE when $user->uid is 0.

<?php
global $user;
return !(bool) $user->uid;

?>

CHAPTER 9 " WORKING WITH BLOCKS218

09898ch09final 7/30/08 2:18 PM Page 218

Summary
In this chapter, you learned the following:

• What blocks are and how they differ from nodes

• How block visibility and placement settings work

• How to define a block or multiple blocks

• How to enable a block by default

CHAPTER 9 " WORKING WITH BLOCKS 219

09898ch09final 7/30/08 2:18 PM Page 219

09898ch09final 7/30/08 2:18 PM Page 220

The Form API

Drupal features an application programming interface (API) for generating, validating, and
processing HTML forms. The form API abstracts forms into a nested array of properties and
values. The array is then rendered by the form rendering engine at the appropriate time while
a page is being generated. There are several implications of this approach:

• Rather than output HTML, we create an array and let the engine generate the HTML.

• Since we are dealing with a representation of the form as structured data, we can add,
delete, reorder, and change forms. This is especially handy when you want to modify
a form created by a different module in a clean and unobtrusive way.

• Any form element can be mapped to any theme function.

• Additional form validation or processing can be added to any form.

• Operations with forms are protected against form injection attacks, where a user
modifies a form and then tries to submit it.

• The learning curve for using forms is a little steeper!

In this chapter, we’ll face the learning curve head on. You’ll learn how the forms engine
works; how to create forms, validate them, process them; and how to pummel the rendering
engine into submission when you want to make an exception to the rule. This chapter covers
the form API as implemented in Drupal 6. We will start by examining how the form process-
ing engine works. If you are just starting out with forms in Drupal and want to start with an
example, you might want to jump ahead to the section titled “Creating Basic Forms.” If you
are looking for details about individual form properties, you’ll find it in the last part of the
chapter in the section titled “Form API Properties.”

Understanding Form Processing
Figure 10-1 shows an overview of the form building, validation, and submission process. In
the following sections, we’ll be using this figure as a guide and describing what happens along
the way.

221

C H A P T E R 1 0

09898ch10final 7/30/08 2:14 PM Page 221

Figure 10-1. How Drupal handles forms

CHAPTER 10 ! THE FORM API222

09898ch10final 7/30/08 2:15 PM Page 222

In order to interact with the forms API intelligently, it’s helpful to know how the engine
behind the API works. Modules describe forms to Drupal using associative arrays. Drupal’s
form engine takes care of generating HTML for the forms to be displayed and securely pro-
cessing submitted forms using three phases: validation, submission, and redirection. The
following sections explain what happens when you call drupal_get_form().

Initializing the Process
There are three variables that are very important when dealing with forms. The first, $form_id,
contains a string identifying the form. The second, $form, is a structured array describing the
form. And the third, $form_state, contains information about the form, such as the form’s val-
ues and what should happen when form processing is finished. drupal_get_form() begins by
initializing $form_state.

Setting a Token
One of the form system’s advantages is that it strives to guarantee that the form being sub-
mitted is actually the form that Drupal created, for security and to counteract spammers or
would-be site attackers. To do this, Drupal sets a private key for each Drupal installation. The
key is generated randomly during the installation process and distinguishes this particular
Drupal installation from other installations of Drupal. Once the key is generated, it’s stored
in the variables table as drupal_private_key. A pseudorandom token based on the private
key is sent out in the form in a hidden field and tested when the form is submitted. See
http://drupal.org/node/28420 for background information. Tokens are used for logged-in
users only, as pages for anonymous users are usually cached, resulting in a nonunique token.

Setting an ID
A hidden field containing the form ID of the current form is sent to the browser as part of
the form. This ID usually corresponds with the function that defines the form and is sent
as the first parameter of drupal_get_form(). For example, the function user_register()
defines the user registration form and is called this way:

$output = drupal_get_form('user_register');

Collecting All Possible Form Element Definitions
Next, element_info() is called. This invokes hook_elements() on all modules that imple-
ment it. Within Drupal core, the standard elements, such as radio buttons and check boxes,
are defined by modules/system/system.module’s implementation of hook_elements() (see
system_elements()). Modules implement this hook if they want to define their own ele-
ment types. You might implement hook_elements() in your module because you want a
special kind of form element, like an image upload button that shows you a thumbnail
during node preview, or because you want to extend an existing form element by defining
more properties.

For example, the contributed fivestar module defines its own element type:

CHAPTER 10 ! THE FORM API 223

09898ch10final 7/30/08 2:15 PM Page 223

http://drupal.org/node/28420

/**
* Implementation of hook_elements().
*
* Defines 'fivestar' form element type.
*/
function fivestar_elements() {
$type['fivestar'] = array(
'#input' => TRUE,
'#stars' => 5,
'#widget' => 'stars',
'#allow_clear' => FALSE,
'#auto_submit' => FALSE,
'#auto_submit_path' => '',
'#labels_enable' => TRUE,
'#process' => array('fivestar_expand'),

);
return $type;

}

And the TinyMCE module uses hook_elements() to potentially modify the default prop-
erties of an existing type. TinyMCE adds a #process property to the textarea element type so
that when the form is being built it will call tinymce_process_textarea(), which may modify
the element. The #process property is an array of function names to call.

/**
* Implementation of hook_elements().
*/
function tinymce_elements() {
$type = array();

if (user_access('access tinymce')) {
// Let TinyMCE potentially process each textarea.
$type['textarea'] = array(
'#process' => array('tinymce_process_textarea'),

);
}

return $type;
}

The element_info() hook collects all the default properties for all form elements and
keeps them in a local cache. Any default properties that are not yet present in the form defini-
tion are added before continuing to the next step—looking for a validator for the form.

CHAPTER 10 ! THE FORM API224

09898ch10final 7/30/08 2:15 PM Page 224

Looking for a Validation Function
A validation function for a form can be assigned by setting the #validate property in the form
to an array with the function name as the key and an array as the value. Anything that appears
in the latter array will be passed to the function when it is called. Multiple validators may be
defined in this way:

// We want foo_validate() and bar_validate() to be called during form validation.
$form['#validate'][] = 'foo_validate';
$form['#validate'][] = 'bar_validate';

// Optionally stash a value in the form that the validator will need
// by creating a unique key in the form.
$form['#value_for_foo_validate'] = 'baz';

If there is no property named #validate in the form, the next step is to look for a function
with the name of the form ID plus _validate. So if the form ID is user_register, the form’s
#validate property will be set to user_register_validate.

Looking for a Submit Function
The function that handles form submission can be assigned by setting the #submit property
in the form to an array with the name of the function that will handle form submission:

// Call my_special_submit_function() on form submission.
$form['#submit'][] = 'my_special_submit_function';
// Also call my_second_submit_function().
$form['#submit'][] = 'my_second_submit_function';

If there is no property named #submit, Drupal tests to see if a function named with the
form ID plus _submit exists. So if the form ID is user_register, Drupal sets the #submit prop-
erty to the form processor function it found; that is, user_register_submit.

Allowing Modules to Alter the Form Before It’s Built
Before building the form, modules have two chances to alter the form. Modules can imple-
ment a function named from the form_id plus _alter, or they may simply implement
hook_form_alter(). Any module that implements either of these can modify anything in
the form. This is the primary way to change, override, and munge forms that are created
by modules other than your own.

Building the Form
The form is now passed to form_builder(), which processes through the form tree recursively
and adds standard required values. This function also checks the #access key for each element
and denies access to form elements and their children if #access is FALSE for the element.

CHAPTER 10 ! THE FORM API 225

09898ch10final 7/30/08 2:15 PM Page 225

Allowing Functions to Alter the Form After It’s Built
Each time form_builder() encounters a new branch in the $form tree (for example, a new
fieldset or form element), it looks for a property called #after_build. This is an optional
array of functions to be called once the current form element has been built. When the
entire form has been built, a final call is made to the optional functions whose names may
be defined in $form['#after_build']. All #after_build functions receive $form and
$form_state as parameters. An example of its use in core is during the display of the file
system path at Administer " Site configuration " File system. An #after_build function
(in this case system_check_directory()) runs to determine if the directory does not exist or
is not writable and sets an error against the form element if problems are encountered.

Checking If the Form Has Been Submitted
If you’ve been following along in Figure 10-1, you’ll see that we have come to a branch point.
If the form is being displayed for the first time, Drupal will go on to create the HTML for the
form. If the form is being submitted, Drupal will go on to process the data that was entered
in the form; we’ll come back to that case in a moment (see the “Validating the Form” section
later in the chapter). We’ll assume for now the form is being displayed for the first time. It is
important to realize that Drupal does all of the work described previously both when a form
is being displayed for the first time and when a form is being submitted.

Finding a Theme Function for the Form
If $form['#theme'] has been set to an existing function, Drupal simply uses that function to
theme the form. If not, the theme registry is checked for an entry that corresponds with the
form ID of this form. If such an entry is found, the form ID is assigned to $form['#theme'],
so later when Drupal renders the form, it will look for a theme function based on the form
ID. For example, if the form ID is taxonomy_overview_terms, Drupal will call the correspon-
ding theme function theme_taxonomy_overview_terms(). Of course, that theme function
could be overridden by a theme function or template file in a custom theme; see Chapter 8
for details on how themable items are themed.

Allowing Modules to Modify the Form Before It’s Rendered
The only thing left to do is to transform the form from a data structure to HTML. But just
before that happens, modules have a last chance to tweak things. This can be useful for multi-
page form wizards or other approaches that need to modify the form at the last minute. Any
function defined in the $form['#pre_render'] property is called and passed the form being
rendered.

Rendering the Form
To convert the form tree from a nested array to HTML code, the form builder calls
drupal_render(). This recursive function goes through each level of the form tree, and with
each, it performs the following actions:

CHAPTER 10 ! THE FORM API226

09898ch10final 7/30/08 2:15 PM Page 226

1. Determine if the #children element has been defined (synonymous with content
having been generated for this element); if not, render the children of this tree node
as follows:

• Determine if a #theme function has been defined for this element.

• If so, temporarily set the #type of this element to markup. Next, pass this element
to the theme function, and reset the element back to what it was.

• If no content was generated (either because no #theme function was defined for
this element or because the call to the #theme function was not found in the theme
registry or returned nothing), each of the children of this element are rendered in
turn (i.e., by passing the child element to drupal_render()).

• On the other hand, if content was generated by the #theme function, store the con-
tent in the #children property of this element.

2. If the element itself has not yet been rendered, call the default theme function for the
#type of this element. For example, if this element is a text field in a form (i.e., the
#type property has been set to textfield in the form definition), the default theme
function will be theme_textfield(). If the #type of this element has not been set,
default to markup. Default theme functions for core elements such as text fields are
found in includes/form.inc.

3. If content was generated for this element and one or more function names are found
in the #post_render property, call each of them, and pass the content and the element.
The #post_render function(s) must return the final content.

4. Prepend #prefix and append #suffix to the content, and return it from the function.

The effect of this recursive iteration is that HTML is generated for every level of the form
tree. For example, in a form with a fieldset with two fields, the #children element of the field-
set will contain HTML for the fields inside it, and the #children element of the form will
contain all of the HTML for the form (including the fieldset’s HTML).

This generated HTML is then returned to the caller of drupal_get_form(). That’s all it
takes! We’ve reached the “Return HTML” endpoint in Figure 10-1.

Validating the Form
Now let’s go back in Figure 10-1, to the place where we branched off in “Checking if the Form
has been Submitted.” Let’s assume that the form has been submitted and contains some data;
we’ll take the other branch and look at that case. Drupal’s form processing engine determines
whether a form has been submitted is based on $_POST being nonempty and the presence of a
string at $_POST['form_id'] that matches the ID of the form definition that was just built (see
the “Setting an ID” section). When a match is found, Drupal validates the form.

The purpose of validation is to check that the values that are being submitted are rea-
sonable. Validation will either pass or fail. If validation fails at any point, the form will be
redisplayed with the validation errors shown to the user. If all validation passes, Drupal will
move on to the actual processing of the submitted values.

CHAPTER 10 ! THE FORM API 227

09898ch10final 7/30/08 2:15 PM Page 227

Token Validation
The first check in validation is to determine whether this form uses Drupal’s token mechanism
(see the “Setting a Token” section). All Drupal forms that use tokens have a unique token that
is sent out with the form and expected to be submitted along with other form values. If the
token in the submitted data does not match the token that was set when the form was built,
or if the token is absent, validation fails (though the rest of validation is still carried out so that
other validation errors can also be flagged).

Built-in Validation
Next, required fields are checked to see if the user left them empty. Fields with a #maxlength
property are checked to make sure the maximum number of characters has not been
exceeded. Elements with options (check boxes, radio buttons, and drop-down selection
fields) are examined to see if the selected value is actually in the original list of options
present when the form was built.

Element-Specific Validation
If there is an #element_validate property defined for an individual form element, the func-
tions defined in the property are called and passed the $form_state and $element.

Validation Callbacks
Finally, the form ID and form values are handed over to the validator function(s) specified
for the form (usually the name of the form ID plus _validate).

Submitting the Form
If validation passes, it’s time to pass the form and its values to a function that will finally do
something as a result of the form’s submission. Actually, more than one function could pro-
cess the form, since the #submit property can contain an array of function names. Each
function is called and passed $form and $form_state.

Redirecting the User
The function that processes the form should set $form_state['redirect'] to a Drupal path
to which the user will be redirected, such as node/1234. If there are multiple functions in the
#submit property, the last function to set $form_state['redirect'] will win. If no function sets
$form_state['redirect'] to a Drupal path, the user is returned to the same page (that is, the
value of $_GET['q']). Returning FALSE from the final submit function avoids redirection.

The redirect set in $form_state['redirect'] by a submit function can be overridden by
defining a #redirect property in the form, such as

$form['#redirect'] = 'node/1'

or

$form['#redirect'] = array('node/1', $query_string, $named_anchor)

CHAPTER 10 ! THE FORM API228

09898ch10final 7/30/08 2:15 PM Page 228

Using the parameter terms used in drupal_goto(), the last example could be written as

$form['#redirect'] = array('node/1', $query, $fragment)

Determination of form redirection is carried out by drupal_redirect_form() in includes/
form.inc. The actual redirection is carried out by drupal_goto(), which returns a Location
header to the web server. The parameters that drupal_goto() takes correspond to the mem-
bers of the array in the latter example: drupal_goto($path = '', $query = NULL, $fragment
= NULL).

Creating Basic Forms
If you come from a background where you have created your own forms directly in HTML,
you may find Drupal’s approach a bit baffling at first. The examples in this section are
intended to get you started quickly with your own forms. To begin, we’ll write a simple mod-
ule that asks you for your name and prints it on the screen. We’ll put it in our own module,
so we don’t have to modify any existing code. Our form will have only two elements: the text
input field and a submit button. We’ll start by creating a .info file at sites/all/modules/
custom/formexample/formexample.info and entering the following:

; Id
name = Form example
description = Shows how to build a Drupal form.
package = Pro Drupal Development
core = 6.x

Next, we’ll put the actual module into sites/all/modules/custom/formexample/
formexample.module:

<?php
// Id

/**
* @file
* Play with the Form API.
*/

/**
* Implementation of hook_menu().
*/
function formexample_menu() {
$items['formexample'] = array(
'title' => 'View the form',
'page callback' => 'formexample_page',
'access arguments' => array('access content'),

);
return $items;

}

CHAPTER 10 ! THE FORM API 229

09898ch10final 7/30/08 2:15 PM Page 229

/**
* Menu callback.
* Called when user goes to http://example.com/?q=formexample
*/
function formexample_page() {
$output = t('This page contains our example form.');

// Return the HTML generated from the $form data structure.
$output .= drupal_get_form('formexample_nameform');
return $output;

}

/**
* Define a form.
*/
function formexample_nameform() {
$form['user_name'] = array(
'#title' => t('Your Name'),
'#type' => 'textfield',
'#description' => t('Please enter your name.'),

);
$form['submit'] = array(
'#type' => 'submit',
'#value' => t('Submit')

);
return $form;

}

/**
* Validate the form.
*/
function formexample_nameform_validate($form, &$form_state) {
if ($form_state['values']['user_name'] == 'King Kong') {
// We notify the form API that this field has failed validation.
form_set_error('user_name',
t('King Kong is not allowed to use this form.'));

}
}

/**
* Handle post-validation form submission.
*/
function formexample_nameform_submit($form, &$form_state) {
$name = $form_state['values']['user_name'];
drupal_set_message(t('Thanks for filling out the form, %name',
array('%name' => $name)));

}

CHAPTER 10 ! THE FORM API230

09898ch10final 7/30/08 2:15 PM Page 230

http://example.com/?q=formexample

We’ve implemented the basic functions you need to handle forms: one function to
define the form, one to validate it, and one to handle form submission. Additionally, we
implemented a menu hook and a function so that a URL could be associated with our func-
tion. Our simple form should look like the one shown in Figure 10-2.

Figure 10-2. A basic form for text input with a submit button

The bulk of the work goes into populating the form’s data structure, that is, describing the
form to Drupal. This information is contained in a nested array that describes the elements
and properties of the form and is typically contained in a variable called $form.

The important task of defining a form happens in formexample_nameform() in the preced-
ing example, where we’re providing the minimum amount of information needed for Drupal
to display the form.

!Note What is the difference between a property and an element? The basic difference is that properties
cannot have properties, while elements can. An example of an element is the submit button. An example of
a property is the #type property of the submit button element. You can always recognize properties,
because they are prefixed with the # character. We sometimes call properties keys, because they have a
value, and to get to the value, you have to know the name of the key. A common beginner’s mistake is to
forget the # before a property name. Drupal, and you, will be very confused if you do this. If you see the
error “Cannot use string offset as an array in form.inc” you probably forgot the leading # character.

Form Properties
Some properties can be used anywhere, and some can be used only in a given context, like
within a button. For a complete list of properties, see the end of this chapter. Here’s a more
complex version of a form than that given in our previous example:

CHAPTER 10 ! THE FORM API 231

09898ch10final 7/30/08 2:15 PM Page 231

$form['#method'] = 'post';
$form['#action'] = 'http://example.com/?q=foo/bar';
$form['#attributes'] = array(
'enctype' => 'multipart/form-data',
'target' => 'name_of_target_frame'

);
$form['#prefix'] = '<div class="my-form-class">';
$form['#suffix'] = '</div>';

The #method property defaults to post and can be omitted. The get method is not sup-
ported by the forms API and is not usually used in Drupal, because it’s easy to use the auto-
matic parsing of arguments from the path by the menu routing mechanism. The #action
property is defined in system_elements() and defaults to the result of the function
request_uri(). This is typically the same URL that displayed the form.

Form IDs
Drupal needs to have some way of uniquely identifying forms, so it can determine which form
is submitted when there are multiple forms on a page and can associate forms with the func-
tions that should process that particular form. To uniquely identify a form, we assign each
form a form ID. The ID is defined in the call to drupal_get_form(), like this:

drupal_get_form('mymodulename_identifier');

For most forms, the ID is created by the convention “module name” plus an identifier
describing what the form does. For example, the user login form is created by the user module
and has the ID user_login.

Drupal uses the form ID to determine the names of the default validation, submission,
and theme functions for the form. Additionally, Drupal uses the form ID as a basis for gen-
erating an HTML ID attribute in the <form> tag for that specific form, so forms in Drupal
always have a unique ID. You can override the ID by setting the #id property:

$form['#id'] = 'my-special-css-identifier';

The resulting HTML tag will look something like this:

<form action="/path" "accept-charset="UTF-8" method="post"
id="my-special-css-identifier">

The form ID is also embedded into the form as a hidden field named form_id. In our
example, we chose formexample_nameform as the form ID because it describes our form. That
is, the purpose of our form is for the user to enter his or her name. We could have just used
formexample_form, but that’s not very descriptive—and later we might want to add another
form to our module.

CHAPTER 10 ! THE FORM API232

09898ch10final 7/30/08 2:15 PM Page 232

http://example.com/?q=foo/bar

Fieldsets
Often, you want to split your form up into different fieldsets—the form API makes this easy.
Each fieldset is defined in the data structure and has fields defined as children. Let’s add a
favorite color field to our example:

function formexample_nameform() {
$form['name'] = array(
'#title' => t('Your Name'),
'#type' => 'fieldset',
'#description' => t('What people call you.')

);
$form['name']['user_name'] = array(
'#title' => t('Your Name'),
'#type' => 'textfield',
'#description' => t('Please enter your name.')

);
$form['color'] = array(
'#title' => t('Color'),
'#type' => 'fieldset',
'#description' => t('This fieldset contains the Color field.'),
'#collapsible' => TRUE,
'#collapsed' => FALSE

);
$form['color_options'] = array(
'#type' => 'value',
'#value' => array(t('red'), t('green'), t('blue'))

);
$form['color']['favorite_color'] = array(
'#title' => t('Favorite Color'),
'#type' => 'select',
'#description' => t('Please select your favorite color.'),
'#options' => $form['color_options']['#value']

);
$form['submit'] = array(
'#type' => 'submit',
'#value' => t('Submit')

);
return $form;

}

The resulting form looks like the one shown in Figure 10-3.

CHAPTER 10 ! THE FORM API 233

09898ch10final 7/30/08 2:15 PM Page 233

Figure 10-3. A simple form with fieldsets

We used the optional #collapsible and #collapsed properties to tell Drupal to make the
second fieldset collapsible using JavaScript by clicking on the fieldset title.

Here’s a question for thought: when $form_state['values'] gets passed to the validate
and submit functions, will the color field be $form_state['values']['color']
['favorite_color'] or $form_state['values']['favorite_color']? In other words, will the
value be nested inside the fieldset or not? The answer: it depends. By default, the form
processor flattens the form values, so that the following function would work correctly:

function formexample_nameform_submit($form_id, $form_state) {
$name = $form_state['values']['user_name'];
$color_key = $form_state['values']['favorite_color'];
$color = $form_state['values']['color_options'][$color_key];

drupal_set_message(t('%name loves the color %color!',
array('%name' => $name, '%color' => $color)));

}

The message set by the updated submit handler can be seen in Figure 10-4.

CHAPTER 10 ! THE FORM API234

09898ch10final 7/30/08 2:15 PM Page 234

Figure 10-4. Message from the submit handler for the form

If, however, the #tree property is set to TRUE, the data structure of the form will be
reflected in the names of the form values. So, if in our form declaration we had said

$form['#tree'] = TRUE;

then we would access the data in the following way:

function formexample_nameform_submit($form, $form_state) {
$name = $form_state['values']['name']['user_name'];
$color_key = $form_state['values']['color']['favorite_color'];
$color = $form_state['values']['color_options'][$color_key];
drupal_set_message(t('%name loves the color %color!',
array('%name' => $name, '%color' => $color)));

}

!Tip Setting #tree to TRUE gives you a nested array of fields with their values. When #tree is set to
FALSE (the default), you get a flattened representation of fieldnames and values.

CHAPTER 10 ! THE FORM API 235

09898ch10final 7/30/08 2:15 PM Page 235

Theming Forms
Drupal has built-in functions to take the form data structure that you define and transform,
or render, it into HTML. However, often you may need to change the output that Drupal
generates, or you may need fine-grained control over the process. Fortunately, Drupal
makes this easy.

Using #prefix, #suffix, and #markup
If your theming needs are very simple, you can get by with using the #prefix and #suffix
attributes to add HTML before and/or after form elements:

$form['color'] = array(
'#prefix' => '<hr />',
'#title' => t('Color'),
'#type' => 'fieldset',
'#suffix' => '<div class="privacy-warning">' .
t('This information will be displayed publicly!') . '</div>',

);

This code would add a horizontal rule above the Color fieldset and a privacy message
below it, as shown in Figure 10-5.

Figure 10-5. The #prefix and #suffix properties add content before and after an element.

CHAPTER 10 ! THE FORM API236

09898ch10final 7/30/08 2:15 PM Page 236

You can even declare HTML markup as type #markup in your form (though this is not
widely used). Any form element without a #type property defaults to markup.

$form['blinky'] = array(
'#type' = 'markup',
'#value' = '<blink>Hello!</blink>'

);

!Note This method of introducing HTML markup into your forms is generally considered to be as good
an idea as using the <blink> tag. It is not as clean as writing a theme function and usually makes it more
difficult for designers to work with your site.

Using a Theme Function
The most flexible way to theme forms is to use a theme function specifically for that form
or form element. There are two steps involved. First, Drupal needs to be informed of which
theme functions our module will be implementing. This is done through hook_theme() (see
Chapter 8 for details). Here’s a quick implementation of hook_theme() for our module, which
basically says “Our module provides two theme functions and they can be called with no
extra arguments”:

/**
* Implementation of hook_theme().
*/
function formexample_theme() {
return array(
'formexample_nameform' => array(
'arguments' => array(),

),
'formexample_alternate_nameform' => array(
'arguments' => array(),

)
);

}

By default, Drupal looks for a function named theme_ plus the name of your form ID. In
our example, Drupal would look for a theme_formexample_nameform entry in the theme registry
and would find ours because we defined it in formexample_theme(). The following theme func-
tion would be called and would render the exact same output as Drupal’s default theming:

function theme_formexample_nameform($form) {
$output = drupal_render($form);
return $output;

}

CHAPTER 10 ! THE FORM API 237

09898ch10final 7/30/08 2:15 PM Page 237

The benefits to having our own theme function are that we’re able to parse, munge, and
add to $output as we please. We could quickly make a certain element appear first in the form,
as in the following code, where we put the color fieldset at the top:

function theme_formexample_nameform($form) {
// Always put the the color selection at the top.
$output = drupal_render($form['color']);

// Then add the rest of the form.
$output .= drupal_render($form);

return $output;
}

Telling Drupal Which Theme Function to Use
You can direct Drupal to use a function that does not match the formula “theme_ plus form ID
name” by specifying a #theme property for a form:

// Now our form will be themed by the function
// theme_formexample_alternate_nameform().
$form['#theme'] = 'formexample_alternate_nameform';

Or you can tell Drupal to use a special theme function for just one element of a form:

// Theme this fieldset element with theme_formexample_coloredfieldset().
$form['color'] = array(
'#title' => t('Color'),
'#type' => 'fieldset',
'#theme' => 'formexample_coloredfieldset'

);

Note that, in both cases, the function you are defining in the #theme property must be
known by the theme registry; that is, it must be declared in a hook_theme() implementation
somewhere.

!Note Drupal will prefix the string you give for #theme with theme_, so we set #theme to
formexample_coloredfieldset and not theme_formexample_coloredfieldset, even though
the name of the theme function that will be called is the latter. See Chapter 8 to learn why this is so.

CHAPTER 10 ! THE FORM API238

09898ch10final 7/30/08 2:15 PM Page 238

Specifying Validation and Submission Functions
with hook_forms()
Sometimes, you have a special case where you want to have many different forms but only a
single validation or submit function. This is called code reuse, and it’s a good idea in that kind
of a situation. The node module, for example, runs all kinds of node types through its valida-
tion and submission functions. So we need a way to map multiple form IDs to validation and
submission functions. Enter hook_forms().

When Drupal is retrieving the form, it first looks for a function that defines the form based
on the form ID (in our code, we used the formexample_nameform() function for this purpose). If
it doesn’t find that function, it invokes hook_forms(), which queries all modules for a mapping
of form IDs to callbacks. For example, node.module uses the following code to map all different
kinds of node form IDs to one handler:

/**
* Implementation of hook_forms(). All node forms share the same form handler.
*/
function node_forms() {
$forms = array();
if ($types = node_get_types()) {
foreach (array_keys($types) as $type) {
$forms[$type .'_node_form']['callback'] = 'node_form';

}
}
return $forms;

}

In our form example, we could implement hook_forms() to map another form ID to our
existing code.

/**
* Implementation of hook_forms().
*/
function formexample_forms($form_id, $args) {
$forms['formexample_special'] = array(
'callback' => 'formexample_nameform');

return $forms;
}

Now, if we call drupal_get_form('formexample_special'), Drupal will first check for a
function named formexample_special() that defines the form. If it cannot find this function,
hook_forms() will be called, and Drupal will see that we have mapped the form ID
formexample_special to formexample_nameform. Drupal will call formexample_nameform()
to get the form definition, then attempt to call formexample_special_validate() and
formexample_special_submit() for validation and submission, respectively.

CHAPTER 10 ! THE FORM API 239

09898ch10final 7/30/08 2:15 PM Page 239

Call Order of Theme,Validation, and Submission Functions
As you’ve seen, there are several places to give Drupal information about where your
theme, validation, and submission functions are. Having so many options can be confus-
ing, so here’s a summary of where Drupal looks, in order, for a theme function, assuming
you are using a PHPTemplate-based theme named bluemarine, and you’re calling drupal_
get_form('formexample_nameform'). This is, however, dependent upon your hook_theme()
implementation.

First, if $form['#theme'] has been set to 'foo' in the form definition:

1. themes/bluemarine/foo.tpl.php // Template file provided by theme.
2. formexample/foo.tpl.php // Template file provided by module.
3. bluemarine_foo() // Function provided theme.
4. phptemplate_foo() // Theme function provided by theme engine.
5. theme_foo() // 'theme_' plus the value of $form['#theme'].

However, if $form['#theme'] has not been set in the form definition:

1. themes/bluemarine/formexample-nameform.tpl.php // Template provided by theme.
2. formexample/formexample-nameform.tpl.php // Template file provided by module.
3. bluemarine_formexample_nameform() // Theme function provided by theme.
4. phptemplate_formexample_nameform() // Theme function provided by theme engine.
5. theme_formexample_nameform() // 'theme_' plus the form ID.

During form validation, a validator for the form is set in this order:

1. A function defined by $form['#validate']
2. formexample_nameform_validate // Form ID plus 'validate'.

And when it’s time to look for a function to handle form submittal, Drupal looks for the
following:

1. A function defined by $form['#submit']
2. formexample_nameform_submit // Form ID plus 'submit'.

Remember that forms can have multiple validation and submission functions.

Writing a Validation Function
Drupal has a built-in mechanism for highlighting form elements that fail validation and dis-
playing an error message to the user. Examine the validation function in our example to see
it at work:

/**
* Validate the form.
*/
function formexample_nameform_validate($form, $form_state) {
if ($form_state['values']['user_name'] == 'King Kong') {
// We notify the form API that this field has failed validation.

CHAPTER 10 ! THE FORM API240

09898ch10final 7/30/08 2:15 PM Page 240

form_set_error('user_name',
t('King Kong is not allowed to use this form.'));

}
}

Note the use of form_set_error(). When King Kong visits our form and types in his name
on his giant gorilla keyboard, he sees an error message at the top of the page and the field that
contains the error has its contents highlighted in red, as shown in Figure 10-6.

Figure 10-6. Validation failures are indicated to the user.

Perhaps he should have used his given name, Kong, instead. Anyway, the point is that
form_set_error() files an error against our form and will cause validation to fail.

Validation functions should do just that—validate. They should not, as a general rule,
change data. However, they may add information to the $form_state array, as shown in the
next section.

Passing Data Along from Validation Functions
If your validation function does a lot of processing and you want to store the result to be used
in your submit function, you have two different options. You could use form_set_value() or
use $form_state.

CHAPTER 10 ! THE FORM API 241

09898ch10final 7/30/08 2:15 PM Page 241

Using form_set_value() to Pass Data

The most formal option is to create a form element to stash the data when you create your
form in your form definition function, and then use form_set_value() to store the data. First,
you create a placeholder form element:

$form['my_placeholder'] = array(
'#type' => 'value',
'#value' => array()

);

Then, during your validation routine, you store the data:

// Lots of work here to generate $my_data as part of validation.
...
// Now save our work.
form_set_value($form['my_placeholder'], $my_data, $form_state);

And you can then access the data in your submit function:

// Instead of repeating the work we did in the validation function,
// we can just use the data that we stored.
$my_data = $form_values['my_placeholder'];

Or suppose you need to transform data to a standard representation. For example, you
have a list of country codes in the database that you will validate against, but your unreason-
able boss insists that users be able to type in their country names in text fields. You would
need to create a placeholder in your form and validate the user’s input using a variety of trick-
ery so you can recognize both “The Netherlands” and “Nederland” as mapping to the ISO 3166
country code “NL.”

$form['country'] = array(
'#title' => t('Country'),
'#type' => 'textfield',
'#description' => t('Enter your country.')

);

// Create a placeholder. Will be filled in during validation.
$form['country_code'] = array(
'#type' => 'value',
'#value' => ''

);

Inside the validation function, you’d save the country code inside the placeholder.

// Find out if we have a match.
$country_code = formexample_find_country_code($form_state['values']['country']);
if ($country_code) {
// Found one. Save it so that the submit handler can see it.
form_set_value($form['country_code'], $country_code, $form_state);

}

CHAPTER 10 ! THE FORM API242

09898ch10final 7/30/08 2:15 PM Page 242

else {
form_set_error('country', t('Your country was not recognized. Please use
a standard name or country code.'));

}

Now, the submit handler can access the country code in $form_values['country_code'].

Using $form_state to Pass Data

A simpler approach is to use $form_state to store the value. Since $form_state is passed to
both validation and submission functions by reference, validation functions can store data
there for submission functions to see. It is a good idea to use your module’s namespace within
$form_state instead of just making up a key.

// Lots of work here to generate $weather_data from slow web service
// as part of validation.
...
// Now save our work in $form_state.
$form_state['mymodulename']['weather'] = $weather_data

And you can then access the data in your submit function:

// Instead of repeating the work we did in the validation function,
// we can just use the data that we stored.
$weather_data = $form_state['mymodulename']['weather'];

You may be asking, “Why not store the value in $form_state['values'] along with the rest
of the form field values?” That will work too, but keep in mind that $form_state['values'] is
the place for form field values, not random data stored by modules. Remember that because
Drupal allows any module to attach validation and submission functions to any form, you
cannot make the assumption that your module will be the only one working with the form
state, and thus data should be stored in a consistent and predictable way.

Element-Specific Validation
Typically, one validation function is used for a form. But it is possible to set validators for indi-
vidual form elements as well as for the entire form. To do that, set the #element_validate
property for the element to an array containing the names of the validation functions. A full
copy of the element’s branch of the form data structure will be sent as the first parameter.
Here’s a contrived example where we force the user to enter spicy or sweet into a text field:

// Store the allowed choices in the form definition.
$allowed_flavors = array(t('spicy'), t('sweet'));
$form['flavor'] = array(
'#type' => 'textfield',
'#title' => 'flavor',
'#allowed_flavors' => $allowed_flavors,
'#element_validate' => array('formexample_flavor_validate')

);

CHAPTER 10 ! THE FORM API 243

09898ch10final 7/30/08 2:15 PM Page 243

Then your element validation function would look like this:

function formexample_flavor_validate($element, $form_state) {
if (!in_array($form_state['values']['flavor'], $element['#allowed_flavors'])) {
form_error($element, t('You must enter spicy or sweet.'));

}
}

The validation function for the form will still be called after all element validation func-
tions have been called.

!Tip Use form_set_error() when you have the name of the form element you wish to file an error
against and form_error() when you have the element itself. The latter is simply a wrapper for the former.

Form Rebuilding
During validation, you may decide that you do not have enough information from the user.
For example, you might run the form values through a textual analysis engine and determine
that there is a high probability that this content is spam. As a result, you want to display the
form again (complete with the values the user entered) but add a CAPTCHA to disprove your
suspicion that this user is a robot. You can signal to Drupal that a rebuild is needed by setting
$form_state['rebuild'] inside your validation function, like so:

$spam_score = spamservice($form_state['values']['my_textarea'];
if ($spam_score > 70) {
$form_state['rebuild'] = TRUE;
$form_state['formexample']['spam_score'] = $spam_score;

}

In your form definition function, you would have something like this:

function formexample_nameform($form_id, $form_state = NULL) {
// Normal form definition happens.
...
if (isset($form_state['formexample']['spam_score']) {
// If this is set, we are rebuilding the form;
// add the captcha form element to the form.
...

}
...

}

CHAPTER 10 ! THE FORM API244

09898ch10final 7/30/08 2:15 PM Page 244

Writing a Submit Function
The submit function is the function that takes care of actual form processing after the form
has been validated. It only executes if form validation passed completely and the form has
not been flagged for rebuilding. The submit function is expected to modify $form_state
['redirect'].

If you want the user to continue to a different page when the form has been submitted,
return the Drupal path that you want the user to land on next:

function formexample_form_submit($form, &$form_state) {
// Do some stuff.
...
// Now send user to node number 3.
$form_state['redirect'] = 'node/3';

}

If you have multiple functions handling form submittal (see the “Submitting the Form”
section earlier in this chapter), the last function to set $form_state['redirect'] will have the
last word. The redirection of the submit function can be overridden by defining a #redirect
property in the form (see the “Redirecting the User” section earlier in this chapter). This is
often done by using hook_form_alter().

!Tip The $form_state['rebuild'] flag can be set in submit functions too, just like in validation func-
tions. If set, all submit functions will run but any redirect value will be ignored and the form will be rebuilt
using the submitted values. This can be useful for adding optional fields to a form.

Changing Forms with hook_form_alter()
Using hook_form_alter(), you can change any form. All you need to know is the form’s ID.
There are two approaches to altering forms.

Altering Any Form
Let’s change the login form that is shown on the user login block and the user login page.

function formexample_form_alter(&$form, &$form_state, $form_id) {
// This code gets called for every form Drupal builds; use an if statement
// to respond only to the user login block and user login forms.
if ($form_id == 'user_login_block' || $form_id == 'user_login') {
// Add a dire warning to the top of the login form.
$form['warning'] = array(
'#value' => t('We log all login attempts!'),
'#weight' => -5
);

CHAPTER 10 ! THE FORM API 245

09898ch10final 7/30/08 2:15 PM Page 245

// Change 'Log in' to 'Sign in'.
$form['submit']['#value'] = t('Sign in');

}
}

Since $form is passed by reference, we have complete access to the form definition here
and can make any changes we want. In the example, we added some text using the default
form element (see “Markup” later in this chapter) and then reached in and changed the value
of the Submit button.

Altering a Specific Form
The previous approach works, but if lots of modules are altering forms and every form is
passed to every hook_form_alter() implementation, alarm bells may be going off in your
head. “This is wasteful,” you’re probably thinking. “Why not just construct a function from
the form ID and call that?” You are on the right track. Drupal does exactly that. So the fol-
lowing function will change the user login form too:

function formexample_form_user_login_alter(&$form, &$form_state) {
$form['warning'] = array(

'#value' => t('We log all login attempts!'),
'#weight' => -5

);

// Change 'Log in' to 'Sign in'.
$form['submit']['#value'] = t('Sign in');

}

The function name is constructed from this:

modulename + 'form' + form ID + 'alter'

For example

'formexample' + 'form' + 'user_login' + 'alter'

results in

formexample_form_user_login_alter

In this particular case, the first form of hook_form_alter() is preferred, because two
form IDs are involved (user_login for the form at http://example.com/?q=user and
user_login_block for the form that appears in the user block).

Submitting Forms Programmatically with drupal_execute()
Any form that is displayed in a web browser can also be filled out programmatically. Let’s fill
out our name and favorite color programmatically:

CHAPTER 10 ! THE FORM API246

09898ch10final 7/30/08 2:15 PM Page 246

http://example.com/?q=user

$form_id = 'formexample_nameform';
$form_state['values'] = array(
'user_name' => t('Marvin'),
'favorite_color' => t('green')

);
// Submit the form using these values.
drupal_execute($form_id, $form_state);

That’s all there is to it! Simply supply the form ID and the values for the form, and call
drupal_execute().

!Caution Many submit functions assume that the user making the request is the user submitting the
form. When submitting forms programmatically, you will need to be very aware of this, as the users are not
necessarily the same.

Multipage Forms
We’ve been looking at simple one-page forms. But you may need to have users fill out a form
that spans several pages or has several different steps for data entry. Let’s build a short module
that demonstrates the multipage form technique by collecting three ingredients from the user
in three separate steps. Our approach will be to pass values forward in Drupal’s built-in form
storage bin. We’ll call the module formwizard.module. Of course, we’ll need a sites/all/
modules/custom/formwizard.info file:

; Id
name = Form Wizard Example
description = An example of a multistep form.
package = Pro Drupal Development
core = 6.x

Next, we’ll write the actual module. The module will display two pages: one page on
which data is entered (which we’ll use repeatedly) and a final page on which we’ll display
what the user entered and thank them for their input. Here is sites/all/modules/custom/
formwizard.module:

<?php
// Id

/**
* @file
* Example of a multistep form.
*/

CHAPTER 10 ! THE FORM API 247

09898ch10final 7/30/08 2:15 PM Page 247

/**
* Implementation of hook_menu().
*/
function formwizard_menu() {
$items['formwizard'] = array(
'title' => t('Form Wizard'),
'page callback' => 'drupal_get_form',
'page arguments' => array('formwizard_multiform'),
'type' => MENU_NORMAL_ITEM,
'access arguments' => array('access content'),

);
$items['formwizard/thanks'] = array(
'title' => t('Thanks!'),
'page callback' => 'formwizard_thanks',
'type' => MENU_CALLBACK,
'access arguments' => array('access_content'),

);

return $items;
}

/**
* Form definition. We build the form differently depending on
* which step we're on.
*/
function formwizard_multiform(&$form_state = NULL) {
// Find out which step we are on. If $form_state is not set,
// that means we are beginning. Since the form is rebuilt, we
// start at 0 in that case and the step is 1 during rebuild.
$step = isset($form_state['values']) ? (int)$form_state['storage']['step'] : 0;

// Store next step.
$form_state['storage']['step'] = $step + 1;

// Customize the fieldset title to indicate the current step to the user.
$form['indicator'] = array(
'#type' => 'fieldset',
'#title' => t('Step @number', array('@number' => $step))

);

// The name of our ingredient form element is unique for
// each step, e.g. ingredient_1, ingredient_2...
$form['indicator']['ingredient_' . $step] = array(
'#type' => 'textfield',
'#title' => t('Ingredient'),
'#description' => t('Enter ingredient @number of 3.', array('@number' => $step))
);

CHAPTER 10 ! THE FORM API248

09898ch10final 7/30/08 2:15 PM Page 248

// The button will say Next until the last step, when it will say Submit.
$button_name = t('Submit');
if ($step < 3) {
$button_name = t('Next');

}
$form['submit'] = array(
'#type' => 'submit',
'#value' => $button_name

);

switch($step) {
case 2:
// Save ingredient in storage bin.
$form_state['storage']['ingredient_1'] =
$form_state['values']['ingredient_1'];

break;
case 3:
// Add ingredient to storage bin.
$form_state['storage']['ingredient_2'] =
$form_state['values']['ingredient_2'];

}

return $form;
}

/**
* Validate handler for form ID 'formwizard_multiform'.
*/
function formwizard_multiform_validate($form, &$form_state) {
// Show user which step we are on.
drupal_set_message(t('Validation called for step @step',
array('@step' => $form_state['storage']['step'] - 1)));

}

/**
* Submit handler for form ID 'formwizard_multiform'.
*/
function formwizard_multiform_submit($form, &$form_state) {
if ($form_state['storage']['step'] < 4) {
return;

}

CHAPTER 10 ! THE FORM API 249

09898ch10final 7/30/08 2:15 PM Page 249

drupal_set_message(t('Your three ingredients were %ingredient_1, %ingredient_2,
and %ingredient_3.', array(
'%ingredient_1' => $form_state['storage']['ingredient_1'],
'%ingredient_2' => $form_state['storage']['ingredient_2'],
'%ingredient_3' => $form_state['values']['ingredient_3']
)

)
);
// Clear storage bin to avoid automatic form rebuild that overrides our redirect.
unset($form_state['storage']);

// Redirect to a thank-you page.
$form_state['redirect'] = 'formwizard/thanks';

}

function formwizard_thanks() {
return t('Thanks, and have a nice day.');

}

There are a few things to notice about this simple module. In our form building function,
formwizard_multiform(), we have one parameter, $form_state, which gives information
about the state of the form. Let’s walk through the process. If we go to http://example.com/
?q=formwizard, we get the initial form, as shown in Figure 10-7.

Figure 10-7. The initial step of the multistep form

When we click the Next button, Drupal will process this form just like any other form: the
form will be built; the validate function will be called, and the submit function will be called.
But if we are not on the final step of the form, the submit function will simply return. Drupal
will notice that there are values in the storage bin at $form_state['storage'], so it calls the
form building function again, this time with a copy of $form_state. (We could also have
set $form_state['rebuild'] to cause the rebuild to happen, but that is not necessary
when $form_state['storage'] is populated.) Calling the form building function again and
passing $form_state allows formwizard_multiform() in our module to look at $form_state
['storage']['step'] to determine which step we are on and build the form accordingly. We
end up with the form shown in Figure 10-8.

CHAPTER 10 ! THE FORM API250

09898ch10final 7/30/08 2:15 PM Page 250

http://example.com

Figure 10-8. The second step of the multistep form

We have evidence that our validation function ran, because it has placed a message on
the screen by calling drupal_set_message(). And our fieldset title and text field descriptions
have been properly set, indicating that the user is on step 2. We’ll fill in the last ingredient, as
shown in Figure 10-9.

Figure 10-9. The last step of the multistep form

Notice that, on the third step, we changed the button to read Submit instead of Next.
Also, the submit handler can send the user to a new page when processing is finished. Now,
when we press the Submit button, our submit handler will recognize that this is step four
and instead of bailing out, as previously, it will process the data. In this example, we just call
drupal_set_message(), which will display information on the next page Drupal serves and
redirect the user to formwizard/thankyou. The result is shown in Figure 10-10.

CHAPTER 10 ! THE FORM API 251

09898ch10final 7/30/08 2:15 PM Page 251

Figure 10-10. The submit handler for the multistep form has run, and the user has been
redirected to formwizard/thankyou.

The preceding example is intended to give you the basic outline of how multistep forms
work. Instead of using the storage bin in $form_state, your module could store data in hidden
fields and pass them along to the next step, or you could modify your submit handler to store
it in the database or in the $_SESSION superglobal using the form ID as a key. The important
part to understand is that the form building function continues to be called because
$form_state['storage'] is populated and that, by using the preceding approach to increment
$form_state['storage']['step'], validation and submission functions can make intelligent
decisions about what to do.

Form API Properties
When building a form definition in your form building function, array keys are used to specify
information about the form. The most common keys are listed in the following sections. Some
keys are added automatically by the form builder.

Properties for the Root of the Form
The properties in the following sections are specific to the form root. In other words, you
can set $form['#programmed'] = TRUE, but setting $form['myfieldset']['mytextfield']
[#programmed'] = TRUE will not make sense to the form builder.

#parameters
This property is an array of original arguments that were passed in to drupal_get_form().
It is added by drupal_retrieve_form().

#programmed
This Boolean property indicates that a form is being submitted programmatically, for exam-
ple, by drupal_execute(). Its value is set by drupal_prepare_form() if #post has been set prior
to form processing.

#build_id
This property is a string (an MD5 hash). The #build_id identifies a specific instance of a form.
Sent along as a hidden field, this form element is set by drupal_prepare_form(), as shown in
the following snippet:

CHAPTER 10 ! THE FORM API252

09898ch10final 7/30/08 2:15 PM Page 252

$form['form_build_id'] = array(
'#type' => 'hidden',
'#value' => $form['#build_id'],
'#id' => $form['#build_id'],
'#name' => 'form_build_id',

);

#token
This string (MD5 hash) is a unique token that is sent out with every form, so Drupal can deter-
mine that the form is actually a Drupal form and not being sent by a malicious user.

#id
This property is a string that is the result of form_clean_id($form_id), and it is an HTML ID
attribute. Any reversed bracket pair (][), underscore (_), or space(' ') characters in the
$form_id are replaced by hyphens to create consistent IDs for CSS usage. Drupal will enforce
the requirement that IDs be unique on a page. If the same ID is encountered twice (for exam-
ple, the same form twice on a page), a hyphen and an incremented integer will be appended,
for example, foo-form, foo-form-1, and foo-form-2.

#action
This string property is the action attribute for the HTML form tag. By default, it is the return
value of request_uri().

#method
This string property is the form submission method—normally post. The form API is built
around the POST method and will not process forms using the GET method. See the HTML
specifications regarding the difference between GET and POST. If you are in a situation where
you are trying to use GET, you probably need Drupal’s menu API, not the form API.

#redirect
This property’s type is a string or array. If set to a string, the string is the Drupal path that the
user is redirected to after form submission. If set to an array, the array is passed as parameters
to drupal_goto() with the first element of the array being the destination path (this construct
allows additional parameters such as a query string to be passed to drupal_goto()).

#pre_render
This property is an array of functions to call just before the form will be rendered. Each func-
tion is called and passed the element for which #pre_render is set. For example, setting
$form['#pre_render'] = array('foo', 'bar') will cause Drupal to call foo(&$form) and then
bar(&$form). If set on an element of the form, such as $form['mytextfield']['#pre_render']
= array('foo'), Drupal will call foo(&$element) where $element is $form['mytextfield']. This
is useful if you want to hook into form processing to modify the structure of the form after val-
idation has run but before the form is rendered. To modify the form before validation has been
run, use hook_form_alter().

CHAPTER 10 ! THE FORM API 253

09898ch10final 7/30/08 2:15 PM Page 253

#post_render
This property allows you to provide an array of functions that may modify the content that has
just been rendered. If you set $form['mytextfield']['#post_render'] = array('bar'), you
could modify the content that was created like this:

function bar($content, $element) {
$new_content = t('This element (ID %id) has the following content:',
array('%id' => $element['#id'])) . $content;

return $new_content;
}

#cache
This property controls whether or not the form will be cached by Drupal’s general caching
system. Caching the form means it will not have to be rebuilt when it is submitted. You might
want to set $form['#cache'] = FALSE if you want to force the form to be built every time.

Properties Added to All Elements
When the form builder goes through the form definition, it ensures that each element has
some default values set. The default values are set in _element_info() in includes/form.inc
but can be overridden by an element’s definition in hook_elements().

#description
This string property is added to all elements and defaults to NULL. It’s rendered by the ele-
ment’s theme function. For example, a text field’s description is rendered underneath the
textfield as shown in Figure 10-2.

#required
This Boolean property is added to all elements and defaults to FALSE. Setting this to TRUE will
cause Drupal’s built-in form validation to throw an error if the form is submitted but the field
has not been completed. Also, if set to TRUE, a CSS class is set for this element (see
theme_form_element() in includes/form.inc).

#tree
This Boolean property is added to all elements and defaults to FALSE. If set to TRUE, the
$form_state['values'] array resulting from a form submission will not be flattened. This
affects how you access submitted values (see the “Fieldsets” section of this chapter).

#post
This array property is a copy of the original $_POST data and is added to each form element by
the form builder. That way, the functions defined in #process and #after_build can make
intelligent decisions based on the contents of #post.

CHAPTER 10 ! THE FORM API254

09898ch10final 7/30/08 2:15 PM Page 254

#parents
This array property is added to all elements and defaults to an empty array. It is used inter-
nally by the form builder to identify parent elements of the form tree. For more information,
see http://drupal.org/node/48643.

#attributes
This associative array is added to all elements and defaults to an empty array, but theme func-
tions generally populate it. Members of this array will be added as HTML attributes, for
example, $form['#attributes'] = array('enctype' => 'multipart/form-data').

Properties Allowed in All Elements
The properties explained in the sections that follow are allowed in all elements.

#type
This string declares the type of an element. For example, #type = 'textfield'. The root of the
form must contain the declaration #type = 'form'.

#access
This Boolean property determines whether or not the element is shown to the user. If the ele-
ment has children, the children will not be shown if the parent’s #access property is FALSE. For
example, if the element is a fieldset, none of the fields included in the fieldset will be shown if
#access is FALSE.

The #access property can be set to TRUE or FALSE directly, or the value can be set to a func-
tion that returns TRUE or FALSE when executed. Execution will happen when the form defini-
tion is retrieved. Here’s an example from Drupal’s default node form:

$form['revision_information']['revision'] = array(
'#access' => user_access('administer nodes'),
'#type' => 'checkbox',
'#title' => t('Create new revision'),
'#default_value' => $node->revision,

);

#process
This property is an associative array. Each array entry consists of a function name as a key and
any arguments that need to be passed as the values. These functions are called when an ele-
ment is being built and allow additional manipulation of the element at form building time.
For example, in modules/system/system.module where the checkboxes type is defined, the
function expand_checkboxes() in includes/form.inc is set to be called during form building:

CHAPTER 10 ! THE FORM API 255

09898ch10final 7/30/08 2:15 PM Page 255

http://drupal.org/node/48643

$type['checkboxes'] = array(
'#input' => TRUE,
'#process' => array('expand_checkboxes'),
'#tree' => TRUE

);

See also the example in this chapter in the “Collecting All Possible Form Element Defi-
nitions” section. After all functions in the #process array have been called, a #processed
property is added to each element.

#after_build
This property is an array of functions that will be called immediately after the element has
been built. Each function will be called with two parameters: $form and $form_state. For
example, if $form['#after_build'] = array('foo', 'bar'), then Drupal will call foo($form,
$form_state) and bar($form, $form_state) after the form is built. Once the function has been
called, Drupal internally adds the #after_build_done property to the element.

#theme
This optional property defines a string that will be used when Drupal looks for a theme func-
tion for this element. For example, setting #theme = 'foo' will cause Drupal to check the
theme registry for an entry that corresponds with foo. See the “Finding a Theme Function
for the Form” section earlier in this chapter.

#prefix
The string defined in this property will be added to the output when the element is rendered,
just before the rendered element.

#suffix
The string defined in this property will be added to the output when the element is rendered,
just after the rendered element.

#title
This string is the title of the element.

#weight
This property can be an integer or a decimal number. When form elements are rendered, they
are sorted by their weight. Those with smaller weights “float up” and appear higher; those with
larger weights “sink down” and appear lower on the rendered page.

#default_value
The type for this property is mixed. For input elements, this is the value to use in the field if
the form has not yet been submitted. Do not confuse this with the #value element, which

CHAPTER 10 ! THE FORM API256

09898ch10final 7/30/08 2:15 PM Page 256

defines an internal form value that is never given to the user but is defined in the form and
appears in $form_state['values'].

Form Elements
In this section, we’ll present examples of the built-in Drupal form elements.

Textfield
An example of a textfield element follows:

$form['pet_name'] = array(
'#title' => t('Name'),
'#type' => 'textfield',
'#description' => t('Enter the name of your pet.'),
'#default_value' => $user->pet_name,
'#maxlength' => 32,
'#required' => TRUE,
'#size' => 15,
'#weight' => 5,
'#autocomplete_path' => 'pet/common_pet_names',
);

$form['pet_weight'] = array(
'#title' => t('Weight'),
'#type' => 'textfield',
'#description' => t('Enter the weight of your pet in kilograms.'),
'#field_suffix' => t('kilograms'),
'#default_value' => $user->pet_weight,
'#size' => 4,
'#weight' => 10,
);

This results in the form element shown in Figure 10-11.

Figure 10-11. The textfield element

CHAPTER 10 ! THE FORM API 257

09898ch10final 7/30/08 2:15 PM Page 257

The #field_prefix and #field_suffix properties are specific to text fields and place a
string immediately before or after the textfield input.

The #autocomplete property defines a path where Drupal’s automatically included
JavaScript will send HTTP requests using JQuery. In the preceding example, it will query
http://example.com/?q=pet/common_pet_names. See the user_autocomplete() function in
modules/user/user.pages.inc for a working example.

Properties commonly used with the textfield element follow: #attributes,
#autocomplete_path (the default is FALSE), #default_value, #description, #field_prefix,
#field_suffix, #maxlength (the default is 128), #prefix, #required, #size (the default is 60),
#suffix, #title, #process (the default is form_expand_ahah), and #weight.

Password
This element creates an HTML password field, where input entered by the user is not shown
(usually bullet characters are echoed to the screen instead). An example from
user_login_block() follows:

$form['pass'] = array('#type' => 'password',
'#title' => t('Password'),
'#maxlength' => 60,
'#size' => 15,
'#required' => TRUE,

);

Properties commonly used with the password element are #attributes, #description,
#maxlength, #prefix, #required, #size (the default is 60), #suffix, #title, #process (the default
is form_expand_ahah), and #weight. The #default_value property is not used with the password
element for security reasons.

Password with Confirmation
This element creates two HTML password fields and attaches a validator that checks if the two
passwords match. For example, this element is used by the user module when a user changes
his or her password.

$form['account']['pass'] = array(
'#type' => 'password_confirm',
'#description' => t('To change the current user password, enter the new
password in both fields.'),

'#size' => 25,
);

CHAPTER 10 ! THE FORM API258

09898ch10final 7/30/08 2:15 PM Page 258

http://example.com/?q=pet/common_pet_names

Textarea
An example of the textarea element follows:

$form['pet_habits'] = array(
'#title' => t('Habits'),
'#type' => 'textarea',
'#description' => t('Describe the habits of your pet.'),
'#default_value' => $user->pet_habits,
'#cols' => 40,
'#rows' => 3,
'#resizable' => FALSE,
'#weight' => 15,
);

Properties commonly used with the textarea element are #attributes, #cols (the default
is 60), #default_value, #description, #prefix, #required, #resizable, #suffix, #title, #rows
(the default is 5), #process (the default is form_expand_ahah), and #weight.

The #cols setting may not be effective if the dynamic text area resizer is enabled by
setting #resizable to TRUE.

Select
A select element example from modules/statistics/statistics.admin.inc follows:

$period = drupal_map_assoc(array(3600, 10800, 21600, 32400, 43200, 86400, 172800,
259200, 604800, 1209600, 2419200, 4838400, 9676800), 'format_interval');

/* Period now looks like this:
Array (
[3600] => 1 hour
[10800] => 3 hours
[21600] => 6 hours
[32400] => 9 hours
[43200] => 12 hours
[86400] => 1 day
[172800] => 2 days
[259200] => 3 days
[604800] => 1 week
[1209600] => 2 weeks
[2419200] => 4 weeks
[4838400] => 8 weeks
[9676800] => 16 weeks)

*/

CHAPTER 10 ! THE FORM API 259

09898ch10final 7/30/08 2:15 PM Page 259

$form['access']['statistics_flush_accesslog_timer'] = array(
'#type' => 'select',
'#title' => t('Discard access logs older than'),
'#default_value' => variable_get('statistics_flush_accesslog_timer', 259200),
'#options' => $period,
'#description' => t('Older access log entries (including referrer statistics)
will be automatically discarded. (Requires a correctly configured
cron maintenance task.)', array('@cron' =>
url('admin/reports/status'))),

);

Drupal supports grouping in the selection options by defining the #options property to be
an associative array of submenu choices as shown in Figure 10-12.

$options = array(
array(
t('Healthy') => array(
1 => t('wagging'),
2 => t('upright'),
3 => t('no tail')

),
),
array(
t('Unhealthy') => array(
4 => t('bleeding'),
5 => t('oozing'),

),
),

);
$form['pet_tail'] = array(
'#title' => t('Tail demeanor'),
'#type' => 'select',
'#description' => t('Pick the closest match that describes the tail
of your pet.'),

'#options' => $options,
'#multiple' => FALSE,
'#weight' => 20,

);

Figure 10-12. A select field using choice grouping

CHAPTER 10 ! THE FORM API260

09898ch10final 7/30/08 2:15 PM Page 260

Selection of multiple choices is enabled by setting the #multiple property to TRUE. This
also changes the value in $form_state['values'] from a string (e.g., 'pet_tail' = '2',
assuming upright is selected in the preceding example) to an array of values (e.g., pet_tail
= array(1 => '1', 2 => '2') assuming wagging and upright are both chosen in the pre-
ceding example).

Properties commonly used with the select element are #attributes, #default_value,
#description, #multiple, #options, #prefix, #required, #suffix, #title, #process (the default
is form_expand_ahah), and #weight.

Radio Buttons
A radio button example from modules/block/block.admin.inc follows:

$form['user_vis_settings']['custom'] = array(
'#type' => 'radios',
'#title' => t('Custom visibility settings'),
'#options' => array(
t('Users cannot control whether or not they see this block.'),
t('Show this block by default, but let individual users hide it.'),
t('Hide this block by default but let individual users show it.')

),
'#description' => t('Allow individual users to customize the visibility of
this block in their account settings.'),

'#default_value' => $edit['custom'],
);

Properties commonly used with this element are #attributes, #default_value,
#description, #options, #prefix, #required, #suffix, #title, and #weight. Note that the
#process property is set to expand_radios() (see includes/form.inc) by default.

Check Boxes
An example of the check boxes element follows. The rendered version of this element is shown
in Figure 10-13.

$options = array(
'poison' => t('Sprays deadly poison'),
'metal' => t('Can bite/claw through metal'),
'deadly' => t('Killed previous owner'));

$form['danger'] = array(
'#title' => t('Special conditions'),
'#type' => 'checkboxes',
'#description' => (t('Please note if any of these conditions apply to your
pet.')),

'#options' => $options,
'#weight' => 25,

);

CHAPTER 10 ! THE FORM API 261

09898ch10final 7/30/08 2:15 PM Page 261

Figure 10-13. An example using the check boxes element

The array_filter() function is often used in validation and submission functions to
get the keys of the checked boxes. For example, if the first two check boxes are checked in
Figure 10-13, $form_state['values']['danger'] would contain the following:

array(
'poison' => 'poison',
'metal' => 'metal',
deadly' => 0,

)

Running array_filter($form_state['values']['danger']) results in an array containing
only the keys of the checked boxes: array('poison', 'metal').

Properties commonly used with the check boxes element are #attributes, #default_
value, #description, #options, #prefix, #required, #suffix, #title, #tree (the default is TRUE),
and #weight. Note that the #process property is set to expand_checkboxes() (see
includes/form.inc) by default.

Value
The value element is used to pass values internally from $form to $form_state['values']
without ever being sent to the browser, for example:

$form['pid'] = array(
'#type' => 'value',
'#value' => 123,

);

When the form is submitted, $form_state['values']['pid'] will be 123.
Do not confuse #type => 'value' and #value => 123. The first declares what kind of ele-

ment is being described, and the second declares the value of the element. Only #type and
#value properties may be used with the value element.

Hidden
This element is used to pass a hidden value into a form using an HTML input field of type
hidden, as in the following example.

$form['my_hidden_field'] = array(
'#type' => 'hidden',
'#value' => t('I am a hidden field value'),

);

CHAPTER 10 ! THE FORM API262

09898ch10final 7/30/08 2:15 PM Page 262

If you want to send a hidden value along through the form, it’s usually a better idea to use
the value element for this, and use the hidden element only when the value element does not
suffice. That’s because the user can view the hidden element in the HTML source of a web
form, but the value element is internal to Drupal and not included in the HTML.

Only the #prefix, #suffix, #process (the default is form_expand_ahah), and #value proper-
ties are used with the hidden element.

Date
The date element, as shown in Figure 10-14, is a combination element with three select boxes:

$form['deadline'] = array(
'#title' => t('Deadline'),
'#type' => 'date',
'#description' => t('Set the deadline.'),
'#default_value' => array(
'month' => format_date(time(), 'custom', 'n'),
'day' => format_date(time(), 'custom', 'j'),
'year' => format_date(time(), 'custom', 'Y'),

),
);

Figure 10-14. A date field

Properties commonly used by the date element are #attributes, #default_value,
#description, #prefix, #required, #suffix, #title, and #weight. The #process property
defaults to call expand_date(), in which the year selector is hard coded to the years 1900 to
2050. The #element_validate property defaults to date_validate() (both functions can be
found in includes/form.inc). You can define these properties when defining the date element
in your form to use your own code instead.

Weight
The weight element (not to be confused with the #weight property) is a drop-down used to
specify weights:

$form['weight'] = array(
'#type' => 'weight',
'#title' => t('Weight'),
'#default_value' => $edit['weight'],
'#delta' => 10,
'#description' => t('In listings, the heavier vocabularies will sink and the
lighter vocabularies will be positioned nearer the top.'),

);

CHAPTER 10 ! THE FORM API 263

09898ch10final 7/30/08 2:15 PM Page 263

The preceding code will be rendered as shown in Figure 10-15.

Figure 10-15. The weight element

The #delta property determines the range of weights to choose from and defaults to 10.
For example, if you set #delta to 50 the range of weights would be from -50 to 50. Properties
commonly used with the weight element are #attributes, #delta (the default is 10),
#default_value, #description, #prefix, #required, #suffix, #title, and #weight. The #process
property defaults to array('process_weight', 'form_expand_ahah').

File Upload
The file element creates a file upload interface. Here’s an example from
modules/user/user.module:

$form['picture']['picture_upload'] = array(
'#type' => 'file',
'#title' => t('Upload picture'),
'#size' => 48,
'#description' => t('Your virtual face or picture.')

);

The way this element is rendered is shown in Figure 10-16.

Figure 10-16. A file upload element

Note that if you use the file element, you’ll need to set the enctype property at the root of
your form:

$form['#attributes']['enctype'] = 'multipart/form-data';

Properties commonly used with the file element are #attributes, #default_value,
#description, #prefix, #required, #size (the default is 60), #suffix, #title, and #weight.

Fieldset
A fieldset element is used to group elements together. It can be declared collapsible, which
means JavaScript automatically provided by Drupal is used to open and close the fieldset
dynamically with a click while a user is viewing the form. Note the use of the #access property
in this example to allow or deny access to all fields within the fieldset:

CHAPTER 10 ! THE FORM API264

09898ch10final 7/30/08 2:15 PM Page 264

// Node author information for administrators.
$form['author'] = array(
'#type' => 'fieldset',
'#access' => user_access('administer nodes'),
'#title' => t('Authoring information'),
'#collapsible' => TRUE,
'#collapsed' => TRUE,
'#weight' => 20,

);

Properties commonly used with the fieldset element are #attributes, #collapsed (the
default is FALSE), #collapsible (the default is FALSE), #description, #prefix, #suffix, #title,
#process (the default is form_expand_ahah), and #weight.

Submit
The submit element is used to submit the form. The word displayed inside the button defaults
to “Submit” but can be changed using the #value property:

$form['submit'] = array(
'#type' => 'submit',
'#value' => t('Continue'),

);

Properties commonly used with the submit element are #attributes, #button_type (the
default is 'submit'), #executes_submit_callback (the default is TRUE), #name (the default is
'op'), #prefix, #suffix, #value, #process (the default is form_expand_ahah), and #weight.

Additionally, the #validate and #submit properties may be assigned directly to the submit
element. For example, if #submit is set to array('my_special_form_submit'), the function
my_special_form_submit() will be used instead of the form’s defined submit handler(s).

Button
The button element is the same as the submit element except that the #executes_submit_
callback property defaults to FALSE. This property tells Drupal whether to process the form
(when TRUE) or simply re-render the form (if FALSE). Like the submit button, specific validation
and submit functions can be assigned directly to a button.

Image Button
The image button element is the same as the submit element with two exceptions. First, it
has a #src property that has the URL of an image as its value. Secondly, it sets the internal
form property #has_garbage_value to TRUE, which prevents #default_value from being used
due to a bug in Microsoft Internet Explorer. Do not use #default_value with image buttons.
Here is an image button that uses the built-in Powered by Drupal image as the button:

CHAPTER 10 ! THE FORM API 265

09898ch10final 7/30/08 2:15 PM Page 265

$form['my_image_button'] = array(
'#type' => 'image_button',
'#src' => 'misc/powered-blue-80x15.png',
'#value' => 'foo',

);

The value of the button can be safely retrieved by looking in $form_state['clicked_
button']['#value'].

Markup
The markup element is the default element type if no #type property has been used. It is used
to introduce text or HTML into the middle of a form.

$form['disclaimer'] = array(
'#prefix' => '<div>',
'#value' => t('The information below is entirely optional.'),
'#suffix' => '</div>',

);

Properties commonly used with the markup element are #attributes, #prefix (the
default is the empty string ''), #suffix (the default is the empty string ''), #value, and
#weight.

!Caution If you are outputting text inside a collapsible fieldset, wrap it in <div> tags, as shown in the
example, so that when the fieldset is collapsed, your text will collapse within it.

Item
The item element is formatted in the same way as other input element types like textfield or
select field, but it lacks the input field.

$form['removed'] = array(
'#title' => t('Shoe size'),
'#type' => 'item',
'#description' => t('This question has been removed because the law prohibits us
from asking your shoe size.'),

);

The preceding element is rendered as shown in Figure 10-17.

Figure 10-17. An item element

CHAPTER 10 ! THE FORM API266

09898ch10final 7/30/08 2:15 PM Page 266

Properties commonly used with the item element are #attributes, #description, #prefix
(the default is an empty string, ''), #required, #suffix (the default is an empty string, ''),
#title, #value, and #weight.

#ahah Property
The #ahah element property gives information to Drupal’s implementation of Asynchronous
HTML and HTTP (AHAH), which allows form elements to be changed using JavaScript.

!Tip You may have noticed that in many of the form elements we’ve described, the default value for
#process is form_expand_ahah. The presence of an #ahah property in the element indicates to Drupal
that AHAH will be used with this element. The form_expand_ahah() function makes sure that the #ahah
values have reasonable defaults.

Here is an example of its use in the Attach button provided by the upload module for file
uploading:

$form['new']['attach'] = array(
'#type' => 'submit',
'#value' => t('Attach'),
'#name' => 'attach',
'#ahah' => array(
'path' => 'upload/js',
'wrapper' => 'attach-wrapper',
'progress' => array(
'type' => 'bar',
'message' => t('Please wait...'),

),
),
'#submit' => array('node_form_submit_build_node'),

);

The value of an #ahah property is a keyed array. The following keys are required:

• path: The Drupal path of the menu item that the JavaScript will request. The callback
for the menu item and the path of the menu item end in js to indicate that the item is
called by JavaScript. In the preceding example, the Drupal path is upload/js, and the
corresponding callback is upload_js() (you can verify this by inspecting upload_menu()
in modules/upload/upload.module).

• wrapper: Corresponds with the id attribute of an HTML element (usually <div>). In the
preceding example, the upload module is referring to the following element: <div id=
"attach-wrapper">.

CHAPTER 10 ! THE FORM API 267

09898ch10final 7/30/08 2:15 PM Page 267

The following keys are optional:

• effect: The visual effect to use when replacing the element. Possible values are none,
fade, and slide. The default value is none.

• event: The event that will trigger the browser’s execution of a JavaScript HTTP request.
Drupal sets default values based on element type. These values are shown in Table 10-1.

Table 10-1. Default Names of Events That Will Trigger AHAH in Form Elements

Element Default Event
submit mousedown*

button mousedown*

image_button mousedown*

password blur

textfield blur

textarea blur

radio change

checkbox change

select change

*The keypress event is also added.

• method: The JQuery method that will be used to change the existing HTML when the
response from the JavaScript HTTP request comes back. Possible values are after,
append, before, prepend, and replace. The default method is replace. This value will
be used in the following JavaScript (see misc/ahah.js):

if (this.method == 'replace') {
wrapper.empty().append(new_content);

}
else {
wrapper[this.method](new_content);

}

• progress: The way that Drupal will signal to the user that a JavaScript event is happen-
ing. The value of this property is an array with the following keys: type and message, for
example:

$form['submit'] = array(
'#type' => 'submit',
'#value' => t('Click Me'),
'#ahah' => array(
'event' => 'click',
'path' => 'poof/message_js',
'wrapper' => 'target',
'effect' => 'fade',

CHAPTER 10 ! THE FORM API268

09898ch10final 7/30/08 2:15 PM Page 268

'progress' => array(
'type' => 'throbber',
'message' => t('One moment...'),

),
)

);

The default value of type is throbber, which is a circular animated icon that displays an
optional message while the JavaScript HTTP request is running. The other choice is bar,
which is a progress bar (a separate JavaScript file, misc/progress.js, will be added if bar
is specified). If type is set to bar, the following optional keys are available: url and
interval. The url key specifies a URL for the progress bar to call to determine its per-
centage as an integer from 0 to 100, and the interval key specifies how frequently the
progress should be checked (in seconds).

• selector: Specifying a selector is a way to attach the result of the JavaScript HTTP
request to multiple elements on the page (not just the form element).

Here is a brief example of a form that allows dynamic replacement of some text using
AHAH. The button uses the throbber to indicate that the user should wait, as shown in
Figure 10-18. Here is sites/all/modules/custom/poof/poof.info:

; Id
name = Poof
description = Demonstrates AHAH forms.
package = Pro Drupal Development
core = 6.x

And here is sites/all/modules/custom/poof/poof.module:

<?php

/**
* Implementation of hook_menu().
*/
function poof_menu() {
$items['poof'] = array(
'title' => 'Ahah!',
'page callback' => 'drupal_get_form',
'page arguments' => array('poof_form'),
'access arguments' => array('access content'),

);
$items['poof/message_js'] = array(
'page callback' => 'poof_message_js',
'type' => MENU_CALLBACK,
'access arguments' => array('access content'),

);
return $items;

}

CHAPTER 10 ! THE FORM API 269

09898ch10final 7/30/08 2:15 PM Page 269

/**
* Form definition.
*/
function poof_form() {
$form['target'] = array(
'#type' => 'markup',
'#prefix' => '<div id="target">',
'#value' => t('Click the button below. I dare you.'),
'#suffix' => '</div>',

);
$form['submit'] = array(
'#type' => 'submit',
'#value' => t('Click Me'),
'#ahah' => array(
'event' => 'click',
'path' => 'poof/message_js',
'wrapper' => 'target',
'effect' => 'fade',

)
);

return $form;
}

/**
* Menu callback for AHAH additions.
*/
function poof_message_js() {
$output = t('POOF!');
drupal_json(array('status' => TRUE, 'data' => $output));

}

Figure 10-18. Clicking the button will result in AHAH-based text replacement after display of
circular animated throbber icon.

The same module follows, this time implemented so that a progress bar is used and is
updated every two seconds (see Figure 10-19).

CHAPTER 10 ! THE FORM API270

09898ch10final 7/30/08 2:15 PM Page 270

!Caution This module simply demonstrates how to interact with the progress bar; in a real module, you
would report on the percentage completion of an actual task. In particular, you would not use Drupal’s per-
sistent variable system to store and read progress like the example does, as multiple users running the form
simultaneously would confuse the values. Instead, you might do a database query to see what percentage of
rows have been inserted.

<?php

/**
* Implementation of hook_menu().
*/
function poof_menu() {
$items['poof'] = array(
'title' => 'Ahah!',
'page callback' => 'drupal_get_form',
'page arguments' => array('poof_form'),
'access arguments' => array('access content'),

);
$items['poof/message_js'] = array(
'page callback' => 'poof_message_js',
'type' => MENU_CALLBACK,
'access arguments' => array('access content'),

);
$items['poof/interval_js'] = array(
'page callback' => 'poof_interval_js',
'type' => MENU_CALLBACK,
'access arguments' => array('access content'),

);
return $items;

}

/**
* Form definition.
*/
function poof_form() {
$form['target'] = array(
'#type' => 'markup',
'#prefix' => '<div id="target">',
'#value' => t('Click the button below. I dare you.'),
'#suffix' => '</div>',

);

CHAPTER 10 ! THE FORM API 271

09898ch10final 7/30/08 2:15 PM Page 271

$form['submit'] = array(
'#type' => 'submit',
'#value' => t('Click Me'),
'#ahah' => array(
'event' => 'click',
'path' => 'poof/message_js',
'wrapper' => 'target',
'effect' => 'fade',
'progress' => array(
'type' => 'bar',
'message' => t('One moment...'),
'interval' => 2,
'url' => 'poof/interval_js',

),
)

);

return $form;
}

/**
* Menu callback for AHAH additions.
*/
function poof_message_js() {
$output = t('POOF!');
for ($i = 0; $i < 100; $i = $i + 20) {
// Record how far we are.
variable_set('poof_percentage', $i);
// Simulate performing a task by waiting 2 seconds.
sleep(2);

}
drupal_json(array('status' => TRUE, 'data' => $output));

}

/**
* Menu callback for AHAH progress bar intervals.
*/
function poof_interval_js() {
// Read how far we are.
$percentage = variable_get('poof_percentage', 0);
// Return the value to the JavaScript progress bar.
drupal_json(array('percentage' => $percentage));

}

CHAPTER 10 ! THE FORM API272

09898ch10final 7/30/08 2:15 PM Page 272

Figure 10-19. The progress bar shows the percentage completion.

Summary
After reading this chapter, you should understand the following concepts:

• How the form API works

• Creating simple forms

• Changing the rendered form using theme functions

• Writing a validation function for a form or for individual elements

• Writing a submit function and do redirection after form processing

• Altering existing forms

• Writing multistep forms

• The form definition properties you can use and what they mean

• The form elements (text fields, select fields, radios, and so on) that are available in
Drupal

• How AHAH-based text replacement works with forms

For more information about forms, including tips and tricks, see the Drupal Handbook at
http://drupal.org/node/37775.

CHAPTER 10 ! THE FORM API 273

09898ch10final 7/30/08 2:15 PM Page 273

http://drupal.org/node/37775

09898ch10final 7/30/08 2:15 PM Page 274

Manipulating User Input:
The Filter System

Adding content to a web site can be quite a chore when you have to format the information
by hand. Conversely, making textual content look good on a web site requires knowledge of
HTML—knowledge most users don’t want to be bothered with. For those of us who are HTML-
savvy, it’s still a pain to stop and insert tags into our posts during the middle of a brainstorm or
literary breakthrough. Paragraph tags, link tags, break tags . . . yuck. The good news is that
Drupal uses prebuilt routines called filters to make data entry easy and efficient. Filters per-
form text manipulations such as making URLs clickable, converting line breaks to <p> and

 tags, and even stripping out malicious HTML. hook_filter() is the mechanism behind
filter creation and manipulation of user-submitted data.

Filters
Filters are almost always a single action such as “strip out all hyperlinks,” “add a random
image to this post,” or even “translate this into pirate-speak” (see pirate.module at http://
drupal.org/project/pirate). As shown in Figure 11-1, they take some kind of textual input,
manipulate it, and return output.

Figure 11-1. A filter transforms text in some way and returns the transformed text.

275

C H A P T E R 1 1

09898ch11final 7/30/08 2:11 PM Page 275

http://drupal.org/project/pirate
http://drupal.org/project/pirate

A common use for a filter is to remove unwanted markup from user-submitted input.
Figure 11-2 shows Drupal’s HTML filter at work.

Figure 11-2. The HTML filter allows only certain tags through. This filter is essential to prevent
cross-site scripting attacks.

Filters and Input Formats
Trying to find a list of installed filters within the administrative interface isn’t intuitive and
assumes you already understand what filters do to know what to look for. For filters to perform
their job, you must assign them to a Drupal input format as shown in Figure 11-3. Input for-
mats group filters together so they can run as a batch when processing content. This is much
easier than checking off a handful of filters for each submission. To view a list of installed fil-
ters, either configure an existing input format or create a new one at Administer ! Site
configuration ! Input formats.

"Tip A Drupal input format is made up of a collection of filters.

CHAPTER 11 " MANIPULATING USER INPUT: THE F ILTER SYSTEM276

09898ch11final 7/30/08 2:11 PM Page 276

Figure 11-3. Installed filters are listed on the “Add input format” form.

Drupal ships with three input formats (see Figure 11-4):

• The Filtered HTML input format is made up of four filters:

• The HTML corrector filter, which makes sure that all HTML tags are properly closed
and nested;

• The HTML filter, which restricts HTML tags and attempts to prevent cross-site
scripting (usually referred to as XSS) attacks;

• The line break converter, which converts carriage returns to their HTML counter-
parts; and

• The URL filter, which transforms web and e-mail addresses into hyperlinks.

CHAPTER 11 " MANIPULATING USER INPUT: THE F ILTER SYSTEM 277

09898ch11final 7/30/08 2:11 PM Page 277

• The Full HTML input format doesn’t restrict HTML in any way, but it does use the line
break converter filter.

• The PHP Code input format is made up of a filter called PHP evaluator, and its job is to
execute any PHP within a post. A good rule of thumb is never to give users the ability
to execute an input format that uses PHP evaluator. If they can run PHP, they can do
anything PHP can do, including taking down your site, or worse yet, deleting all your
data. To protect against this possibility, Drupal ships with the PHP evaluator filter dis-
abled. If you must make it available, enable the PHP filter module.

"Caution Enabling the PHP Code input format for any user on your site is a security issue. Best practice
is to not use this input format. If you must use it, use it sparingly, and only for the superuser (the user with
user ID 1).

Figure 11-4. Drupal installs with three configurable input formats by default.

Because input formats are collections of filters, they are extensible. You can add and
remove filters, as shown in Figure 11-5. You can change the input format’s name, add a filter,
remove a filter, or even rearrange the order in which an input format’s filters are executed to
avoid conflicts. For example, you might want to run the URL filter before the HTML filter runs
so the HTML filter can inspect the anchor tags created by the URL filter.

"Note Input formats (groups of filters) are controlled at the interface level. Developers don’t need to worry
about input formats when defining a new filter. That work is left to the Drupal site administrator.

CHAPTER 11 " MANIPULATING USER INPUT: THE F ILTER SYSTEM278

09898ch11final 7/30/08 2:11 PM Page 278

Figure 11-5. Input formats are made up of a collection of filters. Shown in this figure are Drupal’s
three default input formats. The direction of execution is shown by arrows.

Installing a Filter
Installing a filter follows the same procedure as installing a module, because filters live within
module files. Making a filter available to use is therefore as easy as enabling or disabling the
corresponding module at Administer ! Site building ! Modules. Once installed, navigate to
Administer ! Site configuration ! Input formats to assign the new filter to the input format(s)
of your choosing. Figure 11-6 shows the relationship between filters and modules.

CHAPTER 11 " MANIPULATING USER INPUT: THE F ILTER SYSTEM 279

09898ch11final 7/30/08 2:11 PM Page 279

Figure 11-6. Filters are created as part of modules.

Know When to Use Filters
You might be wondering why a filter system is even needed when you can easily manipulate
text using existing hooks found elsewhere. For example, it would be just as easy to use
hook_nodeapi() to convert URLs to clickable links rather than using the URL filter. But con-
sider the case in which you have five different filters that need to be run on the body field of
nodes. Now suppose you’re viewing the default http://example.com/?q=node page, which dis-
plays ten nodes at a time. That means 50 filters need to be run to generate a single page view,
and filtering text can be an expensive operation. It would also mean that whenever a node is
called it has to run through the filters, even if the text that’s being filtered is unchanged. You’d
be running this operation over and over again unnecessarily.

The filter system has a caching layer that provides significant performance gains. Once all
filters have run on a given piece of text, the filtered version of that text is stored in the
cache_filter table, and it stays cached until the text is once again modified (modification is
detected using an MD5 hash of the filtered contents). To go back to our example, loading ten
nodes could effectively bypass all filters and just load their data straight from the cache table
when that text hasn’t changed—much faster! See Figure 11-7 for an overview of the filter
system process.

"Tip MD5 is an algorithm for computing the hash value of a string of text. Drupal uses this as an efficient
index column in the database for finding the filtered data of a node.

CHAPTER 11 " MANIPULATING USER INPUT: THE F ILTER SYSTEM280

09898ch11final 7/30/08 2:11 PM Page 280

http://example.com/?q=node

Figure 11-7. Life cycle of the text-filtering system

"Tip For sites with lots of content, stunning performance gains can be had by moving filter caching to an
in-memory cache like memcached.

CHAPTER 11 " MANIPULATING USER INPUT: THE F ILTER SYSTEM 281

09898ch11final 7/30/08 2:11 PM Page 281

Now you could get really clever and say, “Well, what if we resave the filtered text back to
the node table in our nodeapi hook? Then it would behave the same as the filter system.”
Although that certainly addresses the performance issue, you’d be breaking a fundamental
concept of the Drupal architecture: never alter a user’s original data. Imagine that one of your
novice users goes back to edit a post only to find it smothered in HTML angle brackets. You’ll
most certainly be getting a tech support call on that one. The goal of the filter system is to
leave the original data untouched while making cached copies of the filtered data available
to the rest of the Drupal framework. You’ll see this principle over and over again with other
Drupal APIs.

"Note The filter system will cache its data even when caching is disabled at the page level in Drupal. If
you’re seeing stale, filtered data, try emptying the cache_filter table by clicking the “Clear cached data”
button at the bottom of the Administer ! Site configuration ! Performance page.

Creating a Custom Filter
Sure, Drupal filters can make links, format your content, and transform text to pirate-speak on
the fly, but what’d be really slick would be for it to write our blog entries for us, or at least help
us get our creative juices flowing. Sure, it can do that too! Let’s build a module with a filter to
insert random sentences into a blog entry. We’ll set it up so that when you run out of juice in
your post and need a creative spurt, you can simply type [juice!] while writing, and when you
save your entry, it’ll be replaced with a randomly generated sentence. We’ll also make it so that
if you need lots of creative juice, you can use the [juice!] tag multiple times per post.

Create a folder named creativejuice located in sites/all/modules/custom/. First, add
the creativejuice.info file to the creativejuice folder:

; Id
name = Creative Juice
description = Adds a random sentence filter to content.
package = Pro Drupal Development
core = 6.x

Next, create the creativejuice.module file and add it, too:

<?php
// Id

/**
* @file
* A silly module to assist whizbang novelists who are in a rut by providing a
* random sentence generator for their posts.
*/

CHAPTER 11 " MANIPULATING USER INPUT: THE F ILTER SYSTEM282

09898ch11final 7/30/08 2:11 PM Page 282

Implementing hook_filter()
Now that the basics of the module are in place, let’s add our implementation of hook_filter()
to creativejuice.module:

/**
* Implementation of hook_filter().
*/
function creativejuice_filter($op, $delta = 0, $format = -1, $text = '') {
switch ($op) {
case 'list':
return array(
0 => t('Creative Juice filter')

);

case 'description':
return t('Enables users to insert random sentences into their posts.');

case 'settings':
// No settings user interface for this filter.
break;

case 'no cache':
// It's OK to cache this filter's output.
return FALSE;

case 'prepare':
// We're a simple filter and have no preparatory needs.
return $text;

case 'process':
return preg_replace_callback("|\[juice!\]|i",
'creativejuice_sentence', $text);

default:
return $text;

}
}

The filter API passes through several stages, from collecting the name of the filter, to
caching, to a processing stage where actual manipulation is formed. Let’s take a look at those
stages or operations by examining creativejuice_filter(). Here’s a breakdown of the param-
eters passed into this hook:

CHAPTER 11 " MANIPULATING USER INPUT: THE F ILTER SYSTEM 283

09898ch11final 7/30/08 2:11 PM Page 283

• $op: The operation to be performed. We’ll cover this in more detail in the following
section.

• $delta: A module that implements hook_filter() can provide multiple filters. You use
$delta to track the ID of the currently executing filter. $delta is an integer. Because the
creativejuice module provides only one filter, we can ignore it.

• $format: An integer representing which input format is being used. Drupal keeps track
of these in the filter_formats database table.

• $text: The content to be filtered.

Depending on the $op parameter, different operations are performed.

The list Operation
It’s possible to declare multiple filters when using a single instance of hook_filter(), which
explains why the list operation returns an associative array of filter names with numerical
keys. These keys are used for subsequent operations and passed back to the hook through the
$delta parameter.

case 'list':
return array(
0 => t('Creative Juice filter'),
1 => t('The name of my second filter'),

);

The description Operation
This returns a short description of what the filter does. This is only visible to users with the
“administer filters” permission.

case 'description':
switch ($delta) {
case 0:
return t('Enables users to insert random sentences into their posts.');

case 1:
return t('If this module provided a second filter, the description
for that second filter would go here.');

// Should never reach default case as value of $delta never exceeds
// the last index of the 'list' array.
default:
return;

}

CHAPTER 11 " MANIPULATING USER INPUT: THE F ILTER SYSTEM284

09898ch11final 7/30/08 2:11 PM Page 284

The settings Operation
Used when a filter needs a form interface for configuration, this operation returns a form defi-
nition. Values are automatically saved using variable_set() when the form is submitted. This
means values are retrieved with variable_get(). For a usage example, see filter_filter() in
modules/filter/filter.module.

The no cache Operation
Should the filter system bypass its caching mechanism for filtered text when using this filter?
The code should return TRUE if caching should be disabled. You’ll want to disable caching
when developing filters, to make debugging easier. If you change the Boolean return value of
the no cache operation, you’ll need to edit an input format that uses your filter before the
changes take effect, since editing the input format will update the filter_formats table with
the caching setting for the filter.

"Caution Disabling the cache for a single filter removes the caching for any input format that uses
the filter.

The prepare Operation
The actual filtering of content is a two-step process. First, filters are allowed to prepare text
for processing. The main goal of this step is to convert HTML to corresponding entities. For
example, take a filter that allows users to paste code snippets. The “prepare” step would con-
vert this code to HTML entities to prevent the filters that follow from interpreting it as HTML.
The HTML filter would strip out this HTML if it weren’t for this step. An example of a filter
that uses prepare can be found in codefilter.module, a module that handles <code></code>
and <?php ?> tags, to let users post code without having to worry about escaping HTML enti-
ties. The module can be downloaded from http://drupal.org/project/codefilter.

The process Operation
The results from the prepare step are passed back through hook_filter() during the process
operation. It’s here that the actual text manipulation takes place: converting URLs to clickable
links, removing bad words, adding word definitions, and so on. The prepare and process oper-
ations should always return $text.

The default Operation
It’s important to include the default case. This will be called if your module doesn’t implement
some of the operations, and ensures that $text (the text given to your module to filter) will
always be returned.

CHAPTER 11 " MANIPULATING USER INPUT: THE F ILTER SYSTEM 285

09898ch11final 7/30/08 2:11 PM Page 285

http://drupal.org/project/codefilter

Helper Function
When $op is process, you execute a helper function named creativejuice_sentence() for
every occurrence of the [juice!] tag. Add this to creativejuice.module as well.

/**
* Generate a random sentence.
*/
function creativejuice_sentence() {
$phrase[0][] = t('A majority of us believe');
$phrase[0][] = t('Generally speaking,');
$phrase[0][] = t('As times carry on');
$phrase[0][] = t('Barren in intellect,');
$phrase[0][] = t('Deficient in insight,');
$phrase[0][] = t('As blazing blue sky poured down torrents of light,');
$phrase[0][] = t('Aloof from the motley throng,');

$phrase[1][] = t('life flowed in its accustomed stream');
$phrase[1][] = t('he ransacked the vocabulary');
$phrase[1][] = t('the grimaces and caperings of buffoonery');
$phrase[1][] = t('the mind freezes at the thought');
$phrase[1][] = t('reverting to another matter');
$phrase[1][] = t('he lived as modestly as a hermit');

$phrase[2][] = t('through the red tape of officialdom.');
$phrase[2][] = t('as it set anew in some fresh and appealing form.');
$phrase[2][] = t('supported by evidence.');
$phrase[2][] = t('as fatal as the fang of the most venomous snake.');
$phrase[2][] = t('as full of spirit as a gray squirrel.');
$phrase[2][] = t('as dumb as a fish.');
$phrase[2][] = t('like a damp-handed auctioneer.');
$phrase[2][] = t('like a bald ferret.');

foreach ($phrase as $key => $value) {
$rand_key = array_rand($phrase[$key]);
$sentence[] = $phrase[$key][$rand_key];

}

return implode(' ', $sentence);
}

CHAPTER 11 " MANIPULATING USER INPUT: THE F ILTER SYSTEM286

09898ch11final 7/30/08 2:11 PM Page 286

hook_filter_tips()
You use creativejuice_filter_tips() to display help text to the end user. By default, a short
message is shown with a link to http://example.com/?q=filter/tips, where more detailed
instructions are given for each filter.

/**
* Implementation of hook_filter_tips().
*/
function creativejuice_filter_tips($delta, $format, $long = FALSE) {
return t('Insert a random sentence into your post with the [juice!] tag.');

}

In the preceding code, you return the same text for either the brief or long help text page,
but if you wanted to return a longer explanation of the text, you’d check the $long parameter
as follows:

/**
* Implementation of hook_filter_tips().
*/
function creativejuice_filter_tips($delta, $format, $long = FALSE) {
if ($long) {
// Detailed explanation for http://example.com/?q=filter/tips page.
return t('The Creative Juice filter is for those times when your
brain is incapable of being creative. These times come for everyone,
when even strong coffee and a barrel of jelly beans do not
create the desired effect. When that happens, you can simply enter
the [juice!] tag into your posts...'

);
}
else {
// Short explanation for underneath a post's textarea.
return t('Insert a random sentence into your post with the [juice!] tag.');

}
}

Once this module is enabled on the modules page, the creativejuice filter will be avail-
able to be enabled for either an existing input format or a new input format. For example,
Figure 11-8 shows what the “Input format” section of the node editing form looks like after
the creativejuice filter has been added to the Filtered HTML input format.

CHAPTER 11 " MANIPULATING USER INPUT: THE F ILTER SYSTEM 287

09898ch11final 7/30/08 2:11 PM Page 287

http://example.com/?q=filter/tips
http://example.com/?q=filter/tips

Figure 11-8. The Filtered HTML input format now contains the creativejuice filter, as indicated by
the preceding section of the node editing form.

You can create a new blog entry with the correct input format and submit text that uses
the [juice!] tag:

Today was a crazy day. [juice!] Even if that sounds a little odd,
it still doesn't beat what I heard on the radio. [juice!]

This is converted upon submission to something like the following:

Today was a crazy day! Generally speaking, life flowed in its accustomed stream
through the red tape of officialdom. Even if that sounds a little odd, it still
doesn't beat what I heard on the radio. Barren in intellect, reverting to another
matter like a damp-handed auctioneer.

Protecting Against Malicious Data
If you want to protect against malicious HTML, run everything through the Filtered HTML fil-
ter, which checks against XSS attacks. If you’re in a situation where the Filtered HTML filter
can’t be used, you could manually filter XSS in the following manner:

function mymodule_filter($op, $delta = 0, $format = -1, $text = '') {
switch ($op) {
case 'process':
// Decide which tags are allowed.
$allowed_tags = '<a> <cite> <code> ';
return filter_xss($text, $allowed_tags);

default:
return $text;
break;

}
}

CHAPTER 11 " MANIPULATING USER INPUT: THE F ILTER SYSTEM288

09898ch11final 7/30/08 2:11 PM Page 288

Summary
After reading this chapter you should be able to

• Understand what a filter and an input format are and how they are used to transform
text.

• Understand why the filter system is more efficient than performing text manipulations
in other hooks.

• Understand how input formats and filters behave.

• Create a custom filter.

• Understand how the various filter operations function.

CHAPTER 11 " MANIPULATING USER INPUT: THE F ILTER SYSTEM 289

09898ch11final 7/30/08 2:11 PM Page 289

09898ch11final 7/30/08 2:11 PM Page 290

Searching and Indexing Content

Both MySQL and PostgreSQL have built-in full-text search capabilities. While it’s very easy
to use these database-specific solutions to build a search engine, you sacrifice control over
the mechanics and lose the ability to fine-tune the system according to the behavior of your
application. What the database sees as a high-ranking word might actually be considered a
“noise” word by the application if it had a say.

The Drupal community decided to build a custom search engine in order to implement
Drupal-specific indexing and page-ranking algorithms. The result is a search engine that
walks, talks, and quacks like the rest of the Drupal framework with a standardized config-
uration and user interface—no matter which database back-end is used.

In this chapter we discuss how modules can hook into the search API and build custom
search forms. We also look at how Drupal parses and indexes content and how you can hook
into the indexer.

!Tip Drupal understands complicated search queries containing Boolean AND/OR operators, exact
phrases, or even negative words. An example of all these in action is as follows: Beatles OR John Lennon
"Penny Lane" –insect.

Building a Custom Search Page
Drupal has the ability to search nodes and usernames out of the box. Even when you
develop your own custom node types, Drupal’s search system indexes the content that’s
rendered to the node view. For example, suppose you have a recipe node type with the
fields ingredients and instructions, and you create a new recipe node whose node ID
is 22. As long as those fields are viewable by the administrator when you visit http://
example.com/?q=node/22, the search module will index the recipe node and its additional
metadata during the next cron run.

While it would appear at first glance that node searching and user searching would use
the same underlying mechanism, they’re actually two separate ways of extending search func-
tionality. Rather than querying the node table directly for every search, node searching uses the
help of an indexer to process the content ahead of time in a structured format. When a node
search is performed, the structured data is queried, yielding noticeably faster and more accu-
rate results. We’ll get to know the indexer later in this chapter.

291

C H A P T E R 1 2

09898ch12final 7/30/08 2:08 PM Page 291

http://example.com/?q=node/22
http://example.com/?q=node/22

Username searches are not nearly as complex, because usernames are a single field in the
database that the search query checks. Also, usernames are not allowed to contain HTML, so
there’s no need to use the HTML indexer. Instead, you can query the users table directly with
just a few lines of code.

In both of the preceding cases, Drupal’s search module delegates the actual search to the
appropriate module. The simple username search can be found in the user_search() function
of modules/user/user.module, while the more complex node search is performed by node_
search() in modules/node/node.module. The important point here is that the search module
orchestrates the search but delegates the implementation to the modules that know the
searchable content best.

The Default Search Form
You’ll be glad to know the search API has a default search form ready to use (see Figure 12-1).
If that interface works for your needs, then all you need to do is write the logic that finds the
hits for the search requested. This search logic is usually a query to the database.

Figure 12-1. The default user interface for searching with the search API

While it appears simple, the default content search form is actually wired up to query
against all the visible elements of the node content of your site. This means a node’s title,
body, additional custom attributes, comments, and taxonomy terms are searched from this
interface.

The Advanced Search Form
The advanced search feature, shown in Figure 12-2, is yet another way to filter search results.
The category selections come from any vocabularies that have been defined on the site (see
Chapter 14). The types consist of any content types that are enabled on the site.

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT292

09898ch12final 7/30/08 2:08 PM Page 292

Figure 12-2. The advanced search options provided by the default search form

The default search form can be changed by implementing the search hook in a module,
then using hook_form_alter() on the form ID search_form (see Chapter 10) to provide an
interface for the user. In Figure 12-2, both of these are happening. The node module is imple-
menting the search hook to make nodes searchable (see node_search() in modules/node/
node.module) and is extending the form to provide an interface (see node_form_alter() in
modules/node/node.module).

Adding to the Search Form
Let’s look at an example. Suppose we are using path.module and want to enable searching of
URL aliases on our site. We’ll write a short module that will implement hook_search() to make
the aliases searchable and provide an additional tab in Drupal’s search interface.

Introducing hook_search()
Let’s start out by examining the search hook we’ll be implementing. The function signature of
hook_search() looks like this:

function hook_search($op = 'search', $keys = NULL)

The $op parameter is used to describe the current operation being performed and can
have the following values:

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT 293

09898ch12final 7/30/08 2:08 PM Page 293

• name: The caller expects to receive a translated name representing the type of content
this implementation of hook_search() will provide. For example, the node module
returns t('Content'), and the user module returns t('Users'). The name is used to
build the tabs on the search form (see Figure 12-1).

• search: A search on this type of content is happening. The module should perform
a search and return results. The $keys parameter will contain the string that the user
entered in the search form. Note that this is a string, not an array. After performing a
search, your module should return an array of search results. Each result should have,
at a minimum, link and title keys. Optional additional keys to return are type, user,
date, snippet, and extra. Here is the part of implementing hook_search('search') in
node.module where the results array is built (see comment_nodeapi() in modules/
comment/comment.module for an example of how the extra key is used):

$extra = node_invoke_nodeapi($node, 'search result');
$results[] = array(
'link' => url('node/'. $item->sid, array('absolute' => TRUE)),
'type' => check_plain(node_get_types('name', $node)),
'title' => $node->title,
'user' => theme('username', $node),
'date' => $node->changed,
'node' => $node,
'extra' => $extra,
'score' => $item->score / $total,
'snippet' => search_excerpt($keys, $node->body),

);

• reset: The search index is about to be rebuilt. Used by modules that also implement
hook_update_index(). If your module is keeping track of how much of its data has been
indexed, it should reset its counters in preparation for reindexing.

• status: The user wants to know how much of the content provided by this module has
been indexed. This operation is used by modules that also implement hook_update_
index(). Return an array with the keys remaining and total, with their values being the
number of items that remain to be indexed and the total number of items that will be
indexed when indexing is complete.

• admin: The page at Administer " Site configuration " Search settings is about to be dis-
played. Return a form definition array containing any elements you wish to add to this
page. This form uses the system_settings_form() approach, so the names of element
keys must match the names of persistent variables used for default values. See “Adding
Module-Specific Settings” in Chapter 2 if you need a refresher on how system_
settings_form() works.

The name and search operations are the only ones that are required, and the only ones
we’ll be implementing in our path aliasing search.

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT294

09898ch12final 7/30/08 2:08 PM Page 294

Formatting Search Results with hook_search_page()
If you have written a module that provides search results, you might want to take over the
look and feel of the results page by implementing hook_search_page(). If you do not imple-
ment this hook, the results will be formatted by a call to theme('search_results', $results,
$type), which has its default implementation in modules/search/search-results.tpl.php.
Do not confuse this with theme('search_result', $result, $type), which formats a single
search result and has its default implementation in modules/search/search-result.tpl.php.

Making Path Aliases Searchable
Let’s begin our example. We’ll be implementing the name and search operations of
hook_search().

!Note For the following examples to work, you’ll need to have the path module enabled and some paths
assigned to nodes (so there is something to search). You’ll also need to rebuild your search index data before
testing these examples. You can do so by selecting Administer " Site configuration " Search settings and
clicking the “Re-index site” button and then visiting Administer " Reports " Status report to run cron
manually. The search module does indexing when cron runs.

Create a new folder named pathfinder at sites/all/modules/custom, and create the files
shown in Listings 12-1 and 12-2 with the new directory.

Listing 12-1. pathfinder.info

; Id
name = Pathfinder
description = Gives administrators the ability to search URL aliases.
package = Pro Drupal Development
core = 6.x

Listing 12-2. pathfinder.module

<?php
// Id

/**
* @file
* Search interface for URL aliases.
*/

Leave pathfinder.module open in your text editor; you’ll continue to work with it. The
next function to implement is hook_search($op, $keys). This hook returns different informa-
tion based on the value of the operation ($op) parameter.

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT 295

09898ch12final 7/30/08 2:08 PM Page 295

/**
* Implementation of hook_search().
*/
function pathfinder_search($op = 'search', $keys = null) {
switch ($op) {
case 'name':
if (user_access('administer url aliases')) {
return t('URL aliases');

}
break;

case 'search':
if (user_access('administer url aliases')) {
$found = array();
// Replace wildcards with MySQL/PostgreSQL wildcards.
$keys = preg_replace('!*+!', '%', $keys);
$sql = "SELECT * FROM {url_alias} WHERE LOWER(dst) LIKE LOWER('%%%s%%')";
$result = pager_query($sql, 50, 0, NULL, $keys);
while ($path = db_fetch_object($result)) {
$found[] = array('title' => $path->dst,
'link' => url("admin/build/path/edit/$path->pid"));

}

return $found;
}

}
}

When the search API invokes hook_search('name'), it’s looking for the name the menu tab
should display on the generic search page (see Figure 12-3). In our case, we’re returning “URL
aliases.” By returning the name of the menu tab, the search API wires up the link of the menu
tab to a new search form.

Figure 12-3. By returning the name of the menu tab from hook_search(), the search form becomes
accessible.

hook_search('search') is the workhorse part of hook_search(). It is invoked when the
search form is submitted, and its job is to collect and return the search results. In the preced-
ing code, we query the url_alias table, using the search terms submitted from the form. We
then collect the results of the query and send them back in an array. The results are formatted
by the search module and displayed to the user, as shown in Figure 12-4.

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT296

09898ch12final 7/30/08 2:08 PM Page 296

Figure 12-4. Search results are formatted by the search module.

Let’s move on to the search results page. If the default search results page isn’t as robust as
you’d like it to be, you can override the default view. In our case, rather than showing just a list
of matching aliases, let’s make a sortable table of search results with individual “edit” links for
each matching alias. With a couple of adjustments to the return value of hook_search
('search') and by implementing hook_search_page(), we’re set.

/**
* Implementation of hook_search().
*/
function pathfinder_search($op = 'search', $keys = null) {
switch ($op) {
case 'name':
if (user_access('administer url aliases')) {
return t('URL aliases');

}
break;

case 'search':
if (user_access('administer url aliases')) {
$header = array(
array('data' => t('Alias'), 'field' => 'dst'),
t('Operations'),

);

// Return to this page after an 'edit' operation.
$destination = drupal_get_destination();
// Replace wildcards with MySQL/PostgreSQL wildcards.
$keys = preg_replace('!*+!', '%', $keys);
$sql = "SELECT * FROM {url_alias} WHERE LOWER(dst) LIKE LOWER('%%%s%%')" .
tablesort_sql($header);

$result = pager_query($sql, 50, 0, NULL, $keys);
while ($path = db_fetch_object($result)) {
$rows[] = array(
l($path->dst, $path->dst),

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT 297

09898ch12final 7/30/08 2:08 PM Page 297

l(t('edit'), "admin/build/path/edit/$path->pid",
array('query' => $destination))

);
}
if (!$rows) {
$rows[] = array(array('data' => t('No URL aliases found.'),
'colspan' => '2'));

}

return $rows;
}

}
}

/**
* Implementation of hook_search_page().
*/
function pathfinder_search_page($rows) {
$header = array(

array('data' => t('Alias'), 'field' => 'dst'), ('Operations'));
$output = theme('table', $header, $rows);
$output .= theme('pager', NULL, 50, 0);
return $output;

}

In the preceding code, we use drupal_get_destination() to retrieve the current location
of the page we’re on, and if we click and edit a URL alias, we’ll automatically be taken back to
this search results page. The path editing form knows where to return to because that infor-
mation is passed in as part of the edit link. You’ll see an additional parameter in the URL called
destination, which contains the URL to return to once the form is saved.

For sorting of the results table, we append the tablesort_sql() function to the search
query string to make sure the correct SQL ORDER BY clauses are appended to the query. Finally,
pathfinder_search_page() is an implementation of hook_search_page() and allows us to con-
trol the output of the search results page. Figure 12-5 shows the final search results page.

Figure 12-5. The search results page now presents results as a sortable table.

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT298

09898ch12final 7/30/08 2:08 PM Page 298

Using the Search HTML Indexer
So far, we’ve examined how to interact with the default search form by providing a simple
implementation of hook_search('search'). However, when we move from searching a simple
VARCHAR database column with LIKE to seriously indexing web site content, it’s time to out-
source the task to Drupal’s built-in HTML indexer.

The goal of the indexer is to efficiently search large chunks of HTML. It does this by pro-
cessing content when cron is called (via http://example.com/cron.php). As such, there is a lag
time between when new content is searchable and how often cron is scheduled to run. The
indexer parses data and splits text into words (called tokenization), assigning scores to each
token based on a rule set, which can be extended with the search API. It then stores this data
in the database, and when a search is requested it uses these indexed tables instead of the
node tables directly.

!Note Because searching and indexing happens with cron, there is a lag time between when new
content is searchable and how often cron is scheduled to run. Also, indexing is an intensive task. If you
have a busy Drupal site where hundreds of new nodes are added between cron runs, it might be time
to move to a search solution that works alongside Drupal, such as Solr (see http://drupal.org/
project/apachesolr).

When to Use the Indexer
Indexers are generally used when implementing search engines that evaluate more than the
standard “most words matched” approach. Search relevancy refers to content passing through
a (usually complex) rule set to determine ranking within an index.

You’ll want to harness the power of the indexer if you need to search a large bulk of HTML
content. One of the greatest benefits in Drupal is that blogs, forums, pages, and so forth are all
nodes. Their base data structures are identical, and this common bond means they also share
basic functionality. One such common feature is that all nodes are automatically indexed if a
search module is enabled; no extra programming is needed. Even if you create a custom node
type, searching of that content is already built in, provided that the modifications you make
show up in the node when it is rendered.

How the Indexer Works
The indexer has a preprocessing mode where text is filtered through a set of rules to assign
scores. Such rules include dealing with acronyms, URLs, and numerical data. During the
preprocessing phase, other modules have a chance to add logic to this process in order to per-
form their own data manipulations. This comes in handy during language-specific tweaking,
as shown here using the contributed Porter-Stemmer module:

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT 299

09898ch12final 7/30/08 2:08 PM Page 299

http://example.com/cron.php
http://drupal.org

• resumé " resume (accent removal)

• skipping " skip (stemming)

• skips " skip (stemming)

Another such language preprocessing example is word splitting for the Chinese, Japanese,
and Korean languages to ensure the character text is correctly indexed.

!Tip The Porter-Stemmer module (http://drupal.org/project/porterstemmer) is an example of
a module that provides word stemming to improve English language searching. Likewise, the Chinese Word
Splitter module (http://drupal.org/project/csplitter) is an enhanced preprocessor for improving
Chinese, Japanese, and Korean searching. A simplified Chinese word splitter is included with the search
module and can be enabled on the search settings page.

After the preprocessing phase, the indexer uses HTML tags to find more important words
(called tokens) and assigns them adjusted scores based on the default score of the HTML tags
and the number of occurrences of each token. These scores will be used to determine the ulti-
mate relevancy of the token. Here’s the full list of the default HTML tag scores (they are
defined in search_index()):

<h1> = 25
<h2> = 18
<h3> = 15
<h4> = 12
<a> = 10
<h5> = 9
<h6> = 6
 = 3
 = 3
<i> = 3
 = 3
<u> = 3

Let’s grab a chunk of HTML and run it through the indexer to better understand how it
works. Figure 12-6 shows an overview of the HTML indexer parsing content, assigning scores
to tokens, and storing that information in the database.

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT300

09898ch12final 7/30/08 2:08 PM Page 300

http://drupal.org/project/porterstemmer
http://drupal.org/project/csplitter

Figure 12-6. Indexing a chunk of HTML and assigning token scores

When the indexer encounters numerical data separated by punctuation, the punctuation
is removed and numbers alone are indexed. This makes elements such as dates, version num-
bers, and IP addresses easier to search for. The middle process in Figure 12-6 shows how a
word token is processed when it’s not surrounded by HTML. These tokens have a weight of 1.
The last row shows content that is wrapped in an emphasis () tag. The formula for deter-
mining the overall score of a token is as follows:

Number of matches x Weight of the HTML tag

It should also be noted that Drupal indexes the filtered output of nodes so, for example,
if you have an input filter set to automatically convert URLs to hyperlinks, or another filter
to convert line breaks to HTML breaks and paragraph tags, the indexer sees this content
with all the markup in place and can take the markup into consideration and assign scores
accordingly. A greater impact of indexing filtered output is seen with a node that uses the
PHP evaluator filter to generate dynamic content. Indexing dynamic content could be a real
hassle, but because Drupal’s indexer sees only the output of content generated by the PHP
code, dynamic content is automatically fully searchable.

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT 301

09898ch12final 7/30/08 2:08 PM Page 301

When the indexer encounters internal links, they too are handled in a special way. If a link
points to another node, then the link’s words are added to the target node’s content, making
answers to common questions and relevant information easier to find. There are two ways to
hook into the indexer:

• hook_nodeapi('update index'): You can add data to a node that is otherwise invisible in
order to tweak search relevancy. You can see this in action within the Drupal core for
taxonomy terms and comments, which technically aren’t part of the node object but
should influence the search results. These items are added to nodes during the indexing
phase using the taxonomy module’s implementation of the nodeapi('update index')
hook. You may recall that hook_nodeapi() only deals with nodes.

• hook_update_index(): You can use the indexer to index HTML content that is not part
of a node using hook_update_index(). For a Drupal core implementation of hook_
update_index(), see node_update_index() in modules/node/node.module.

Both of these hooks are called during cron runs in order to index new data. Figure 12-7
shows the order in which these hooks run.

Figure 12-7. Overview of HTML indexing hooks

We’ll look at these hooks in more detail in the sections that follow.

Adding Metadata to Nodes: hook_nodeapi(‘update_index’)
When Drupal indexes a node for searching, it first runs the node through node_view() to gen-
erate the same output anonymous users would see in their web browser. This means any parts
of the node that are visible will be indexed. For example, assume we have a node with an ID of
26. The parts of the node that are visible when viewing the URL http://example.com/
?q=node/26 are what the indexer also sees.

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT302

09898ch12final 7/30/08 2:08 PM Page 302

http://example.com

What if we have a custom node type that contains hidden data that needs to influence
search results? A good example of where we might want to do this is with book.module. We
could index the chapter headings along with each child page to boost the relevancy of those
children pages.

/**
* Implementation of hook_nodeapi().
*/
function book_boost_nodeapi($node, $op) {
switch ($op) {
case 'update index':
// Book nodes have a parent link ID attribute.
// If it's nonzero we can have the menu system retrieve
// the parent's menu item which gives us the title.
if ($node->type == 'book' && $node->book['plid']) {
$item = menu_link_load($node->book['plid']);
return '<h2>'. $item['title'] .'</h2>';

}
}

}

Notice that we wrapped the title in HTML heading tags to inform the indexer of a higher
relative score value for this text.

!Note The nodeapi hook is only for appending metadata to nodes. To index elements that aren’t nodes,
use hook_update_index().

Indexing Content That Isn’t a Node: hook_update_index()
If you need to wrap the search engine around content that isn’t made up of Drupal nodes, you
can hook right into the indexer and feed it any textual data you need, thus making it search-
able within Drupal. Suppose your group supports a legacy application that has been used for
entering and viewing technical notes about products for the last several years. For political
reasons, you cannot yet replace it with a Drupal solution, but you’d love to be able to search
those technical notes from within Drupal. No problem. Let’s assume the legacy application
keeps its data in a database table called technote. We’ll create a short module that will send
the information in this database to Drupal’s indexer using hook_update_index() and present
search results using hook_search().

!Note If you’d like to index content from a non-Drupal database, take a look at Chapter 5 for more infor-
mation on connecting to multiple databases.

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT 303

09898ch12final 7/30/08 2:08 PM Page 303

Create a folder named legacysearch inside sites/all/modules/custom. If you want to
have a legacy database to play with, create a file named legacysearch.install, and add the
following contents:

<?php
// Id

/**
* Implementation of hook_install().
*/
function legacysearch_install() {
// Create table.
drupal_install_schema('legacysearch');
// Insert some data.
db_query("INSERT INTO technote VALUES (1, 'Web 1.0 Emulator',
'<p>This handy product lets you emulate the blink tag but in
hardware...a perfect gift.</p>', 1172542517)");

db_query("INSERT INTO technote VALUES (2, 'Squishy Debugger',
'<p>Fully functional debugger inside a squishy gel case.
The embedded ARM processor heats up...</p>', 1172502517)");

}

/**
* Implementation of hook_uninstall().
*/
function legacysearch_uninstall() {
drupal_uninstall_schema('legacysearch');

}

/**
* Implementation of hook_schema().
*/
function legacysearch_schema() {
$schema['technote'] = array(
'description' => t('A database with some example records.'),
'fields' => array(
'id' => array(
'type' => 'serial',
'not null' => TRUE,
'description' => t("The tech note's primary ID."),

),
'title' => array(
'type' => 'varchar',
'length' => 255,
'description' => t("The tech note's title."),

),

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT304

09898ch12final 7/30/08 2:08 PM Page 304

'note' => array(
'type' => 'text',
'description' => t('Actual text of tech note.'),

),
'last_modified' => array(
'type' => 'int',
'unsigned' => TRUE,
'description' => t('Unix timestamp of last modification.'),

),
),
'primary key' => array('id'),

);
return $schema;

}

This module typically wouldn’t need this install file, since the legacy database would
already exist; we’re just using it to make sure we have a legacy table and data to work with. You
would instead adjust the queries within the module to connect to your existing non-Drupal
table. The following queries assume the data is in a non-Drupal database with the database
connection defined by $db_url['legacy'] in settings.php.

Next, add sites/all/modules/custom/legacysearch/legacysearch.info with the following
content:

; Id
name = Legacy Search
description = Example of indexing/searching external content with Drupal.
package = Pro Drupal Development
core = 6.x

Finally, add sites/all/modules/custom/legacysearch/legacysearch.module along with
the following code:

<?php
// Id

/**
* @file
* Enables searching of non-Drupal content.
*/

Go ahead and keep legacysearch.module open in your text editor, and we’ll add
hook_update_index(), which feeds the legacy data to the HTML indexer. You can now safely
enable your module after creating these files.

/**
* Implementation of hook_update_index().
*/
function legacysearch_update_index() {

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT 305

09898ch12final 7/30/08 2:08 PM Page 305

// We define these variables as global so our shutdown function can
// access them.
global $last_change, $last_id;

// If PHP times out while indexing, run a function to save
// information about how far we got so we can continue at next cron run.
register_shutdown_function('legacysearch_update_shutdown');

$last_id = variable_get('legacysearch_cron_last_id', 0);
$last_change = variable_get('legacysearch_cron_last_change', 0);

// Switch database connection to legacy database.
db_set_active('legacy');
$result = db_query("SELECT id, title, note, last_modified

FROM {technote}
WHERE (id > %d) OR (last_modified > %d)
ORDER BY last_modified ASC", $last_id, $last_change);

// Switch database connection back to Drupal database.
db_set_active('default');

// Feed the external information to the search indexer.
while ($data = db_fetch_object($result)) {
$last_change = $data->last_modified;
$last_id = $data->id;

$text = '<h1>' . check_plain($data->title) . '</h1>' . $data->note;

search_index($data->id, 'technote', $text);
}

}

Each piece of content is passed to search_index() along with an identifier (in this case the
value from the ID column of the legacy database), the type of content (I made up the type
technote; when indexing Drupal content it’s typically node or user), and the text to be indexed.

register_shutdown_function() assigns a function that’s executed after the PHP script exe-
cution is complete for a request. This is to keep track of the ID of the last indexed item,
because PHP may time out before all content has been indexed.

/**
* Shutdown function to make sure we remember the last element processed.
*/
function legacysearch_update_shutdown() {
global $last_change, $last_id;

if ($last_change && $last_id) {
variable_set('legacysearch_cron_last', $last_change);
variable_set('legacysearch_cron_last_id', $last_id);

}
}

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT306

09898ch12final 7/30/08 2:08 PM Page 306

The last function we need for this module is an implementation of hook_search(), which
lets us use the built-in search interface for our legacy information.

/**
* Implementation of hook_search().
*/
function legacysearch_search($op = 'search', $keys = NULL) {
switch ($op) {
case 'name':
return t('Tech Notes'); // Used on search tab.

case 'reset':
variable_del('legacysearch_cron_last');
variable_del('legacysearch_cron_last_id');
return;

case 'search':
// Search the index for the keywords that were entered.
$hits = do_search($keys, 'technote');

$results = array();

// Prepend URL of legacy system to each result. Assume a legacy URL
// for a given tech note is http://technotes.example.com/note.pl?3
$legacy_url = 'http://technotes.example.com/';

// We now have the IDs of the results. Pull each result
// from the legacy database.
foreach ($hits as $item) {
db_set_active('legacy');
$note = db_fetch_object(db_query("SELECT * FROM {technote} WHERE
id = %d", $item->sid));

db_set_active('default');

$results[] = array(
'link' => url($legacy_url . 'note.pl', array('query' => $item->sid,
'absolute' => TRUE)),

'type' => t('Note'),
'title' => $note->title,
'date' => $note->last_modified,
'score' => $item->score,
'snippet' => search_excerpt($keys, $note->note));

}
return $results;

}
}

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT 307

09898ch12final 7/30/08 2:08 PM Page 307

http://technotes.example.com/note.pl?3
http://technotes.example.com

After cron has run and the information has been indexed, the technical notes will
be available to search, as shown in Figure 12-8. They will be indexed inside Drupal,
but legacysearch_search() will return search results that are built from (and point to)
the legacy system.

Figure 12-8. Searching an external legacy database

Summary
After reading this chapter, you should be able to

• Customize the search form.

• Understand how to use the search hook.

• Understand how the HTML indexer works.

• Hook into the indexer for any kind of content.

CHAPTER 12 ! SEARCHING AND INDEXING CONTENT308

09898ch12final 7/30/08 2:08 PM Page 308

Working with Files

Drupal has the ability to upload and download files in a variety of ways. In this chapter,
you’ll learn about public and private files and how they’re served, deal briefly with the han-
dling of media files, and look at Drupal’s file authentication hook.

How Drupal Serves Files
Drupal provides two mutually exclusive modes for managing file download security: public
mode and private mode. In private mode, it is possible to check user permissions when a
download is requested, and the download is denied if the user doesn’t have proper access.
In public mode, any user who can access a file’s URL may download the file. This setting is
applied on a site-wide basis rather than module by module or file by file, so the decision to
use privately or publicly served files is usually made during initial site setup and affects all
modules using Drupal’s file API.

!Caution Because public and private file storage methods result in different URLs being generated for file
downloads, it’s important to choose the option that will work best for your site before you start uploading
files, and stick to the method you choose.

To set up the file system paths and specify which download method to use, navigate to
Administer " Site configuration " File system.

As shown in Figure 13-1, Drupal will warn you if the directory you have specified doesn’t
exist, or if PHP doesn’t have write permission to it.

309

C H A P T E R 1 3

09898ch13final 7/30/08 2:06 PM Page 309

Figure 13-1. The interface for specifying file-related settings in Drupal. In this case, Drupal
is warning that the file system path that has been specified does not have the proper
permissions; the directory specified by the file system path must be created and given
appropriate permissions.

Public Files
The most straightforward configuration is the public file download method, in which Drupal
stays out of the download process. When files are uploaded, Drupal simply saves them in the
directory you’ve specified in Administer " Site configuration " File system and keeps track of
the URLs of the files in a database table (so Drupal knows which files are available, who
uploaded them, and so on). When a file is requested, it’s transferred directly by the web server
over HTTP as a static file and Drupal isn’t involved at all. This has the advantage of being very
fast, because no PHP needs to be executed. However, no Drupal user permissions are checked.

When specifying the file system path, the folder must exist and be writable by PHP. Usu-
ally the user (on the operating system) that is running the web server is also the same user
running PHP. Thus, giving that user write permission to the files folder allows Drupal to
upload files. With that done, be sure to specify the file system path at Administer " Site con-
figuration " File system. Once these changes are saved, Drupal automatically creates an
.htaccess file inside your files folder. This is necessary to protect your server from a known
Apache security exploit allowing users to upload and execute scripts embedded in uploaded
files (see http://drupal.org/node/66763). Check to make sure your files folder contains an
.htaccess file containing the following information:

SetHandler Drupal_Security_Do_Not_Remove_See_SA_2006_006
Options None
Options +FollowSymLinks

CHAPTER 13 ! WORKING WITH F ILES310

09898ch13final 7/30/08 2:06 PM Page 310

http://drupal.org/node/66763

!Tip When running Drupal on a web server cluster, the location of the temporary files directory needs
to be shared by all web servers. Because Drupal may use one request to upload the file and a second to
change its status from temporary to permanent, many load-balancing schemes will result in the temp file
going to one server while the second request goes to another. When this happens, files will appear to upload
properly, but will never appear in the nodes or content to which they’re attached. Ensure that all your web
servers are using the same shared temp directory, and use a sessions-based load balancer. Your files direc-
tory, like your database, should be global to your web servers.

Private Files
In private download mode, the files folder can be located anywhere PHP may read and write,
and need not be (and in most cases ought not be) directly accessible by the web server itself.

The security of private files comes at a performance cost. Rather than delegating the work
of file serving to the web server, Drupal takes on the responsibility of checking access permis-
sions and serving out the files, and Drupal is fully bootstrapped on every file request.

PHP Settings
A number of settings in php.ini are easy to overlook but are important for file uploads. The
first is post_max_size under the Data Handling section of php.ini. Because files are uploaded
by an HTTP POST request, attempts to upload files of a size greater than post_max_size will fail
due to the amount of POST data being sent.

; Maximum size of POST data that PHP will accept.
post_max_size = 8M

The File Uploads section of php.ini contains several more important settings. Here you
can determine whether file uploads are allowed and what the maximum file size for uploaded
files should be.

;;;;;;;;;;;;;;;;
; File Uploads ;
;;;;;;;;;;;;;;;;

; Whether to allow HTTP file uploads.
file_uploads = On

; Temporary directory for HTTP uploaded files (will use system default if not
; specified).
;upload_tmp_dir =

; Maximum allowed size for uploaded files.
upload_max_filesize = 20M

CHAPTER 13 ! WORKING WITH F ILES 311

09898ch13final 7/30/08 2:06 PM Page 311

If file uploads seem to be failing, check that these settings are not at fault. Also, note
that upload_max_filesize should be less than post_max_size, which should be less than
memory_limit:

upload_max_filesize < post_max_size < memory_limit

Two final settings that can leave you stumped are max_execution_time and max_input_
time. If your script exceeds these limits while uploading a file, PHP will terminate your script.
Check these settings if you see uploads from slow Internet connections failing.

;;;;;;;;;;;;;;;;;;;
; Resource Limits ;
;;;;;;;;;;;;;;;;;;;

max_execution_time = 60 ; Maximum execution time of each script, in seconds
; xdebug uses this, so set it very high for debugging

max_input_time = 60 ; Maximum amount of time each script may spend
; parsing request data

When debugging, you’ll want to have max_execution_time set at a high value (e.g., 1600)
so the debugger does not time out. Bear in mind, however, that if your server is very busy, it
is possible to tie up Apache processes for a long time while the files are uploaded, raising a
potential scalability concern.

Media Handling
The file API (found in includes/file.inc) doesn’t provide a generic user interface for upload-
ing files. To fill that gap for most end users, upload.module exists in Drupal core, and several
contributed modules offer alternatives.

Upload Module
The upload module adds an upload field to the node types of your choice. The upload field is
shown in Figure 13-2.

Figure 13-2. The “File attachments” field is added to the node form when the upload module is
enabled and the user has “upload files” permission.

CHAPTER 13 ! WORKING WITH F ILES312

09898ch13final 7/30/08 2:06 PM Page 312

After a file has been uploaded on the node edit form, upload.module can add download
links to uploaded files underneath the node body. The links are visible to those who have
“view uploaded files” permission, as shown in Figure 13-3.

Figure 13-3. A generic list view of files uploaded to a node using the core upload module

This generic solution probably isn’t robust enough for most people, so let’s see some
specific examples in the following section.

Other Generic File-Handling Modules
Alternatives to upload.module for file uploading can be viewed at http://drupal.org/project/
Modules/category/62. Another option for file uploads is to use the CCK module with one of
its contributed file-handling fields, such as imagefield or filefield. See http://drupal.org/
project/Modules/category/88 for more CCK field types.

Images and Image Galleries
Need to create an image gallery? The image module (http://drupal.org/project/image) is
a good place to start. It handles image resizing and gallery creation. There are also some very
nice solutions when using CCK for displaying images inline. Imagecache (http://drupal.org/
project/imagecache) handles on-the-fly creation of image derivatives (additional modified
copies of the uploaded image, such as thumbnails), while imagefield (http://drupal.org/
project/imagefield) creates image upload fields within node forms.

Video and Audio
Numerous modules that help to manage media such as video files, Flash content, slideshows,
and so on can be found at http://drupal.org/project/Modules/category/67.

File API
The file API lives in includes/file.inc. We’ll cover some of the commonly used functions in
this section. For more, the interested reader is directed to the API documentation to study the
API in its current form at http://api.drupal.org/api/6/group/file/6.

CHAPTER 13 ! WORKING WITH F ILES 313

09898ch13final 7/30/08 2:06 PM Page 313

http://drupal.org/project
http://drupal.org
http://drupal.org/project/image
http://drupal.org/project/imagecache
http://drupal.org/project/imagecache
http://drupal.org/project/imagefield
http://drupal.org/project/imagefield
http://drupal.org/project/Modules/category/67
http://api.drupal.org/api/6/group/file/6

Database Schema
Although Drupal stores files on disk, it still uses the database to store a fair amount of meta-
data about the files. In addition to authorship, MIME type, and location, it maintains revision
information for uploaded files. The schema for the files table is shown in Table 13-1.

Table 13-1. The files Table

Field* Type Default Description
fid serial Primary key

uid int 0 User ID of the user associated with the file

filename varchar(255) '' Name of the file

filepath varchar(255) '' Path of the file relative to the Drupal root

filemime varchar(255) '' The MIME type of the file

filesize int 0 Size of the file in bytes

status int 0 Flag indicating whether files is temporary (1) or
permanent (0)

timestamp int 0 Unix timestamp indicating when file was added

* Bold indicates a primary key; italics indicate an indexed field

Modules that enable file management keep their own data in their own table(s). For
example, since the upload module associates files with nodes, it keeps track of that informa-
tion in the upload table. The schema of the core upload module’s table is shown in Table 13-2.

Table 13-2. The upload Table Used by the Upload Module

Field* Type Default Description
fid int 0 Primary key (the fid of the file in the files table)

nid int 0 The nid associated with the uploaded file

vid int 0 The node revision ID associated with the uploaded
file

description varchar(255) '' Description of the uploaded file

list int 0 Flag indicating whether the file should be listed (1)
or not (0) on the node

weight int 0 Weight of this upload in relation to others on this
node

* Bold indicates a primary key; italics indicate an indexed field

Common Tasks and Functions
If you want to do something with a file, chances are that the File API already has a convenient
function for you to use. Let’s look at some of these.

CHAPTER 13 ! WORKING WITH F ILES314

09898ch13final 7/30/08 2:06 PM Page 314

Finding the File System Path
The file system path is the path to the directory where Drupal will write files, such as those
that have been uploaded. This directory is called “File system path” in Drupal’s administrative
user interface at Administer " Site configuration " File system, and corresponds with the
Drupal variable file_directory_path.

file_directory_path()

This function is really just a wrapper for variable_get('file_directory_path', conf_path()
.'/files'). In a new Drupal installation, the return value is sites/default/files.

Saving Data to a File
Sometimes you just want to save data in a file. That’s what the following function does.

file_save_data($data, $dest, $replace = FILE_EXISTS_RENAME)

The $data parameter will become the contents of the file. The $dest parameter is the file path
of the destination. The $replace parameter determines Drupal’s behavior if a file of the same
name already exists at the destination. Possible values are shown in Table 13-3.

Table 13-3. Constants That Determine Drupal’s Behavior When a File of the Same Name Exists at
the Destination

Name Meaning
FILE_EXISTS_REPLACE Replace the existing file with the current file.

FILE_EXISTS_RENAME Append an underscore and integer to make the new filename unique.

FILE_EXISTS_ERROR Abort and return FALSE.

Here’s a quick example that puts a short string into a file in Drupal’s file system directory:

$filename = 'myfile.txt';
$dest= file_directory_path() .'/'. $filename;
file_save_data('My data', $dest);

The file is at a location like sites/default/files/myfile.txt and contains the string
My data.

Copying and Moving Files
The following functions help you work with files that are already on the file system.

file_copy(&$source, $dest = 0, $replace = FILE_EXISTS_RENAME)

The file_copy() function copies files into Drupal’s file system path (typically sites/default/
files). The $source parameter is a string specifying the location of the original file, though
the function will also handle a file object that has $source->filepath and optionally

CHAPTER 13 ! WORKING WITH F ILES 315

09898ch13final 7/30/08 2:06 PM Page 315

$source->filename defined (e.g., the upload module uses a file object). Note that because
the $source parameter is passed by reference, it must be a variable, not a string literal.
Listings 13-1 and 13-2 show a file being copied to Drupal’s default files directory (thus,
the lack of a defined destination) incorrectly and correctly, respectively.

Listing 13-1. Incorrect Way to Copy File to Drupal’s Default files Directory (A String Cannot
Be Passed by Reference)

file_copy('/path/to/file.pdf');

Listing 13-2. Correct Way to Copy File to Drupal’s Default files Directory

$source = '/path/to/file.pdf';
file_copy($source);

The $dest parameter is a string specifying the destination of the newly copied file inside
Drupal’s file system path. If the $dest parameter is not specified, the default file system path
is used. The copy will fail if $dest is outside of Drupal’s file system path (other than Drupal’s
temporary directory) or if the directory specified by the file system path is not writable.

The $replace parameter determines Drupal’s behavior when the file already exists at
the destination. Table 13-3 summarizes the constants that may be used for the $replace
parameter.

file_move(&$source, $dest = 0, $replace = FILE_EXISTS_RENAME)

The file_move() function works just like the file_copy() function (in fact, it calls
file_copy()), but also removes the original file by calling file_delete().

Checking Directories, Paths, and Locations
When you work with files, you often need to stop and determine whether things are okay.
For example, maybe a directory does not exist or is not writable. The following functions
will help with those sorts of problems.

file_create_path($dest = 0)

This function is used to get the path of items within Drupal’s file system path. For example,
when Drupal creates the css subdirectory where aggregated and compressed CSS files are
stored when CSS optimization is enabled, it does this:

// Create the css/ within the files folder.
$csspath = file_create_path('css');
file_check_directory($csspath, FILE_CREATE_DIRECTORY);

Some examples follow:

$path = file_create_path('foo'); // returns 'sites/default/files/foo'
$path = file_create_path('foo.txt'); // returns 'sites/default/files/foo.txt'
$path = file_create_path('sites/default/files/bar/baz')

// returns 'sites/default/files/bar/baz'
$path = file_create_path('/usr/local/') // returns FALSE

CHAPTER 13 ! WORKING WITH F ILES316

09898ch13final 7/30/08 2:06 PM Page 316

file_check_directory(&$directory, $mode = 0, $form_item = NULL)

This function checks that a given directory exists and is writable. The $directory parameter
is the path to a directory and must be passed as a variable, since it is passed by reference.
The $mode parameter determines what Drupal should do if the directory does not exist or is
not writable. Modes are shown in Table 13-4.

Table 13-4. Possible Values of the $mode Parameter for file_check_directory()

Value Meaning
0 Do not create the directory if it does not exist.

FILE_CREATE_DIRECTORY Create the directory if it does not exist.

FILE_MODIFY_PERMISSIONS Create the directory if it does not exist. If the directory already exists,
attempt to make it writable.

The $form_item parameter is the name of a form item against which errors should be set
if, for example, directory creation fails. The $form_item parameter is optional.

This function also tests whether the directory being checked is the file system path or the
temporary directory, and if so, adds an .htaccess file for security (see Chapter 20).

file_check_path(&$path)

If you have a file path that you’d like to split into filename and base name components, use
file_check_path(). The $path parameter must be in a variable; the variable will be modified
to contain the base name. Here are some examples:

$path = 'sites/default/files/foo.txt';
$filename = file_check_path($path);

$path now contains sites/default/files and $filename now contains foo.txt.

$path = 'sites/default/files/css'; // Where Drupal stores optimized CSS files.
$filename = file_check_path($path);

$path now contains sites/default/files and $filename now contains css if the css
directory does not exist or an empty string if the css directory exists.

$path = '/etc/bar/baz.pdf';
$filename = file_check_path($path);

$path now contains /etc/bar and $filename now contains FALSE (since /etc/bar does
not exist or is not writable).

file_check_location($source, $directory = ‘’)

Sometimes you have a file path, but you don’t trust it. Maybe a user entered it and is trying
to exploit your site by getting creative with dots (e.g., providing files/../../../etc/passwd

CHAPTER 13 ! WORKING WITH F ILES 317

09898ch13final 7/30/08 2:06 PM Page 317

instead of a filename). Calling this function answers the question “Is this file really in this
directory?” For example, the following will return 0 if the file’s real location is not inside
Drupal’s file system path:

$real_path = file_check_location($path, file_directory_path());

If the file is inside the file system path, the real path of the file will be returned.

Uploading Files
Although the upload module offers a full-fledged implementation of file uploading for nodes,
sometimes you just want to be able to upload a file that is not associated with a node. The fol-
lowing functions can help in that situation.

file_save_upload($source, $validators = array(), $dest = FALSE,
$replace = FILE_EXISTS_RENAME)

The $source parameter tells the function which uploaded file is to be saved. $source corre-
sponds with the name of the file input field in a web form. For example, the name of the form’s
file field on the “My account” page that allows you to upload your image (if this capability has
been enabled at Administer " User settings) is picture_upload. The form, as it appears in the
web browser, is shown in Figure 13-4. The resulting $_FILES superglobal variable, as it exists
when the user has clicked the Save button, is shown in Figure 13-5. Note that information in
$_FILES is keyed by the name of the form’s file field (that way, multiple file fields in a single
form can be supported). The $_FILES superglobal is defined by PHP itself, not by Drupal.

Figure 13-4. File field for user_picture form element as it appears on the “My account” page

Figure 13-5. Resulting $_FILES global variable settings after HTTP POST

CHAPTER 13 ! WORKING WITH F ILES318

09898ch13final 7/30/08 2:06 PM Page 318

The $validators parameter contains an array of function names that will be called if the
file is successfully uploaded. For example, the user_validate_picture() function, which is a
form validation function that is called after a user edits his or her “My account” page, adds
three validators before calling file_save_upload(). If a parameter is to be passed to the
validation function, it is defined in an array. For example, in the following code, when the val-
idators are run, the call to file_validate_image_resolution() will look something like file_
validate_image_resolution('85x85'):

/**
* Validates uploaded picture on user account page.
*/
function user_validate_picture(&$form, &$form_state) {
$validators = array(
'file_validate_is_image' => array(),
'file_validate_image_resolution' =>
array(variable_get('user_picture_dimensions', '85x85')),

'file_validate_size' => array(variable_get('user_picture_file_size', '30')
* 1024),

);
if ($file = file_save_upload('picture_upload', $validators)) {
...

}
...

}

The $dest parameter in the file_save_upload() function is optional and may contain
the directory to which the file will be copied. For example, when processing files attached to
a node, the upload module uses file_directory_path() (which defaults to sites/default/
files) as the value for $dest (see Figure 13-6). If $dest is not provided, the temporary directory
will be used.

The $replace parameter defines what Drupal should do if a file with the same name
already exists. Possible values are listed in Table 13-3.

Figure 13-6. The file object as it exists when passed to file_save_upload() validators

The return value for file_save_upload() is a fully populated file object (as shown in
Figure 13-7), or 0 if something went wrong.

CHAPTER 13 ! WORKING WITH F ILES 319

09898ch13final 7/30/08 2:06 PM Page 319

Figure 13-7. The file object as it exists when returned from a successful call to file_save_upload()

After calling file_save_upload(), a new file exists in Drupal’s temporary directory and a
new record is written to the files table. The record contains the same values as the file object
shown in Figure 13-7.

Notice that the status field is set to 0. That means that as far as Drupal is concerned,
this is still a temporary file. It is the caller’s responsibility to make the file permanent. Con-
tinuing with our example of uploading a user picture, we see that the user module takes
the approach of copying this file to the directory defined in Drupal’s user_picture_path
variable and renaming it using the user’s ID:

// The image was saved using file_save_upload() and was added to the
// files table as a temporary file. We'll make a copy and let the garbage
// collector delete the original upload.
$info = image_get_info($file->filepath);
$destination = variable_get('user_picture_path', 'pictures') .
'/picture-'. $form['#uid'] .'.'. $info['extension'];

file_copy($file, $destination, FILE_EXISTS_REPLACE));
...

This moves the uploaded image to sites/default/files/pictures/picture-2.jpg.
The garbage collector that is referred to in the preceding code comment is responsible

for cleaning up temporary files that are languishing in the temporary directory. Drupal knows
about them because it has a record for each file in the files table with the status field set to
0. The garbage collector can be found in the system_cron() function in modules/system/
system.module. It deletes temporary files that are older than the number of seconds specified
by the constant DRUPAL_MAXIMUM_TEMP_FILE_AGE. The value of the constant is 1440 seconds,
or 24 minutes.

If the $dest parameter was provided and the file was moved to its final destination instead
of the temporary directory, the caller can change the status of the record in the files table to
permanent by calling file_set_status(&$file, $status), with $file set to the full file object
(as shown in Figure 13-7) and $status set to FILE_STATUS_PERMANENT. According to includes/
file.inc, if you plan to use additional status constants in your own modules, you must start
with 256, as 0, 1, 2, 4, 8, 16, 32, 64, and 128 are reserved for core.

Validation functions that may be used with file_save_upload() follow.

CHAPTER 13 ! WORKING WITH F ILES320

09898ch13final 7/30/08 2:06 PM Page 320

file_validate_extensions($file, $extensions)

The $file parameter is the name of a file. The $extensions parameter is a string of space-
delimited file extensions. The function will return an empty array if the file extension is
allowed, and an array of error messages like Only files with the following extensions
are allowed: jpg jpeg gif png txt doc xls pdf ppt pps odt ods odp if the file extension
is disallowed. This function is a possible validator for file_save_upload().

file_validate_is_image(&$file)

This function takes a file object and attempts to pass $file->filepath to image_get_info().
The function will return an empty array if image_get_info() was able to extract information
from the file, or an array containing the error message Only JPEG, PNG and GIF images are
allowed if the process failed. This function is a possible validator for file_save_upload().

file_validate_image_resolution(&$file, $maximum_dimensions = 0,
$minimum_dimensions = 0)

This function takes a file object and uses $file->filepath in several operations. If the file is
an image, the function will check if the image exceeds $maximum_dimensions and attempt to
resize it if possible. If everything goes well, an empty array will be returned and the $file
object, which was passed by reference, will have $file->filesize set to the new size if the
image was resized. Otherwise, the array will contain an error message, such as The image
is too small; the minimum dimensions are 320x240 pixels. The $maximum_dimensions and
$minimum_dimensions parameters are strings made up of width and height in pixels with a
lowercase x separating them (e.g., 640x480 or 85x85). The default value of 0 indicates no
restriction on size. This function is a possible validator for file_save_upload().

file_validate_name_length($file)

The $file parameter is a file object. It returns an empty array if $file->filename exceeds 255
characters. Otherwise, it returns an array containing an error message instructing the user to
use a shorter name. This function is a possible validator for file_save_upload().

file_validate_size($file, $file_limit = 0, $user_limit = 0)

This function checks that a file is below a maximum limit for the file or a cumulative limit
for a user. The $file parameter is a file object that must contain $file->filesize, which is
the size of the file in bytes. The $file_limit parameter is an integer representing the maxi-
mum file size in bytes. The $user_limit parameter is an integer representing the maximum
cumulative number of bytes that the current user is allowed to use. A 0 means “no limit.” If
validation passes, an empty array will be returned; otherwise, an array containing an error
will be returned. This function is a possible validator for file_save_upload().

Getting the URL for a File
If you know the name of a file that has been uploaded and want to tell a client what the URL
for that file is, the following function will help.

CHAPTER 13 ! WORKING WITH F ILES 321

09898ch13final 7/30/08 2:06 PM Page 321

file_create_url($path)

This function will return the correct URL for a file no matter whether Drupal is running in
public or private download mode. The $path parameter is the path to the file (e.g., sites/
default/files/pictures/picture-1.jpg or pictures/picture-1.jpg). The resulting URL
might be http://example.com/sites/default/files/pictures/picture-1.jpg. Note that the
absolute path name to the file is not used. This makes it easier to move a Drupal site from
one location (or server) to another.

Finding Files in a Directory
Drupal provides a powerful function called file_scan_directory(). It looks through a direc-
tory for files that match a given pattern.

file_scan_directory($dir, $mask, $nomask = array('.', '..', 'CVS'), $callback = 0,
$recurse = TRUE, $key = 'filename', $min_depth = 0)

Let’s walk through the function signature:

• $dir is the path of the directory in which to search. Do not include a trailing slash.

• $mask is the pattern to apply to the files that are contained in the directory. This is a
regular expression.

• $nomask is an array of regular expression patterns. Any matches to the $nomask patterns
will be ignored. The default array contains . (the current directory), .. (the parent
directory), and CVS.

• $callback is the name of a function to be called for each match. The callback function
will be passed one parameter: the path of the file.

• $recurse is a Boolean indicating whether the search should descend into
subdirectories.

• $key determines what the array returned by file_scan_directory() should be keyed
by. Possible values are filename (full path of matched files), basename (filename with-
out path), and name (filename without path and without file suffix).

• $min_depth is the minimum depth of directories to return files from.

The return value is an associative array of objects. The key to the array depends on what
is passed in the $key parameter, and defaults to filename. Following are some examples.

Scan the themes/bluemarine directory for any files ending with .css:

$found = file_scan_directory('themes/bluemarine', '\.css$');

The resulting array of objects is shown in Figure 13-8.

CHAPTER 13 ! WORKING WITH F ILES322

09898ch13final 7/30/08 2:06 PM Page 322

http://example.com/sites/default/files/pictures/picture-1.jpg

Figure 13-8. The default result from file_scan_directory() is an array of objects keyed by the
full filename.

Changing the $key parameter to basename changes the keys of the resulting array, as
shown in the following code and Figure 13-9.

$found = file_scan_directory('themes/bluemarine', '\.css$', array('.', '..', 'CVS'),
0, TRUE, 'basename');

Figure 13-9. The result is now keyed by the filename with the full file path omitted.

The use of the $callback parameter is what makes it easy for Drupal to clear the opti-
mized CSS file cache, typically found in sites/default/files/css. The drupal_clear_css_
cache() function passes in file_delete as the callback:

file_scan_directory(file_create_path('css'), '.*', array('.', '..', 'CVS'),
'file_delete', TRUE);

Finding the Temp Directory
The following function reports the location of the temporary directory, often called the “temp”
directory.

file_directory_temp()

The function first checks the file_directory_temp Drupal variable. If that’s not set, it looks
for the /tmp directory on Unix or the c:\\windows\temp and c:\\winnt\temp directories on
Windows. If none of those succeed, it sets the temporary directory to a directory named tmp
inside the file system path (e.g., sites/default/files/tmp). It returns whatever the final loca-
tion of the temporary directory is and sets the file_directory_temp variable to that value.

CHAPTER 13 ! WORKING WITH F ILES 323

09898ch13final 7/30/08 2:06 PM Page 323

Neutralizing Dangerous Files
Suppose you are using the public file download method and you have file uploads enabled.
What will happen when someone uploads a file named bad_exploit.php? Will it run when the
attacker hits http://example.com/sites/default/files/bad_exploit.php? Hopefully not, for
three reasons. The first is that .php should never be in the list of allowed extensions for
uploaded files. The second is the .htaccess file, which should be in sites/default/files/
.htaccess (see Chapter 20). However, in several common Apache configurations, uploading
the file exploit.php.txt may result in code execution of the file as PHP code (see http://
drupal.org/files/sa-2006-007/advisory.txt). That brings us to the third reason: file name
munging to render the file harmless. As a defense against uploaded executable files, the fol-
lowing function is used.

file_munge_filename($filename, $extensions, $alerts = TRUE)

The $filename parameter is the name of the file to modify. The $extensions parameter is a
space-separated string containing file extensions. The $alerts parameter is a Boolean value
that defaults to TRUE and results in the user being alerted through drupal_set_message() that
the name of the file has been changed. The filename, with underscores inserted to disable
potential execution, is returned.

$extensions = variable_get('upload_extensions_default', 'jpg jpeg gif png txt
doc xls pdf ppt pps odt ods odp');

$filename = file_munge_filename($filename, $extensions, FALSE);

$filename is now exploit.php_.txt.

You can prevent filename munging by defining the Drupal variable allow_insecure_
uploads to be 1 in settings.php. But this is usually a bad idea given the security implications.

file_unmunge_filename($filename)

This function attempts to undo the effects of file_munge_filename() by replacing an under-
score followed by a dot with a dot:

$original = file_unmunge_filename('exploit.php_.txt);

$original is now exploit.php.txt.

Note that this will also replace any intentional occurrences of _. in the original filename.

CHAPTER 13 ! WORKING WITH F ILES324

09898ch13final 7/30/08 2:06 PM Page 324

http://example.com/sites/default/files/bad_exploit.php?
http://drupal.org/files/sa-2006-007/advisory.txt
http://drupal.org/files/sa-2006-007/advisory.txt

Checking Disk Space
The following function reports on space used by files.

file_space_used($uid = NULL)

This function returns total disk space used by files. It does not actually check the file system,
but rather reports the sum of the filesize field in the files table in the database. If a user ID
is passed to this function, the query is restricted to files that match that user’s ID in the files
table. The upload module wraps this function with upload_space_used(). Call file_space_
used() directly, as upload_space_used() is only available when the upload module is enabled.

Authentication Hooks for Downloading
Module developers can implement hook_file_download() to set access permissions sur-
rounding the download of private files. The hook is used to determine the conditions on
which a file will be sent to the browser, and returns additional headers for Drupal to append
in response to the file HTTP request. Note that this hook will have no effect if your Drupal
installation is using the public file download setting. Figure 13-10 shows an overview of the
download process using the implementation of hook_file_download() found in the user
module as an example.

Because Drupal invokes all modules with a hook_file_download() function for each
download, it’s important to specify the scope of your hook. For example, take user_file_
download(), which only responds to file downloads if the file to be downloaded is within
the pictures directory. If that’s true, it appends headers to the request.

function user_file_download($file) {
$picture_path = variable_get('user_picture_path', 'pictures');
if (strpos($file, $picture_path .'/picture-') === 0) {
$info = image_get_info(file_create_path($file));
return array('Content-type: '. $info['mime_type']);

}
}

CHAPTER 13 ! WORKING WITH F ILES 325

09898ch13final 7/30/08 2:06 PM Page 325

Figure 13-10. Life cycle of a private file download request

Implementations of hook_file_download() should return an array of headers if the
request should be granted, or -1 to state that access to the file is denied. If no modules
respond to the hook, then Drupal will return a 404 Not Found error to the browser.

Summary
In this chapter, you learned

• The difference between public and private files

• Contributed modules to use for image, video, and audio handling

• The database schema for file storage

• Common functions for manipulating files

• Authentication hooks for private file downloading

CHAPTER 13 ! WORKING WITH F ILES326

09898ch13final 7/30/08 2:06 PM Page 326

Working with Taxonomy

Taxonomy is the classification of things. Drupal comes with a taxonomy module that allows
you to classify nodes (which are, essentially, “things”). In this chapter, you’ll look at the differ-
ent kinds of taxonomies Drupal supports. You’ll also see how the data is stored and how to
write queries against the taxonomy database tables for incorporation into your own modules.
Finally, you’ll see how your modules can be notified of changes to taxonomies, and we’ll go
over some common taxonomy-related tasks.

What Is Taxonomy?
Taxonomy involves putting things into categories. You’ll find Drupal’s taxonomy support
under Administer ! Content Management ! Taxonomy (if it doesn’t appear there, make sure
the taxonomy module is enabled). It’s important to be precise when using words that involve
Drupal’s taxonomy system. Let’s go through some of the common words you’ll encounter.

Terms
A term is the actual label that will be applied to the node. For example, suppose you have a
web site containing product reviews. You could label each review with the terms “Bad,” “OK,”
or “Excellent.” Terms are sometimes called tags, and the action of assigning terms to an object
(such as a product review node) is sometimes called tagging.

A Level of Abstraction
As you’ll see in a moment when you look at the data structures, Drupal adds a level of
abstraction to all terms that are entered, and refers to them internally by a numeric ID, not
by name. For example, if you enter the previous terms, but your manager decides that the
word “Poor” is a better word than “Bad,” there’s no problem. You simply edit term number 1,
and change “Bad” to “Poor.” Everything inside Drupal will keep working, because Drupal
thinks of it internally as term number 1.

Synonyms
When defining a term, you can enter synonyms of the term; a synonym is another term with
the same semantic meaning. The taxonomy functionality included in Drupal allows you to
enter synonyms and provides the database tables for storage and some utility functions like

327

C H A P T E R 1 4

09898ch14final 7/30/08 2:03 PM Page 327

taxonomy_get_synonyms($tid) and taxonomy_get_synonym_root($synonym), but the implemen-
tation of the user interface for these functions is left up to contributed modules, such as the
glossary module (http://drupal.org/project/glossary).

Vocabularies
A vocabulary consists of a collection of terms. Drupal allows you to associate a vocabulary
with one or more node types. This loose association is very helpful for categorizing across
node type boundaries. For example, if you had a web site where users could submit stories
and pictures about travel, you could have a vocabulary containing country names as terms;
this would allow you to see all stories and pictures tagged with “Belgium” easily. The vocabu-
lary editing interface is shown in Figure 14-1.

Required Vocabularies
Vocabularies may be required or not required. If a vocabulary is required, the user must asso-
ciate a term with a node before that node will be accepted for submittal. If a vocabulary is not
required, the user may choose the default term “None selected” when submitting a node.

Controlled Vocabularies
When a vocabulary has a finite number of terms (that is, users cannot add new terms) it is said
to be a controlled vocabulary. In a controlled vocabulary, terms are typically presented to the
user inside a drop-down selection field. Of course, the administrator or a user who has been
given administer taxonomy permission may add, delete, or modify terms.

Tags
A tag is the same thing as a term. However, the word “tagging” generally implies that the
users of the web site create the tags. This is the opposite of a controlled vocabulary.
Instead, users may enter their own term(s) when they submit a node. If a term is not
already part of the vocabulary, it will be added. When the Tags check box on the vocabulary
editing interface is checked (see Figure 14-1), the user interface to the vocabulary is pre-
sented as a text field (with JavaScript autocomplete enabled), rather than the drop-down
selection field of a controlled vocabulary.

CHAPTER 14 " WORKING WITH TAXONOMY328

09898ch14final 7/30/08 2:03 PM Page 328

http://drupal.org/project/glossary

Figure 14-1. The form for adding a vocabulary

Single vs. Multiple Terms
Drupal allows you to specify whether a single term or multiple terms can be selected for a
given node by using the “Multiple select” check box on the vocabulary editing interface. Speci-
fying multiple terms changes the user interface on the node submission form from a simple
drop-down selection field to a multiple-selection drop-down field.

"Tip The “Multiple select” option only applies to controlled vocabularies, not to vocabularies with Tags
enabled.

CHAPTER 14 " WORKING WITH TAXONOMY 329

09898ch14final 7/30/08 2:03 PM Page 329

Parents
When adding or editing a term, a parent term may be selected in the “Advanced options” sec-
tion of the form (see Figure 14-2). This defines a hierarchical relationship between the terms.

Figure 14-2. The form for adding a term

Related Terms
If a vocabulary allows related terms, a multiple-selection field will be presented when you
define a new term or edit an existing term so that you can choose the existing terms to which
the term is related. The field appears in the “Advanced options” section of the form (see
Figure 14-2).

CHAPTER 14 " WORKING WITH TAXONOMY330

09898ch14final 7/30/08 2:03 PM Page 330

Weights
Each vocabulary has a weight from –10 to 10 (see Figure 14-1). This controls the arrangement
of the vocabularies when displayed to the user on the node submission form. A vocabulary
with a light weight will rise to the top of the Vocabularies fieldset and be presented first; a
vocabulary with a heavy weight will sink to the bottom of the fieldset.

Each term has a weight, too. The position of a term when displayed to the user in the
drop-down selection field is determined by the weight of the term. This order is the same as
that displayed at Administer ! Content management ! Taxonomy ! List terms.

Kinds of Taxonomy
There are several kinds of taxonomy. The simplest is a list of terms, and the most complex has
multiple hierarchical relationships. Additionally, terms may be synonyms of or related to other
terms. Let’s start with the simplest first.

Flat
A vocabulary that consists of only a list of terms is straightforward. Table 14-1 shows how you
can classify some programming languages in a simple, flat vocabulary that we’ll call Program-
ming Languages.

Table 14-1. Simple Terms in a Vocabulary

Term ID Term Name
1 C

2 C++

3 Cobol

Hierarchical
Now, let’s introduce the concept of hierarchy, where each term may have a relationship to
another term; see Table 14-2.

Table 14-2. Hierarchical Terms in a Vocabulary (Child Terms Are Indented Below Their Parent)

Term ID Term Name
1 Object-Oriented

2 C++

3 Smalltalk

4 Procedural

5 C

6 Cobol

CHAPTER 14 " WORKING WITH TAXONOMY 331

09898ch14final 7/30/08 2:03 PM Page 331

Figure 14-3 shows the hierarchical relationships explicitly. In this example, Procedural is
a parent and Cobol is a child. Notice that each term has its own ID, no matter whether it’s a
parent or a child.

Figure 14-3. A hierarchical vocabulary has parent-child relationships between terms.

You can arrange terms into hierarchies when the term is created by selecting a parent
term from the Parent field in the “Advanced options” section of the “Add term” form or by
using drag and drop to position terms. After more than one term has been added, the drag-
and-drop interface becomes available at Administer ! Content management ! Taxonomy
by clicking the “list terms” link for the vocabulary you are working with. The drag-and-drop
interface is shown in Figure 14-4.

Figure 14-4. Terms can be arranged into a hierarchy using the drag-and-drop interface.

Multiple Hierarchical
A vocabulary may have multiple hierarchies instead of a single hierarchy. This simply means
that a term may have more than one parent. For example, suppose you add PHP to your
vocabulary of programming languages. PHP can be written procedurally, but in recent ver-
sions, object-oriented capabilities have been introduced. Should you classify it under
Object-Oriented or Procedural? With multiple hierarchical relationships, you can do both,
as shown in Figure 14-5.

CHAPTER 14 " WORKING WITH TAXONOMY332

09898ch14final 7/30/08 2:03 PM Page 332

Figure 14-5. In a multiple hierarchical vocabulary, terms can have more than one parent.

It’s worthwhile to spend a significant amount of time thinking through use cases for
taxonomy when in the planning stage of a web site to determine what kind of vocabulary
you need.

Because a multiple hierarchy vocabulary cannot easily be shown in a user interface,
Drupal warns you that the drag-and-drop interface (shown in Figure 14-4) will be disabled
if you select multiple parents for a term. The warning is shown in Figure 14-6.

Figure 14-6. Selecting multiple parents for a term will disable the drag-and-drop interface.

Viewing Content by Term
You can always view the nodes associated with a given term by going to the term’s URL, unless
a module has overridden this view. For example, in http://example.com/?q=taxonomy/term/5,
the 5 is the term ID of the term you wish to view. The result will be a list containing titles and
teasers of each node tagged with that term.

Using AND and OR in URLs
The syntax for constructing taxonomy URLs supports AND and OR by use of the comma (,) and
plus sign (+) characters, respectively. Some examples follow.

To show all nodes that have been assigned term IDs 5 and 6, use the following URL:

http://example.com/?q=taxonomy/term/5,6

Use the following URL to show all nodes that have been assigned term IDs 1, 2, or 3:

http://example.com/?q=taxonomy/term/1+2+3

Mixed AND and OR are not currently supported using taxonomy.module.

CHAPTER 14 " WORKING WITH TAXONOMY 333

09898ch14final 7/30/08 2:03 PM Page 333

http://example.com/?q=taxonomy/term/5
http://example.com/?q=taxonomy/term/5,6
http://example.com/?q=taxonomy/term/1+2+3

"Tip Use the path module to set friendly URL aliases for the taxonomy URLs you use so they won’t have all
those scary numbers at the end.

Specifying Depth for Hierarchical Vocabularies
In the previous examples, we’ve been using an implied parameter. For example, the URL

http://example.com/?q=taxonomy/term/5

is really

http://example.com/?q=taxonomy/term/5/0

where the trailing 0 is the number of levels of hierarchy to search when preparing the result
set for display; all would designate that all levels should be included. Suppose you had the
hierarchical vocabulary shown in Table 14-3.

Table 14-3. A Geographical Hierarchical Vocabulary (Child Terms Are Indented Below
Their Parent)

Term ID Name
1 Canada

2 British Columbia

3 Vancouver

4 Ontario

5 Toronto

The first level of hierarchy is the country, Canada; it has two children, the provinces British
Columbia and Ontario. Each province has one child, a major Canadian city where Drupal devel-
opment is rampant. Here’s the effect of changing the depth parameter of the URL.

All nodes tagged with Vancouver will share the following URL:

http://example.com?q=taxonomy/term/3 or http://example.com?q=taxonomy/term/3/0

To display all nodes tagged with British Columbia (but none tagged with Vancouver), use
this URL:

http://example.com?q=taxonomy/term/2

CHAPTER 14 " WORKING WITH TAXONOMY334

09898ch14final 7/30/08 2:03 PM Page 334

http://example.com/?q=taxonomy/term/5
http://example.com/?q=taxonomy/term/5/0
http://example.com?q=taxonomy/term/3
http://example.com?q=taxonomy/term/3/0
http://example.com?q=taxonomy/term/2

The following URL applies to all nodes tagged with British Columbia and any British
Columbian city (note that we’re setting the depth to one level of hierarchy):

http://example.com?q=taxonomy/term/2/1

All nodes tagged with Canada or with any Canadian province or city will be displayed if
you use this one:

http://example.com?q=taxonomy/term/1/all

"Note The result set is displayed as a regular node listing. If you want to have the node titles and/or
teasers displayed hierarchically, you’d need to write a custom theme function that does this or use the
views module (http://drupal.org/project/views).

Automatic RSS Feeds
Each term has an automatic RSS feed that displays the latest nodes tagged with that term. For
example, the feed for term ID 3 is at

http://example.com/?q=taxonomy/term/3/0/feed

Note that the depth parameter (0 in this case) is required. As expected, you can combine
terms using AND or OR to make a combined feed. For example, here’s a feed for terms 2 or 4,
including all immediate child terms:

http://example.com/?q=taxonomy/term/2+4/1/feed

Here’s one that contains all child terms:

http://example.com/?q=taxonomy/term/2+4/all/feed

Storing Taxonomies
If you’re going to go beyond the built-in taxonomy capabilities, it’s imperative that you under-
stand how taxonomies are stored in the database. In a typical non-Drupal database, you might
create a flat taxonomy by simply adding a column to a database table. As you’ve seen, Drupal
adds a taxonomy through normalized database tables. Figure 14-7 shows the table structures.

CHAPTER 14 " WORKING WITH TAXONOMY 335

09898ch14final 7/30/08 2:03 PM Page 335

http://example.com?q=taxonomy/term/2/1
http://example.com?q=taxonomy/term/1/all
http://drupal.org/project/views
http://example.com/?q=taxonomy/term/3/0/feed
http://example.com/?q=taxonomy/term/2+4/1/feed
http://example.com/?q=taxonomy/term/2+4/all/feed

Figure 14-7. Drupal’s taxonomy tables: Primary keys are in bold; indexed fields are in italics. *vid
in the term_node table refers to the version ID in the node_revisions table, not to vocabulary ID.

The following tables make up Drupal’s taxonomy storage system:

• vocabulary: This table stores the information about a vocabulary that’s editable through
Drupal’s Taxonomy interface.

• vocabulary_node_types: This table keeps track of which vocabularies may be used with
which node types. The type is Drupal’s internal node type name (for example, blog) and
is matched with the node table’s type column.

• term_data: This table contains the actual name of the term, which vocabulary it’s in, its
optional description, and the weight that determines its position in lists of terms pre-
sented to the user for term selection (for example, on the node submit form).

• term_synonym: Synonyms for a given term ID are contained in this table.

• term_relation: This match table contains the term IDs of terms that have been selected
as related when defining a term.

• term_hierarchy: The term_hierarchy table contains the term ID of a term as well as the
term ID of its parent. If a term is at the root (that is, it has no parent), the ID of the par-
ent is 0.

• term_node: This table is used to match terms with the node that has been tagged with
the term.

CHAPTER 14 " WORKING WITH TAXONOMY336

09898ch14final 7/30/08 2:03 PM Page 336

Module-Based Vocabularies
In addition to the vocabularies that can be created using Administer ! Content ! Cate-
gories, modules can use the taxonomy tables to store their own vocabularies. For example,
the forum module uses the taxonomy tables to keep a vocabulary of containers and forums.
The image module uses the taxonomy tables to organize image galleries. Any time you find
yourself implementing hierarchical terms, ask yourself if you’re not better off using the tax-
onomy module and a module-based vocabulary.

The module that owns a vocabulary is identified in the module column of the vocabulary
table. Normally, this column will contain taxonomy, because the taxonomy module manages
most vocabularies.

Creating a Module-Based Vocabulary
Let’s look at an example of a module-based vocabulary. The contributed image gallery mod-
ule (included with the image module; see http://drupal.org/project/image) uses taxonomy
to organize different image galleries. It creates its vocabulary programmatically, as shown in
the following example, and assumes ownership of the vocabulary by setting the module key
of the $vocabulary array to the module name (without .module).

/**
* Returns (and possibly creates) a new vocabulary for Image galleries.
*/
function _image_gallery_get_vid() {
$vid = variable_get('image_gallery_nav_vocabulary', '');
if (empty($vid) || is_null(taxonomy_vocabulary_load($vid))) {
// Check to see if an image gallery vocabulary exists.
$vid = db_result(db_query("SELECT vid FROM {vocabulary} WHERE

module='image_gallery'"));
if (!$vid) {
$vocabulary = array(
'name' => t('Image Galleries'),
'multiple' => '0',
'required' => '0',
'hierarchy' => '1',
'relations' => '0',
'module' => 'image_gallery',
'nodes' => array(
'image' => 1

)
);

CHAPTER 14 " WORKING WITH TAXONOMY 337

09898ch14final 7/30/08 2:03 PM Page 337

http://drupal.org/project/image

taxonomy_save_vocabulary($vocabulary);
$vid = $vocabulary['vid'];

}
variable_set('image_gallery_nav_vocabulary', $vid);

}

return $vid;
}

Providing Custom Paths for Terms
If your module is in charge of maintaining a vocabulary, it might want to provide custom
paths for terms under its control, instead of using the default taxonomy/term/[term id]
provided by taxonomy.module. When generating a link for a term, the taxonomy_term_path()
function in taxonomy.module is called. (You should always call this function instead of gen-
erating links to taxonomy terms yourself; don’t assume that the taxonomy module main-
tains the taxonomy.) Note how it checks with the module that owns the vocabulary in the
following code:

/**
* For vocabularies not maintained by taxonomy.module, give the maintaining
* module a chance to provide a path for terms in that vocabulary.
*
* @param $term
* A term object.
* @return
* An internal Drupal path.
*/

function taxonomy_term_path($term) {
$vocabulary = taxonomy_get_vocabulary($term->vid);
if ($vocabulary->module != 'taxonomy' &&
$path = module_invoke($vocabulary->module, 'term_path', $term)) {
return $path;

}
return 'taxonomy/term/'. $term->tid;

}

For example, image_gallery.module redirects paths to image/tid/[term id]:

function image_gallery_term_path($term) {
return 'image/tid/'. $term->tid;

}

CHAPTER 14 " WORKING WITH TAXONOMY338

09898ch14final 7/30/08 2:03 PM Page 338

Keeping Informed of Vocabulary Changes with
hook_taxonomy()
If you do keep a vocabulary for your own module, you’ll want to be informed of any changes
that are made to the vocabulary through the standard Taxonomy user interface. You might
also want to be informed when a change is made to an existing vocabulary maintained by
taxonomy.module. In either case, you can be informed of changes to vocabularies by imple-
menting hook_taxonomy(). The following module has an implementation of hook_taxonomy()
that keeps you informed of vocabulary changes by e-mail. Here’s the taxonomymonitor.info
file:

; Id
name = Taxonomy Monitor
description = Sends email to notify of changes to taxonomy vocabularies.
package = Pro Drupal Development
dependencies[] = taxonomy
core = 6.x

Here’s taxonomymonitor.module:

<?php
// Id

/**
* Implementation of hook_taxonomy().
*
* Sends email when changes to vocabularies or terms occur.
*/
function taxonomymonitor_taxonomy($op, $type, $array = array()) {
$to = 'me@example.com';
$name = check_plain($array['name']);

// $type is either 'vocabulary' or 'term'.
switch ($type) {
case 'vocabulary':
switch($op) {
case 'insert':
$subject = t('Vocabulary @voc was added.', array('@voc' => $name));
break;

case 'update':
$subject = t('Vocabulary @voc was changed.', array('@voc' => $name));
break;

case 'delete':
$subject = t('Vocabulary @voc was deleted.', array('@voc' => $name));
break;

}

CHAPTER 14 " WORKING WITH TAXONOMY 339

09898ch14final 7/30/08 2:03 PM Page 339

mailto:me@example.com

break;
case 'term':
switch($op) {
case 'insert':
$subject = t('Term @term was added.', array('@term' => $name));
break;

case 'update':
$subject = t('Term @term was changed.', array('@term' => $name));
break;

case 'delete':
$subject = t('Term @term was deleted.', array('@term' => $name));
break;

}
}

// Dump the vocabulary or term information out and send it along.
$body = print_r($array, TRUE);

// Send the email.
watchdog('taxonomymonitor', 'Sending email for @type @op',
array('@type' => $type, '@op' => $op));

drupal_mail('taxonomymonitor-notify', $to, $subject, $body);
}

For extra bonus points, you could modify the module to include the name of the user who
made the change.

Common Tasks
Here are some common tasks you may encounter when working with taxonomies.

Finding Taxonomy Terms in a Node Object
Taxonomy terms are loaded into a node during node_load() via the implementation of hook_
nodeapi() in taxonomy.module. The taxonomy_node_get_terms() function does the actual work
of retrieving the terms from the database. This results in an array of term objects inside the
taxonomy key of the node:

CHAPTER 14 " WORKING WITH TAXONOMY340

09898ch14final 7/30/08 2:03 PM Page 340

print_r($node->taxonomy);

Array (
[3] => stdClass Object (

[tid] => 3
[vid] => 1
[name] => Vancouver
[description] => By Land, Sea, and Air we Prosper.
[weight] => 0)

)

Drupal supports node revisions. Because the taxonomy terms associated with a node can
change from one revision of the node to the next, terms kept in the term_node table are asso-
ciated with revisions by use of the revision id (dubbed vid for “version ID” in that table) as
shown in Figure 14-7.

Building Your Own Taxonomy Queries
If you need to generate a node listing of some sort, you might end up wishing that things were
simpler; you might wish that Drupal kept taxonomy terms in the node table, so you could say
the following:

SELECT * FROM node WHERE vocabulary = 1 and term = 'cheeseburger'

The cost of flexibility is a bit more work for the Drupal developer. Instead of making
simple queries such as this, you must learn to query the taxonomy tables using JOINs.

Using taxonomy_select_nodes()
Before you start writing a query, consider whether you can get what you want using an exist-
ing function. For example, if you want titles of nodes tagged by term IDs 5 and 6, you can use
taxonomy_select_nodes():

$tids = array(5, 6);
$result = taxonomy_select_nodes($tids, 'and');
$titles = array();
while ($data = db_fetch_object($result)) {
$titles[] = $data->title;

}

CHAPTER 14 " WORKING WITH TAXONOMY 341

09898ch14final 7/30/08 2:03 PM Page 341

Taxonomy Functions
The following sections explain functions that might be useful for your module.

Retrieving Information About Vocabularies
The built-in functions in the following sections retrieve information about vocabularies, as
vocabulary data objects or as an array of such objects.

taxonomy_ vocabulary_load($vid)
This function retrieves a single vocabulary (the $vid parameter is the vocabulary ID) and
returns a vocabulary object. It also caches vocabulary objects internally, so multiple calls for
the same vocabulary aren’t expensive. This function is also a special load function from the
point of view of Drupal’s menu system (see Chapter 4 for details).

taxonomy_get_vocabularies($type)
The taxonomy_get_vocabularies($type) function retrieves all vocabulary objects. The $type
parameter restricts the vocabularies retrieved to a given node type; for example, blog. This
function returns an array of vocabulary objects.

Adding, Modifying, and Deleting Vocabularies
The following functions create, modify, and delete vocabularies. They return a status code
that’s one of the Drupal constants SAVED_UPDATED, SAVED_NEW, or SAVED_DELETED.

taxonomy_save_vocabulary(&$vocabulary)
This function creates a new vocabulary or updates an existing one. The $vocabulary parame-
ter is an associative array (note that it is not a vocabulary object!) containing the following
keys:

• name: The name of the vocabulary.

• description: The description of the vocabulary.

• help: Any help text that will be displayed underneath the field for this vocabulary
in the node creation form.

• nodes: An array of node types to which this vocabulary applies.

• hierarchy: Set to 0 for no hierarchy, 1 for single hierarchy, and 2 for multiple
hierarchy.

• relations: Set to 0 to disallow related terms or 1 to allow related terms.

• tags: Set to 0 to disable free tagging, or 1 to enable free tagging.

• multiple: Set to 0 to disable multiple selection of terms or 1 to enable multiple
selection.

CHAPTER 14 " WORKING WITH TAXONOMY342

09898ch14final 7/30/08 2:03 PM Page 342

• required: Set to 0 to make the selection of a term prior to node submission optional
(introduces a default “None selected” term) or 1 to make term selection required.

• weight: The weight of the vocabulary; it affects the placement of the node submission
form in the Vocabularies fieldset.

• module: The name of the module that’s responsible for this vocabulary. If this key is not
passed, the value will default to taxonomy.

• vid: The vocabulary ID. If this key is not passed, a new vocabulary will be created.

The taxonomy_save_vocabulary(&$vocabulary) function returns SAVED_NEW or
SAVED_UPDATED.

taxonomy_del_vocabulary($vid)
The $vid parameter of this function is the ID of the vocabulary. Deleting a vocabulary
deletes all its terms by calling taxonomy_del_term() for each term. The taxonomy_del_
vocabulary($vid) function returns SAVED_DELETED.

Retrieving Information About Terms
The built-in functions in the following sections retrieve information about terms, typically
as objects or as an array of objects.

taxonomy_get_term($tid)
This function retrieves a term (the $tid parameter is the term ID) and returns a term object.
It caches term objects internally, so multiple calls for the same term aren’t expensive. The
structure of the term object looks like this:

$term = taxonomy_get_term(5);
var_dump($term);

object(stdClass)#6 (5) {
["tid"] => string(1) "3"
["vid"] => string(1) "1"
["name"]=> string(9) "Vancouver"
["description"]=> string(32) "By Land, Sea, and Air we Prosper"
["weight"]=> string(1) "0"

}

taxonomy_get_term_by_name($text)
The taxonomy_get_term_by_name($text) function searches for terms matching a string (the
$text parameter is a string). Whitespace is stripped from $text, and matches are found the
query WHERE LOWER(t.name) = LOWER($text). This function returns an array of term objects.

CHAPTER 14 " WORKING WITH TAXONOMY 343

09898ch14final 7/30/08 2:03 PM Page 343

taxonomy_node_get_terms($node, $key)
This function finds all terms associated with a node. The $node parameter is the node ID for
which to retrieve terms, and the $key parameter defaults to tid and is a bit tricky. It affects the
way results are returned. The taxonomy_node_get_terms($node, $key) function returns an
array of arrays, keyed by $key. Therefore, the array of results will, by default, be keyed by term
ID, but you can substitute any column of the term_data table (tid, vid, name, description,
weight). This function caches results internally for each node.

"Tip The only property used from the node that is passed in is $node->vid. So if you know the version ID
of the node for which you are trying to retrieve terms, you can avoid doing an expensive node_load() by
passing in a fake node object with a $vid property, for example, $fake_node = new stdClass();
$fake_node->$vid = 12; $terms = taxonomy_node_get_terms($fake_node);.

taxonomy_node_get_terms_by_vocabulary($node, $vid, $key)
This function finds all terms within one vocabulary ($vid) that are associated with a node
($node). See the description of the $key parameter under taxonomy_node_get_terms($node,
$key) for more information.

Adding, Modifying, and Deleting Terms
The following functions create, modify, and delete terms. They return a status code that is one
of the Drupal constants SAVED_UPDATED, SAVED_NEW, or SAVED_DELETED.

taxonomy_save_term(&$term)
This function creates a new term or updates an existing term. The $term parameter is an asso-
ciative array (note that it is not a term object!) consisting of the following keys:

• name: The name of the term.

• description: The description of the term. This value is unused by Drupal’s default user
interface, but might be used by your module or other third-party modules.

• vid: The ID of the vocabulary to which this term belongs.

• weight: The weight of this term. It affects the order in which terms are shown in term
selection fields.

• relations: An optional array of term IDs to which this term is related.

• parent: Can be a string representing the term ID of the parent term, an array con-
taining either strings representing the term IDs of the parent terms, or a subarray
containing strings representing the term IDs of the parent terms. Optional.

CHAPTER 14 " WORKING WITH TAXONOMY344

09898ch14final 7/30/08 2:03 PM Page 344

• synonyms: An optional string containing synonyms delimited by line break (\n)
characters.

• tid: The term ID. If this key isn’t passed, a new term will be created.

This function returns SAVED_NEW or SAVED_UPDATED.

taxonomy_del_term($tid)
The taxonomy_del_term($tid) function deletes a term; the $tid parameter is the term ID.
If a term is in a hierarchical vocabulary and has children, the children will be deleted as well,
unless a child term has multiple parents.

Retrieving Information About Term Hierarchy
When working with hierarchical vocabularies, the functions in the following sections can
come in handy.

taxonomy_get_parents($tid, $key)
This function finds the immediate parents of a term; the $tid parameter is the term ID.
The $key parameter defaults to tid and is a column of the term_data table (tid, vid, name,
description, weight). taxonomy_get_parents($tid, $key) returns an associative array of
term objects, keyed by $key.

taxonomy_get_parents_all($tid)
This function finds all ancestors of a term; the $tid parameter is the term ID. The function
returns an array of term objects.

taxonomy_get_children($tid, $vid, $key)
The taxonomy_get_children($tid, $vid, $key) function finds all children of a term. The
$tid parameter is the term ID. The $vid parameter is optional; if a vocabulary ID is passed,
the children of the term will be restricted to that vocabulary (note that this is only important
for terms that have multiple parents in different vocabularies, a rare occurrence). The $key
parameter defaults to tid and is a column of the term_data table (tid, vid, name, description,
weight). This function returns an associative array of term objects, keyed by $key.

taxonomy_get_tree($vid, $parent, $depth, $max_depth)
This function generates a hierarchical representation of a vocabulary. The $vid parameter is
the vocabulary ID of the vocabulary for which to generate the tree. You can specify the $parent
parameter if you don’t want the entire tree for a vocabulary and want only that part of the tree
that exists under the term ID specified by $parent. The $depth parameter is for internal use
and defaults to -1. The $max_depth parameter is an integer indicating the number of levels of
the tree to return, and it defaults to NULL, indicating all levels. This function returns an array of

CHAPTER 14 " WORKING WITH TAXONOMY 345

09898ch14final 7/30/08 2:03 PM Page 345

term objects with depth and parent keys added. The depth key is an integer indicating the level
of hierarchy at which the term exists in the tree, and the parents key is an array of term IDs of
a term’s parents. For example, let’s get the results for the vocabulary shown in Table 14-3,
which happens to be vocabulary ID 2:

$vid = 2;
print_r($taxonomy_get_tree($vid));

The results follow:

Array (
[0] => stdClass Object (
[tid] => 1
[vid] => 2
[name] => Canada
[description] => A mari usque ad mare.
[weight] => 0
[depth] => 0
[parents] => Array (
[0] => 0)

)
[1] => stdClass Object (
[tid] => 4
[vid] => 2
[name] => Ontario
[description] => Ut incepit fidelis sic permanet.
[weight] => 0
[depth] => 1
[parents] => Array (
[0] => 1)

)
[2] => stdClass Object (
[tid] => 5
[vid] => 2
[name] => Toronto
[description] => Diversity Our Strength.
[weight] => 0
[depth] => 2
[parents] => Array (
[0] => 4)

)
[3] => stdClass Object (
[tid] => 2
[vid] => 2
[name] => British Columbia
[description] => Splendor sine occasu.

CHAPTER 14 " WORKING WITH TAXONOMY346

09898ch14final 7/30/08 2:04 PM Page 346

[weight] => 0
[depth] => 1
[parents] => Array (
[0] => 1)

)
[4] => stdClass Object (
[tid] => 3
[vid] => 2
[name] => Vancouver
[description] => By Land, Sea and Air We Prosper.
[weight] => 0
[depth] => 2
[parents] => Array (
[0] => 2)

)
)

Retrieving Information About Term Synonyms
The functions in the following sections might help you if your module implements support for
synonyms.

taxonomy_get_synonyms($tid)
Use this function to retrieve an array of synonyms for a given term. The $tid parameter is the
term ID. The function returns an array of strings; each string is a synonym of the term.

taxonomy_get_synonym_root($synonym)
Given a string in the $synonym parameter, this function executes an exact match search in the
term_synonym table. It returns a single term object representing the first term found with that
synonym.

Finding Nodes with Certain Terms
Sometimes, you want to have an easy way to query which nodes have certain terms or output
the results of such a query. The following functions will help you with that.

taxonomy_select_nodes($tids, $operator, $depth, $pager, $order)
This function finds nodes that match conditions by building and executing a database query
based on given parameters. It returns a resource identifier pointing to the query results. The
$tids parameter is an array of term IDs. The $operator parameter is or (default) or and, and it
specifies how to interpret the array of $tids. The $depth parameter indicates how many levels
deep to traverse the taxonomy tree and defaults to 0, meaning “don’t search for any children of
the terms specified in $tid.” Setting $depth to 1 would search for all nodes in which the terms

CHAPTER 14 " WORKING WITH TAXONOMY 347

09898ch14final 7/30/08 2:04 PM Page 347

specified in $tids and their immediate children occurred. Setting $depth to all searches the
entire hierarchy below the terms specified in $tid. The $pager parameter is a Boolean value
indicating whether resulting nodes will be used with a pager, and it defaults to TRUE. You
might set $pager to FALSE if you were generating an XML feed. The $order parameter contains
a literal order clause that will be used in the query’s SQL and defaults to n.sticky DESC,
n.created DESC.

If you’re searching for many terms, this function can be database intensive.

taxonomy_render_nodes($result)
If you’re using taxonomy_select_nodes() to query for nodes that match certain taxonomy
conditions, it can be helpful to look at taxonomy_render_nodes() as a starting point for creat-
ing simple output from your query.

Additional Resources
Many modules use taxonomy for everything from adding access control (http://drupal.org/
project/taxonomy_access), to dynamic category browsing (http://drupal.org/project/
taxonomy_browser), to showing nodes that are related via taxonomy terms in a block (http://
drupal.org/project/similarterms). The Drupal Handbook has more information about tax-
onomy at http://drupal.org/handbook/modules/taxonomy. See also the list of taxonomy-
related modules at http://drupal.org/project/Modules/category/71.

You’re encouraged to try the views module, especially for theming of taxonomy listings
(http://drupal.org/project/views).

Summary
After reading this chapter, you should be able to

• Understand what taxonomy is.

• Understand terms, vocabularies, and their different options.

• Differentiate between flat, hierarchical, and multiple hierarchical vocabularies.

• Construct URLs to do AND and OR searches of taxonomy terms.

• Construct URLs for RSS feeds of taxonomy terms and term combinations.

• Understand how taxonomies are stored.

• Know how to use vocabularies within your own module.

• Set up your module to receive notification of changes to taxonomies.

CHAPTER 14 " WORKING WITH TAXONOMY348

09898ch14final 7/30/08 2:04 PM Page 348

http://drupal.org/project/taxonomy_access
http://drupal.org/project/taxonomy_access
http://drupal.org/project/taxonomy_browser
http://drupal.org/project/taxonomy_browser
http://drupal.org/project/similarterms
http://drupal.org/project/similarterms
http://drupal.org/handbook/modules/taxonomy
http://drupal.org/project/Modules/category/71
http://drupal.org/project/views

Caching

Building pages for dynamic web sites requires numerous trips to the database to retrieve
information about saved content, site settings, the current user, and so on. Saving the results
of these expensive operations for later use is one of the easiest ways within the application
layer to speed up a sluggish site. And it’s not just database calls that are saved: the processing
of the retrieved information in PHP is avoided too. Drupal’s built-in cache API does this auto-
matically for most core data and provides a number of tools for Drupal developers who want
to leverage the API for their own purposes. For example, the memcache module (http://
drupal.org/project/memcache) is an example of memory-based caching that makes use of
the cache API.

!Note This chapter covers caching within the Drupal application. Other layers of caching, such as the
database’s internal caching (e.g., MySQL’s query cache), can also have a significant effect on performance.
These are mentioned in Chapter 22).

Knowing When to Cache
It’s important to remember that caching is a trade-off. Caching large chunks of data will boost
performance quite a bit, but only in cases where that specific chunk of data is needed a sec-
ond or third time. That’s why Drupal’s built-in full-page caching is only used for anonymous
visitors—registered users often require customized versions of pages, and the caching would
be much less effective. Caching smaller chunks of data (e.g., the list of today’s popular articles)
means less dramatic performance gains but still helps to speed up your site.

Caching works best on data that doesn’t change rapidly. A list of the week’s top stories
works well. Caching a list of the last five comments posted on a busy forum is less helpful,
because that information will become out of date so quickly that few visitors will be able to
use the cached list before it needs to be updated. In the worst case, a bad caching strategy
(e.g., caching data that changes too often) will add overhead to a site rather than reduce it.

349

C H A P T E R 1 5

09898ch15final 7/30/08 1:59 PM Page 349

http://drupal.org/project/memcache
http://drupal.org/project/memcache

How Caching Works
Modules often have to make expensive database queries or calls to remote web services.
Rather than using resources for those operations every time they occur, modules can store
a cache of their data into one of the database tables reserved for caching within the Drupal
database, or they can create their own table and store the data there. The next time the data
is needed, it can be quickly retrieved with a single query. As you’ll see later in the chapter,
Drupal’s caching back-end is pluggable, so although we refer to database tables here, in reality
the back-end may be some other storage such as flat files or a memory-based cache.

The default table to which your module can write cached information is named cache.
Using this table is the best option when storing only a couple rows of cached information. If
you’re caching information for every node, menu, or user, you’ll want your module to have its
own dedicated cache table. This will improve performance by minimizing the number of rows
in Drupal’s cache table and reducing write contention. When defining a new cache table for
your module to use, it must be structurally identical to the default cache table while having
a different table name. It’s a good idea to prepend cache_ to the table name for consistency.
Let’s take a look at the database structure of the cache table; see Table 15-1.

!Note When defining a new cache table for your module, it must be structurally identical to the default
cache table.

Table 15-1. cache Table Schema

Field* Type Null Default
cid varchar(255) NO —

data longblob YES —

expire int NO 0

created int NO 0

headers text YES NULL

serialized smallint NO 0

*Bold indicates a primary key; italics indicate an indexed field.

The cid column stores the primary cache ID for quick retrieval. Examples of cache
IDs used within the Drupal core are the URL of the page for page caching (e.g., http://
example.com/?q=node/1), a string and a theme name for caching the theme registry (e.g.,
theme_registry:garland), or even regular strings (e.g., the contents of the variables table
are cached with the primary cache ID set to variables). The important point is that the
cache ID must be a unique identifier for the item being cached.

The data column stores the information you wish to cache. Complex data types such as
arrays or objects need to be serialized using PHP’s serialize() function to preserve their data
structure within the database (Drupal does this automatically).

CHAPTER 15 ! CACHING350

09898ch15final 7/30/08 1:59 PM Page 350

http://example.com/?q=node/1
http://example.com/?q=node/1

The expire column takes one of the three following values:

• CACHE_PERMANENT: Indicates that the item should not be removed until cache_clear_
all() has been called with the cache ID of the permanent item to wipe.

• CACHE_TEMPORARY: Indicates that the item should be removed the next time cache_
clear_all() is called for a “general” wipe, with no minimum time enforcement
imposed. Items marked CACHE_PERMANENT will not be removed from the cache.

• A Unix timestamp: Indicates that the item should be kept at least until the time pro-
vided, after which it will behave like an item marked CACHE_TEMPORARY and become
eligible for deletion.

The created column is a Unix timestamp indicating the date the cache entry was created.
The headers column is for storing HTTP header responses when the cache data is an

entire Drupal page request. Most of the time, you won’t use the headers field, as you’ll be
caching data that doesn’t rely on headers, such as parts of the page rather than the entire
page itself. Bear in mind, though, that your custom cache table structure must still be iden-
tical to the default cache table, so keep the headers column around even if it isn’t being used.

The serialized column indicates whether the data in the data column is in serialized
form. A 0 indicates unserialized data while a 1 indicates serialized data. If the data is serialized
and the value of the serialized column is 1, the cache system will unserialize the data before
returning it to the caller. The cache system automatically serializes object and array data and
sets the serialized column to 1 when this type of data is cached.

How Caching Is Used Within Drupal Core
Drupal ships with six cache tables by default: cache stores a copy of the variables table and
the database schema and theme registry; cache_block stores cached copies of blocks; cache_
menu stores cached copies of the navigational menus; cache_filter stores cached copies of
each node’s content after it has been parsed by the filter system; cache_form is used by the
form API to avoid form building when possible; and cache_page stores cached copies of pages
for anonymous users. We’ll look at each of these caches in the following sections. It should be
noted that the “Page cache” and “Block cache” settings at Administer " Site configuration "
Performance only affect the page cache and block cache tables, not the other cache compo-
nents within Drupal. In other words, filters, menus, and module settings are always cached.

Menu System
The menu system caches the router information that connects Drupal paths to callbacks.
Any menu created by the menu module is cached, whether or not Drupal’s page caching is
enabled. So to clear the menu cache, use the “Clear cached data” button on the Administer "
Site configuration " Performance page, or call menu_cache_clear_all(). If you’ve made
changes to the menus that will affect blocks, you might want to call the more aggressive
menu_rebuild() function instead; the menu cache is cleared when menus are rebuilt. Exam-
ples of menus include Drupal’s Primary and Secondary links as well as the user navigation
block. Menus are cached on a per-user, per-locale basis. See Chapter 4 for more information
on the menu system.

CHAPTER 15 ! CACHING 351

09898ch15final 7/30/08 1:59 PM Page 351

Filtered Input Formats
When a node is created or edited, its content is run through the various filters associated
with its input format. For example, the HTML Filter format converts line breaks to HTML <p>
and
 tags, and also strips out malicious HTML. It would be an expensive operation to
do this for every single view of a node. Therefore, the filters are applied to the node just after
it has been created or edited, and that content is cached to the cache_filter database table,
whether or not Drupal’s page caching is enabled. See Chapter 11 for more information on
input formats.

!Tip The filter cache is the reason that changes to the default length of node teasers within the adminis-
trative interface take effect only after you resave each node. A quick workaround for this problem is to empty
the cache_filter table so all node content is parsed and teasers built again. Or, if you are willing to have
all caches cleared (including the filter cache), click the “Clear cached data” button on the Administer " Site
configuration " Performance page.

Administration Variables and Module Settings
Drupal stores most administrative settings in the variables table, and caches that data in the
cache table to speed the lookup of configuration data. Examples of such variables include the
name of your site, settings for comments and users, and the location of the files directory.
These variables are cached to a single row in the cache table, so they can be quickly retrieved,
rather than making a database query for each variable value as it is needed. They are stored as
a PHP array, so the cache value is serialized to preserve its structure. Any variable that uses
variable_set() and variable_get() as its setter and getter functions will be stored and cached
in this manner.

Pages
We have been discussing the bits and pieces that Drupal caches to optimize the more
resource-heavy components of a site, but the biggest optimization Drupal makes is to cache
an entire page view. For anonymous users, this is easily accomplished, since all pages look
the same to all anonymous users. For logged-in users, however, every page is different and
customized to each of their profiles. A different caching strategy is needed to cope with this
situation.

For anonymous users, Drupal can retrieve the cached page content in a single query,
although it takes a couple of other queries to load Drupal itself. You can choose one of two
caching strategies for the anonymous user page cache: Normal or Aggressive. You can also
disable caching. Normal and Aggressive strategies can be further modified by setting a
minimum cache lifetime. These settings are found in the Drupal administration interface
at Administer " Site configuration " Performance. The interface is shown in Figure 15-1.
Let’s look at each setting in the following sections.

CHAPTER 15 ! CACHING352

09898ch15final 7/30/08 1:59 PM Page 352

Figure 15-1. The administrative interface for the control of page-caching behavior

Disabled
This completely disables page caching. It is most useful when debugging a site. Generally, you
will want to enable caching.

!Note Even with page caching disabled, Drupal will still cache user menus, filter content, the theme reg-
istry, the database schema, and system variables. These component-level caches cannot be disabled.

Normal
Normal page caching offers a huge performance boost over no caching at all, and is one of the
easiest ways to speed up a slow Drupal site. Let’s walk through the request life cycle when the
Normal cache system is enabled.

To understand Normal page caching, you need to first make sense of Drupal’s boot-
strapping process. The bootstrapping process is made up of small, isolated steps called
phases. Drupal takes advantage of this phased bootstrapping system to load and parse only
the amount of code necessary to serve a cached page, and to keep database queries to a
minimum.

CHAPTER 15 ! CACHING 353

09898ch15final 7/30/08 1:59 PM Page 353

Figure 15-2 details the process of serving a cached page request to an anonymous user.

Figure 15-2. This chart shows the request life cycle of anonymous user page caching under
Drupal’s Normal cache setting. The first five phases of the bootstrap process are not cache-
specific and were added to this diagram for the sake of completeness. * indicates a database
query; ** indicates that an unknown number of queries can be generated at this point.

CHAPTER 15 ! CACHING354

09898ch15final 7/30/08 2:00 PM Page 354

To begin, a request causes the web server to execute index.php. The first line of PHP code
inside index.php is to include includes/bootstrap.inc, which contains the core functions for
bootstrap loading. Next, index.php makes a call to drupal_bootstrap().

drupal_bootstrap() is in charge of executing each bootstrap phase. For normal caching,
we only need to concern ourselves with the DRUPAL_BOOTSTRAP_LATE_PAGE_CACHE bootstrap
phase. This phase begins with retrieving the system variables from the database. Assuming the
cache strategy is Normal, the next step is to include includes/module.inc. Within module.inc
are the functions allowing Drupal to bring the module system online. Drupal will then initial-
ize modules that implement hook_boot() or hook_exit(). The activation of these hooks is
accomplished with bootstrap_invoke_all('boot') and bootstrap_invoke_all('exit'),
respectively. The statistics module, for example, uses the statistics_exit() function to track
page visits. The throttle module uses the throttle_exit() function to alter the throttle level
based on current traffic levels.

!Note Using hook_boot() or hook_exit() within a module comes at a performance price to the overall
site, since your module will then be loaded for every cached page served to a visitor when running in Normal
cache mode. You are also limited to the functions available to you when implementing these hooks, since
includes/common.inc is not loaded. Common functions such as t(), l(), url(), and pager_query()
are thus inaccessible.

drupal_page_cache_header() prepares the cache data by setting HTTP headers. Drupal
will set Etag and 304 headers as appropriate, so browsers can use their own internal caching
mechanisms and avoid unnecessary HTTP round-trips when applicable. The cached data is
then sent to the browser if the headers sent by the browser have requested it.

Aggressive
Aggressive caching completely bypasses the loading of all modules (see Figure 15-3). This
means the boot and exit hooks are never called for cached pages. The end result is less PHP
code to parse, since no modules are loaded. There are also fewer database queries to execute.
If you have modules enabled that use these hooks (such as the statistics module and the throt-
tle module), they may not work correctly when Aggressive caching is enabled. Drupal will
warn you about modules that may be affected on the administrative page at Administer "
Site configuration " Performance.

CHAPTER 15 ! CACHING 355

09898ch15final 7/30/08 2:00 PM Page 355

Figure 15-3. The request life cycle of anonymous user page caching under Drupal’s Aggressive
cache setting. * indicates a database query.

Minimum Cache Lifetime
This setting controls the lifetime of expired cache content on your site. When a user sub-
mits new content, he or she will always see the changes immediately; however, all other
users will need to wait until the minimum cache lifetime expires in order to see new con-
tent. Of course, if the minimum cache lifetime is set to “none,” everyone will always see
new content immediately.

CHAPTER 15 ! CACHING356

09898ch15final 7/30/08 2:00 PM Page 356

fastpath: The Hidden Cache Setting
The fastpath cache setting is not configurable from within the Drupal administration inter-
face because of its highly advanced nature; fastpath gives developers the ability to bypass
Drupal to implement a highly customized cache solution, such as memory or file-based
caching (see Figure 15-4).

Figure 15-4. The request life cycle of anonymous user page caching under Drupal’s fastpath
cache setting

The cacherouter contributed module (http://drupal.org/project/cacherouter) is one
module that takes advantage of fastpath mode. Suppose you have installed the module in
sites/all/modules/contrib.

Since fastpath doesn’t make a database connection by default, all configuration options
reside within your settings.php file:

$conf = array(
'page_cache_fastpath' => TRUE,
'cache_inc' => './sites/all/modules/contrib/cacherouter/cacherouter.inc',
... // More settings here.

);

The first item of the array enables fastpath mode by setting fastpath to TRUE. That’s all
there is to enabling it! The second specifies the file that Drupal will load instead of loading
includes/cache.inc. In this case, the file specified is the custom-caching library that the
cacherouter module will use. The cacherouter module needs a bit more configuration; see
http://drupal.org/project/cacherouter for details.

When you load your own custom-caching library instead of the includes/cache.inc
library that Drupal uses by default, you’ll need to write your own cache_set(), cache_get(),
and cache_clear_all() functions.

CHAPTER 15 ! CACHING 357

09898ch15final 7/30/08 2:00 PM Page 357

http://drupal.org/project/cacherouter
http://drupal.org/project/cacherouter

!Note Once fastpath caching is enabled, it overrides any caching options set within Drupal’s administra-
tive interface.

Blocks
Depending on their content, blocks may be cachable. Drupal’s block caching can be enabled
or disabled using the administrative interface at Administer " Site configuration " Perfor-
mance (see Figure 15-5).

Figure 15-5. The administrative interface for controlling block-caching behavior

Block caching is accomplished when a module that provides a block declares the
cachability of that block when responding to the list operation of hook_block(). For example,
here is part of the hook_block() implementation of modules/user/user.module:

function user_block($op = 'list', $delta = 0, $edit = array()) {
global $user;

if ($op == 'list') {
$blocks[0]['info'] = t('User login');
// Not worth caching.
$blocks[0]['cache'] = BLOCK_NO_CACHE;

$blocks[1]['info'] = t('Navigation');
// Menu blocks can't be cached because each menu item can have
// a custom access callback. menu.inc manages its own caching.
$blocks[1]['cache'] = BLOCK_NO_CACHE;

$blocks[2]['info'] = t('Who\'s new');

// Too dynamic to cache.
$blocks[3]['info'] = t('Who\'s online');
$blocks[3]['cache'] = BLOCK_NO_CACHE;
return $blocks;

}
...
}

CHAPTER 15 ! CACHING358

09898ch15final 7/30/08 2:00 PM Page 358

In the preceding example, all the blocks provided by the user module declare that they
should not be cached, with one exception. The “Who’s new” block does not declare a cache
preference, which means that if the administrator has enabled block caching and then
enables the “Who’s new” block, it will receive the default caching setting of BLOCK_CACHE_
PER_ROLE. That means that a separate cached version of the block will be stored for each
role. To be more precise, a separate cached version will be stored for each combination of
roles; the cache ID is created by concatenating the current user’s role IDs (see _block_get_
cache_id() in modules/block/block.module). The possible constants for block caching are
shown in Table 15-2.

Table 15-2. Possible Constants for Block Caching

Constant Value Meaning
BLOCK_NO_CACHE -1 Do not cache this block.

BLOCK_CACHE_PER_ROLE 1 Each role sees a separate cached block.*

BLOCK_CACHE_PER_USER 2 Each user sees a separate cached block.

BLOCK_CACHE_PER_PAGE 4 Each page has its own cached block.

BLOCK_CACHE_GLOBAL 8 Blocks are cached once for all users.

* Default for blocks that do not declare a cache setting

All blocks that are cached are cached on a per-theme and per-language basis. This pre-
vents users from seeing a block that is themed by a theme other than the one the user is
viewing when multiple themes are enabled, and it prevents blocks from showing up in the
wrong language when multiple languages are enabled.

!Note Blocks are never cached for the superuser (user 1).

The block constants (like menu constants) can be used together using PHP bitwise opera-
tors. For example, the “Book navigation” block provided by the book module’s implementation
of hook_block() uses both BLOCK_CACHE_PER_ROLE and BLOCK_CACHE_PER_PAGE:

function book_block($op = 'list', $delta = 0, $edit = array()) {
$block = array();
switch ($op) {
case 'list':
$block[0]['info'] = t('Book navigation');
$block[0]['cache'] = BLOCK_CACHE_PER_PAGE | BLOCK_CACHE_PER_ROLE;
return $block;

...
}

The BLOCK_CACHE_PER_ROLE and BLOCK_CACHE_PER_USER constants should not be combined
with the bitwise OR operator (|), as the two caching modes are mutually exclusive.

CHAPTER 15 ! CACHING 359

09898ch15final 7/30/08 2:00 PM Page 359

Per-Request Caching with Static Variables
Many Drupal functions use a static variable to cache data. Within the lifetime of the HTTP
request, a second call to the function will return the data instantly. Here is an example from
the node module:

function node_get_types($op = 'types', $node = NULL, $reset = FALSE) {
static $_node_types, $_node_names;

if ($reset || !isset($_node_types)) {
list($_node_types, $_node_names) = _node_types_build();

}
...

}

Caching is never without cost. The cost for static variable caches is memory. Luckily,
memory is usually more abundant than database CPU cycles.

Using the Cache API
Module developers looking to take advantage of the cache API have two functions they need
to know: cache_set() and cache_get().

Caching Data with cache_set()
cache_set() is used for writing data to the cache. The function signature follows:

cache_set($cid, $table = 'cache', $data, $expire = CACHE_PERMANENT, $headers = NULL)

and the function parameters are

• $cid: A unique cache ID string that acts as a key to the data. Colons are used to delimit
the hierarchy of possibilities.

• $table: The name of the table to store the data in. You can create your own table or use
cache, cache_block, cache_filter, cache_form, cache_menu, or cache_page. The cache
table is used by default.

• $data: The data to store in the cache. PHP objects and arrays will be automatically
serialized.

• $expire: The length of time for which the cached data is valid. Possible values are
CACHE_PERMANENT, CACHE_TEMPORARY, or a Unix timestamp. If a Unix timestamp is given,
the data will be treated as if it were marked CACHE_TEMPORARY after the current time
exceeds the Unix timestamp.

• $headers: For cached pages, a string of HTTP headers to pass along to the browser.

CHAPTER 15 ! CACHING360

09898ch15final 7/30/08 2:00 PM Page 360

A common iteration pattern for cache_set() can be seen in modules/filter/
filter.module:

// Store in cache with a minimum expiration time of 1 day.
if ($cache) {
cache_set($cid, 'cache_filter', $text, time() + (60 * 60 * 24));

}

Retrieving Cached Data with cache_get()
cache_get() is for retrieving the cached data. The function signature follows:

cache_get($cid, $table = 'cache')

and the function parameters are

• $cid: The cache ID of the data to retrieve.

• $table: The name of the table from which to retrieve the data. This might be a table you
created or one of the tables provided by Drupal: cache, cache_block, cache_filter,
cache_form, cache_menu, or cache_page. The cache table is used by default.

A common pattern for cache_get() can be seen in modules/filter/filter.module.

// Check for a cached version of this piece of text.
if ($cached = cache_get($cid, 'cache_filter')) {
return $cached->data;

}

Clearing Caches
If your module knows best when its data becomes stale, it should take responsibility for clear-
ing caches at an appropriate time. Two guiding principles should be applied to cache clearing:

• Clear the most specific cache possible. Do not broadly wipe all Drupal’s caches just
because a bit of module-specific data has changed! It’s the equivalent of ripping out
and replacing all the carpeting in the house because the kitchen floor needs sweeping.

• Use cached data as long as you can. Although the point of caching is to increase
responsiveness by decreasing the amount of work that needs to be done, there is signif-
icant work involved in clearing cached data, especially if there is a lot of it.

The following subsections describe some ways of clearing cached data.

Using the $reset Parameter

Many Drupal functions that do internal caching with static variables have an optional $reset
parameter that instructs the function to clear its internal cache. For example, here’s our old
friend node_load():

CHAPTER 15 ! CACHING 361

09898ch15final 7/30/08 2:00 PM Page 361

function node_load($param = array(), $revision = NULL, $reset = NULL) {
static $nodes = array();

if ($reset) {
$nodes = array();

}
...

}

Using cache_clear_all()

The main function for clearing cached data is cache_clear_all() in includes/cache.inc. The
function signature is as follows:

function cache_clear_all($cid = NULL, $table = NULL, $wildcard = FALSE) {...}

The $cid and $table parameters have the same meaning as they do for cache_set() and
cache_get(). The $wildcard parameter is used to indicate that the $cid being passed should
be treated as a substring with any right-hand matches being cleared. Some examples follow.

Clear the specific entry foo:bar from the cache table:

$cid = 'foo:bar';
cache_clear_all($cid, 'cache');

Clear any expirable entry in the cache table that was set by the foo module (and thus
has a $cid that begins with the foo: prefix):

$cid = 'foo:'; // Will match cache keys foo:bar, foo:baz, etc.
cache_clear_all($cid, 'cache', TRUE);

The actual database query that is run in the preceding case is

db_query("DELETE FROM {". $table ."} WHERE cid LIKE '%s%%'", $cid);

If the foo module keeps its data in its own cache table named cache_foo, that table needs
to be specified so cache_clear_all() knows which to clear:

$cid = 'foo:bar';
cache_clear_all($cid, 'cache_foo');

If you want to completely empty a cache table, pass * as the $cid and set the $wildcard
parameter to TRUE. This example clears the entire cache_foo table:

cache_clear_all('*', 'cache_foo', TRUE);

Clear any expirable entries from the page and block caches (i.e., the cache_page and
cache_block tables):

cache_clear_all();

CHAPTER 15 ! CACHING362

09898ch15final 7/30/08 2:00 PM Page 362

Using hook_flush_caches()

Drupal has a central function that flushes all the caches, including the JavaScript and CSS
caches. Here is the drupal_flush_all_caches() function from includes/common.inc:

/**
* Flush all cached data on the site.
*
* Empties cache tables, rebuilds the menu cache and theme registries, and
* exposes a hook for other modules to clear their own cache data as well.
*/
function drupal_flush_all_caches() {
// Change query-strings on css/js files to enforce reload for all users.
_drupal_flush_css_js();

drupal_clear_css_cache();
drupal_clear_js_cache();
system_theme_data();
drupal_rebuild_theme_registry();
menu_rebuild();
node_types_rebuild();
// Don't clear cache_form - in-progress form submissions may break.
// Ordered so clearing the page cache will always be the last action.
$core = array('cache', 'cache_block', 'cache_filter', 'cache_page');
$cache_tables = array_merge(module_invoke_all('flush_caches'), $core);
foreach ($cache_tables as $table) {
cache_clear_all('*', $table, TRUE);

}
}

Notice the line that includes module_invoke_all('flush_caches'). This is the invoca-
tion of hook_flush_caches(). If you are using your own cache tables, the hook gives your
module a chance to clear its caches when the “Clear cached data” button is clicked on the
Administer " Site configuration " Performance page. The submit handler for that button
calls drupal_flush_all_caches(). An implementation of hook_flush_caches() is simple to
write; your module should simply return the names of any cache tables that should be
flushed. Here’s an example from the update status module:

/**
* Implementation of hook_flush_caches().
*/
function update_flush_caches() {
return array('cache_update');

}

CHAPTER 15 ! CACHING 363

09898ch15final 7/30/08 2:00 PM Page 363

Summary
In this chapter, you learned about

• The various types of caching Drupal provides: page, block, menu, variable, and filter
caching

• How the page-caching systems work

• The differences among Normal, Aggressive, and fastpath caching

• How the block-caching system works

• The cache API functions

CHAPTER 15 ! CACHING364

09898ch15final 7/30/08 2:00 PM Page 364

Sessions

HTTP is a stateless protocol, which means that each interaction between the web browser
and server stands alone. So how do you track a user as he or she navigates through a series of
web pages on a web site? You use sessions. Starting with version 4, PHP offers built-in support
for sessions via the session family of functions. In this chapter, you’ll see how Drupal uses
PHP’s sessions.

What Are Sessions?
When a browser first requests a page from a Drupal site, PHP issues the browser a cookie con-
taining a randomly generated 32-character ID, called PHPSESSID by default. This is done by the
inclusion of one line in the HTTP response headers sent to the browser the first time it visits
the site:

HTTP/1.1 200 OK
Date: Thu, 17 Apr 2008 20:24:58 GMT
Server: Apache
Set-Cookie: PHPSESSID=3sulj1mainvme55r8udcc6j2a4; expires=Sat, 10 May 2008 23:58:19
GMT; path=/

Last-Modified: Thu, 17 Apr 2008 20:24:59 GMT
Cache-Control: store, no-cache, must-revalidate
Cache-Control: post-check=0, pre-check=0
Content-Type: text/html; charset=utf-8

On subsequent visits to the site, the browser presents the cookie to the server by includ-
ing it in each HTTP request:

GET / HTTP/1.1
User-Agent=Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.1.14)
Gecko/20080404 Firefox/2.0.0.14

Cookie: PHPSESSID=3sulj1mainvme55r8udcc6j2a4

This allows PHP to keep track of a single browser as it visits the web site. The 32-character
ID, known as the session ID, is used as the key to the information Drupal stores about the ses-
sion and allows Drupal to associate sessions with individual users.

365

C H A P T E R 1 6

09898ch16final 7/30/08 1:57 PM Page 365

Usage
Drupal uses sessions for several important functions internally to store transient information
regarding an individual user’s state or preferences. For example, drupal_set_message() needs
to carry over a status message or an error message for the user from the page on which the
error occurred to the next page. This is done by storing the messages in an array named
messages inside the user’s session:

/**
* Set a message which reflects the status of the performed operation.
*
* If the function is called with no arguments, this function returns all set
* messages without clearing them.
*
* @param $message
* The message should begin with a capital letter and always ends with a
* period '.'.
* @param $type
* The type of the message. One of the following values are possible:
* 'status', 'warning', 'error'
* @param $repeat
* If this is FALSE and the message is already set, then the message won't
* be repeated.
*/
function drupal_set_message($message = NULL, $type = 'status', $repeat = TRUE) {
if ($message) {
if (!isset($_SESSION['messages'])) {
$_SESSION['messages'] = array();

}

if (!isset($_SESSION['messages'][$type])) {
$_SESSION['messages'][$type] = array();

}

if ($repeat || !in_array($message, $_SESSION['messages'][$type])) {
$_SESSION['messages'][$type][] = $message;

}
}

// Messages not set when DB connection fails.
return isset($_SESSION['messages']) ? $_SESSION['messages'] : NULL;

}

Another example is from comment.module, where the session is used to store viewing pref-
erences for anonymous users:

$_SESSION['comment_mode'] = $mode;
$_SESSION['comment_sort'] = $order;
$_SESSION['comment_comments_per_page'] = $comments_per_page;

CHAPTER 16 ! SESSIONS366

09898ch16final 7/30/08 1:57 PM Page 366

Drupal also uses sessions to keep a handle on file uploads when a node is being
previewed, to remember viewing preferences when filtering the list of site content at
Administer " Content management " Content or the list of recent log entries at Adminis-
ter " Reports " Recent log entries, and for the installation and update systems (install.
php and update.php).

Drupal creates sessions for both users that are logged into a site (authenticated users)
and are not logged in (anonymous users). In the row of the sessions table representing an
anonymous user, the uid column is set to 0. Because sessions are browser specific (they’re
tied to the browser’s cookie), having multiple browsers open on a single computer results
in multiple sessions.

!Caution Drupal doesn’t store session information the first time an anonymous user visits a site. This is
to keep evil web crawlers and robots from flooding the sessions table with data. As a developer, this means
you cannot store session information for the first visit from an anonymous user.

The actual data stored in a session is stored as serialized data in the session column of
the sessions table. Three rows of a typical sessions table are shown in Table 16-1. The table
shows records for the superuser (uid 1), an authenticated user (uid 3), and an anonymous
user (uid 0). The superuser has watchdog filtering settings (used by the dblog module) stored
in the session.

CHAPTER 16 ! SESSIONS 367

Table 16-1. Example Rows from the Sessions

uid sid hostname timestamp cache session
1 f5268d678333a1a7cce27e7e42b0c2e1 1.2.3.4 1208464106 0 dblog_overview_

filter|a:0:{}

3 be312e7b35562322f3ee98ccb9ce8490 5.6.7.8 1208460845 0 --

0 5718d73975456111b268ed06233d36de 127.0.0.1 1208461007 0 --

The sessions table is cleaned when PHP’s session garbage collection routine runs. The
length of time a row remains in the table is determined by the session.gc_maxlifetime setting
in settings.php. If a user logs out, the row for that session is removed from the database
immediately. Note that if a user is logged in via multiple browsers (not browser windows) or
multiple IP addresses at the same time, each browser has a session; therefore, logging out
from one browser doesn’t log the user out from the other browsers.

Session-Related Settings
There are three places where Drupal modifies session-handling settings: in the .htaccess file,
in the settings.php file, and in the bootstrap code in the includes/bootstrap.inc file.

09898ch16final 7/30/08 1:57 PM Page 367

In .htaccess
Drupal ensures that it has full control over when sessions start by turning off PHP’s session.
auto_start functionality in the Drupal installation’s default .htaccess file with the following
line:

php_value session.auto_start 0

session.auto_start is a configuration option that PHP cannot change at runtime, which
is why it lives in the .htaccess file instead of settings.php.

In settings.php
You’ll set most session settings within the settings.php file, located at sites/default/
settings.php or sites/example.com/settings.php.

ini_set('session.cache_expire', 200000); // 138.9 days.
ini_set('session.cache_limiter', 'none'); // Cache control is done elsewhere.
ini_set('session.cookie_lifetime', 2000000); // 23.1 days.
ini_set('session.gc_maxlifetime', 200000); // 55 hours.
ini_set('session.save_handler', 'user'); // Use user-defined session handling.
ini_set('session.use_only_cookies', 1); // Require cookies.
ini_set('session.use_trans_sid', 0); // Don't use URL-based sessions.

Having these settings in settings.php instead of .htaccess allows subsites to have differ-
ent settings and allows Drupal to modify the session settings on hosts running PHP as a CGI
(PHP directives in .htaccess don’t work in such a configuration).

Drupal uses the ini_set('session.save_handler', 'user'); function to override the
default session handling provided by PHP and implement its own session management;
user-defined in this context means “defined by Drupal” (see http://www.php.net/manual/en/
function.session-set-save-handler.php).

In bootstrap.inc
PHP provides built-in session-handling functions but allows you to override those functions if
you want to implement your own handlers. PHP continues to handle the cookie management,
while Drupal’s implementation does the back-end handling of session storage.

The following call during the DRUPAL_BOOTSTRAP_SESSION phase of bootstrapping sets the
handlers to functions in includes/sessions.inc and starts session handling:

require_once variable_get('session_inc', './includes/session.inc');
session_set_save_handler('sess_open', 'sess_close', 'sess_read', 'sess_write',
'sess_destroy_sid', 'sess_gc');

session_start();

This is one of the few cases where the names of the functions inside a file don’t match the
file’s name. You would expect the preceding function names to be session_open, session_
close, and so on. However, because PHP already has built-in functions in that namespace, the
shorter prefix sess_ is used.

CHAPTER 16 ! SESSIONS368

09898ch16final 7/30/08 1:57 PM Page 368

http://www.php.net/manual/en

Notice that the file being included is defined by a Drupal variable. This means that you
can cleanly implement your own session handling and plug in that instead of using Drupal’s
default session handling. For example, the memcache module (drupal.org/project/memcache)
implements the sess_open(), sess_close(), sess_read(), sess_write(), sess_destroy_sid(),
and sess_gc() functions. Setting the session_inc Drupal variable causes Drupal to use this
code for sessions instead of using default session handling:

<?php
variable_set('session_inc', './sites/all/modules/memcache/memcache-session.inc');

?>

You could also override the variable by setting it in your settings.php file:

$conf = array(
'session_inc' => './sites/all/modules/memcache/memcache-session.inc,
...

);

Requiring Cookies
If the browser doesn’t accept cookies, a session cannot be established because the PHP
directive sessions_use_only_cookies has been set to 1 and the alternative (passing the
PHPSESSID in the query string of the URL) has been disabled by setting sessions.use_
trans_sid to 0. This is a best practice, as recommended by Zend (see http://php.net/
session.configuration):

URL based session management has additional security risks compared to cookie-based
session management. Users may send a URL that contains an active session ID to their
friends by e-mail or users may save a URL that contains a session ID to their bookmarks
and access your site with the same session ID always, for example.

When PHPSESSID appears in the query string of a site, it’s typically a sign that the host-
ing provider has locked down PHP and doesn’t allow the ini_set() function to set PHP
directives at runtime. Alternatives are to move the settings into the .htaccess file (if the
host is running PHP as an Apache module) or into a local php.ini file (if the host is running
PHP as a CGI executable).

To discourage session hijacking, the session ID is regenerated when a user logs in (see the
user_authenticate_finalize() function in modules/user/user.module). The session is also
regenerated when a user changes his or her password.

Storage
Session information is stored in the sessions table, which associates session IDs with Drupal
user IDs during the DRUPAL_BOOTSTRAP_SESSION phase of bootstrapping (see Chapter 15 to
learn more about Drupal’s bootstrapping process). In fact, the $user object, which is used
extensively throughout Drupal, is first built during this phase by sess_read() in includes/
sessions.inc (see Chapter 6 to see how the $user object is built).

CHAPTER 16 ! SESSIONS 369

09898ch16final 7/30/08 1:57 PM Page 369

http://php.net

Table 16-2 shows the table structure in which sessions are stored.

Table 16-2. The Structure of the Sessions Table

Field Type Length Description
uid int User ID of authenticated user (0 for anonymous user)

sid int 64 Session ID generated by PHP

hostname varchar 128 IP address that last used this session ID

timestamp int Unix timestamp of last page request

cache int Time of user’s last post, which is used to enforce minimum
cache lifetime

session text big Serialized contents of data stored in $_SESSION

When Drupal serves a page, the last task completed is to write the session to the sessions
table (see sess_write() in includes/session.inc). This is only done if the browser has pre-
sented a valid cookie to avoid bloating the sessions table with sessions for web crawlers.

Session Life Cycle
The session life cycle is shown in Figure 16-1. It begins when a browser makes a request to
the server. During the DRUPAL_BOOTSTRAP_SESSION phase of Drupal’s bootstrap routines (see
includes/bootstrap.inc) the session code begins. If the browser doesn’t present a cookie
that it had previously received from the site, PHP’s session management system will give the
browser a new cookie with a new PHP session ID. This ID is usually a 32-character represen-
tation of a unique MD5 hash, though PHP 5 allows you to set the configuration directive
session.hash_function to 1, optionally giving you SHA-1 hashes that are represented by
40-character strings.

!Note MD5 is an algorithm for computing the hash value of a string of text and is the algorithm of choice
for computing hashes within Drupal. For information on MD5 and other hash algorithms, see http://
en.wikipedia.org/wiki/Cryptographic_hash_functions.

Drupal then checks the sessions table for the existence of a row with the session ID
as the key. If found, the sess_read() function in includes/sessions.inc retrieves the ses-
sion data and performs an SQL JOIN on the row from the sessions table and on the corre-
sponding row from the users table. The result of this join is an object containing all fields
and values from both rows. This is the global $user object that’s used throughout the rest
of Drupal (see Chapter 6). Thus, session data is also available by looking in the $user
object, specifically in $user->session, $user->sid, $user->hostname, $user->timestamp,
and $user->cache. Roles for the current user are looked up and assigned to $user->roles
in sess_read() as well.

CHAPTER 16 ! SESSIONS370

09898ch16final 7/30/08 1:57 PM Page 370

http://en.wikipedia.org/wiki/Cryptographic_hash_functions
http://en.wikipedia.org/wiki/Cryptographic_hash_functions

But what happens if there’s no user in the users table with a user ID that matches the user
ID in the session? This is a trick question. Because Drupal’s installer creates a row in the users
table with the user ID of 0, and because unauthenticated (anonymous) users are assigned the
uid of 0 in the sessions table, the join always works.

!Caution Never delete all rows from the users table of your Drupal installation. The row containing user
ID 0 is needed for Drupal to function properly.

If you want to find out the last time the user accessed a page, you could either look at
$user->timestamp (remember, that comes from the sessions table) or at $user->access, which
is kept in the users table. Of the two, $user->timestamp will give you more accurate results if it
is present, because updating of $user->access in the users table is subject to throttling so that
writes do not happen more often than every 180 seconds by default. This value can be
changed by setting the Drupal variable session_write_interval. From sess_write() in
includes/session.inc:

// Last access time is updated no more frequently than once every 180 seconds.
// This reduces contention in the users table.
$session_write_interval = variable_get('session_write_interval', 180);
if ($user->uid && time() - $user->access > $session_write_interval) {
db_query("UPDATE {users} SET access = %d WHERE uid = %d", time(), $user->uid);

}

Of course, neither $user->timestamp nor $user->access will be present for users visiting
for the first time, as no timestamp has been saved yet.

When the web page has been delivered to the browser, the last step is to close the session.
PHP invokes the sess_write() function in includes/session.inc, which writes anything that
was stashed in $_SESSION (during the request) to the sessions table. It is a good idea to only
store data in $_SESSION if you absolutely need to, and even then only when you are sure that
the user has authenticated. The reason for this is to prevent the table from bloating up with
rows generated by web crawlers, as the size of the table can impact performance.

CHAPTER 16 ! SESSIONS 371

09898ch16final 7/30/08 1:57 PM Page 371

Figure 16-1. How Drupal uses sessions to instantiate the $user object

Session Conversations
Here are some examples of what happens when you visit Drupal in your browser, from a ses-
sions perspective.

CHAPTER 16 ! SESSIONS372

09898ch16final 7/30/08 1:57 PM Page 372

First Visit
Browser: Hi, I’d like a page, please.

Drupal: May I see your cookie?

Browser: Sorry, I don’t have a cookie; this is my first time here.

Drupal: OK, here’s one.

Second Visit
Browser: May I have another page, please?

Drupal: May I see your cookie?

Browser: Right here. It says session number 6tc47s8jd6rls9cugkdrrjm8h5.

Drupal: Hmm, I can’t find you in my records. But here’s your page anyway. I’ll make a note
of you in case you visit again.

User with an Account
[The user has created an account and clicked the Log In button.]

Browser: Hi, I’d like a page, please.

Drupal: May I see your cookie?

Browser: Right here. It says session number 31bfa29408ebb23239042ca8f0f77652.

Drupal: Hi, Joe! [Mumbling] You’re user ID 384, and you like your comments nested and
your coffee black. Here’s a new cookie so your session doesn’t get hijacked. I’ll make a
note that you visited. Have a nice day.

Common Tasks
Here are some common ways in which you might want to use sessions or tweak session
settings.

Changing the Length of Time Before a Cookie Expires
The length of time before the cookie containing the session ID expires is controlled by
session.cookie_lifetime in settings.php and set by default to 2,000,000 seconds (about
23 days). Modifying this value to 0 causes the cookie to be destroyed when the user closes
the browser.

Changing the Name of the Session
A common problem with sessions arises when deploying web sites on multiple subdomains.
Because each site uses the same default value for session.cookie_domain and the same

CHAPTER 16 ! SESSIONS 373

09898ch16final 7/30/08 1:57 PM Page 373

session.name of PHPSESSID by default, users find themselves able to log into only one site at
any given time. Drupal solves this problem by creating a unique session name for each site.
The session name is based on a MD5 hash, with some modifications, of the base URL for the
site. See conf_init() in includes/bootstrap.inc for details.

The automatic generation of the session name can be bypassed by uncommenting a line
in settings.php and specifying the value of the $cookie_domain variable. The value should
contain alphanumeric characters only. Here is the relevant section of settings.php:

/**
* Drupal automatically generates a unique session cookie name for each site
* based on on its full domain name. If you have multiple domains pointing at
* the same Drupal site, you can either redirect them all to a single domain
* (see comment in .htaccess), or uncomment the line below and specify their
* shared base domain. Doing so assures that users remain logged in as they
* cross between your various domains.
*/
$cookie_domain = 'example.com';

!Note The only time Perl-style comment characters (#) are used in Drupal are in settings.php,
.htaccess, robots.txt, and the actual Perl and shell scripts in the scripts directory.

Storing Data in the Session
Storing data in a user’s session is convenient, because the data is automatically stored by the
sessions system. Whenever you want to store data that you want to associate with a user dur-
ing a visit (or multiple visits up to session.cookie_lifetime), use the $_SESSION superglobal:

$_SESSION['favorite_color'] = $favorite_color;

Later, on a subsequent request, do the following to retrieve the value:

$favorite_color = $_SESSION['favorite_color'];

If you know the user’s uid and you want to persist some data about the user, it’s usually
more practical to store it in the $user object as a unique attribute such as $user->foo = $bar
by calling user_save($user, array('foo' => $bar)), which serializes the data to the users
table’s data column. Here’s a good rule of thumb to use: If the information is transient and
you don’t mind if it’s lost, or if you need to store short-term data for anonymous users, you
can store it in the session. If you want to tie a preference permanently to a user’s identity,
store it in the $user object.

!Caution $user should not be used to store information for anonymous users.

CHAPTER 16 ! SESSIONS374

09898ch16final 7/30/08 1:57 PM Page 374

Summary
After reading this chapter, you should be able to

• Understand how Drupal modifies PHP’s session handling.

• Understand which files contain session configuration settings.

• Understand the session life cycle and how Drupal’s $user object is created during a
request.

• Store data in and retrieve data from a user’s session.

CHAPTER 16 ! SESSIONS 375

09898ch16final 7/30/08 1:57 PM Page 375

09898ch16final 7/30/08 1:57 PM Page 376

Using jQuery

JavaScript is ubiquitous. Every mainstream web browser ships with a JavaScript inter-
preter. Apple’s Dashboard widgets are written with JavaScript. Mozilla Firefox uses
JavaScript to implement its user interface. Adobe Photoshop can be scripted with
JavaScript. It’s everywhere.

It’s easy to be embittered by the clunky JavaScript of yesteryear. If you’ve had a bad run-in
with JavaScript, it’s time to let bygones be bygones and say hello to jQuery. jQuery makes writ-
ing JavaScript intuitive and fun, and it’s also part of Drupal! In this chapter, you’ll find out
what jQuery is and how it works with Drupal. Then you’ll work through a practical example.

What Is jQuery?
jQuery, created by John Resig, responds to the common frustrations and limitations that
developers might have with JavaScript. JavaScript code is cumbersome to write and verbose,
and it can be difficult to target the specific HTML or CSS elements you wish to manipulate.
jQuery gives you a way to find these elements quickly and easily within your document.

The technical name for targeting an object is DOM traversal. DOM stands for Document
Object Model. The model provides a tree-like way to access page elements through their tags
and other elements through JavaScript, as shown in Figure 17-1.

!Note You can learn more about jQuery from the official jQuery web site at http://jquery.com/, and
from http://visualjquery.com/.

When writing JavaScript code, you usually have to spend time dealing with browser
and operating system incompatibilities. jQuery handles this for you. Also, there aren’t
many high-level functions within JavaScript. Common tasks such as animating parts of a
page, dragging things around, or having sortable elements don’t exist. jQuery overcomes
these limitations as well.

Like Drupal, jQuery has a small and efficient codebase, weighing in at just under 30 kilo-
bytes. At the heart of jQuery is an extensible framework that JavaScript developers can hook
into, and hundreds of jQuery plug-ins are already available at http://plugins.jquery.com/.

377

C H A P T E R 1 7

09898ch17final 7/30/08 1:53 PM Page 377

http://jquery.com
http://visualjquery.com
http://plugins.jquery.com

Figure 17-1. The DOM representation of http://jquery.com, using the Mozilla DOM Inspector tool,
which installs with the Firefox browser

The Old Way
Let’s first do a quick review of the pure JavaScript way of DOM traversal. The following code
shows how Drupal used to find elements within a page (in this case the legend element within
all collapsible fieldsets) before jQuery came along:

var fieldsets = document.getElementsByTagName('fieldset');
var legend, fieldset;
for (var i = 0; fieldset = fieldsets[i]; i++) {
if (!hasClass(fieldset, 'collapsible')) {
continue;

}
legend = fieldset.getElementsByTagName('legend');
if (legend.length == 0) {
continue;

}
legend = legend[0];
...

}

And here’s the updated code within Drupal after jQuery entered the scene:

$('fieldset.collapsible > legend:not(.collapse-processed)', context).each(
function() { ... });

As you can see, jQuery lives up to its tagline of “Write Less, Do More.” jQuery takes the com-
mon, repetitive tasks of manipulating the DOM using JavaScript and encapsulates them behind
a concise and intuitive syntax. The end result is code that’s short, smart, and easy to read.

CHAPTER 17 ! USING JQUERY378

09898ch17final 7/30/08 1:53 PM Page 378

http://jquery.com

How jQuery Works
jQuery is a tool for finding things in a structured document. Elements from the document
can be selected by using CSS selectors or jQuery’s own custom selectors (a jQuery plug-in
supports the use of XPath selectors as well). The use of CSS selectors for DOM traversal is
helpful to the developer, because most developers are already familiar with CSS syntax.
jQuery has full support of CSS 1 to 3. Let’s go through some very basic examples of jQuery
syntax before we dive into using jQuery with Drupal.

Using a CSS ID Selector
Let’s a do a quick review of basic CSS syntax. Suppose the HTML you want to manipulate is
the following:

<p id="intro">Welcome to the World of Widgets.</p>

If you want to set the background color of the paragraph to blue, you use CSS to target
this specific paragraph in your style sheet using the #intro CSS ID selector. According to the
HTML specification, IDs must be unique within a given document, so we are assured that no
other element has this ID. Within the style sheet that will be applied to your document, the
following entry will make your paragraph blue:

#intro {
background-color: blue;

}

Note that there are essentially two tasks here: find the element that has the #intro ID, and
set the background color of that element to blue.

You can accomplish the same thing using jQuery. But first, a word about jQuery syntax: in
order to keep the code short and simple, jQuery maps the jQuery namespace onto the dollar
sign character ($) using this line in the jQuery JavaScript code:

var jQuery = window.jQuery = function(selector, context) {...};
...
// Map the jQuery namespace to the '$' one
window.$ = jQuery;

!Note If you’re interested in how the jQuery engine works, you can download the entire uncompressed
jQuery JavaScript file from http://jquery.com/. The version included with Drupal is a compressed ver-
sion to keep the amount of data that browsers must download from your site small.

Here’s how you can select your paragraph and turn the background color to blue using
jQuery:

$("#intro").css("background-color", "blue");

You could even add a little jQuery pizzazz, and slowly fade in the paragraph text:

$("#intro").css("background-color", "blue").fadeIn("slow");

CHAPTER 17 ! USING JQUERY 379

09898ch17final 7/30/08 1:53 PM Page 379

http://jquery.com

Using a CSS Class Selector
Here’s a similar example using a CSS class selector instead of using a CSS ID as we did in the
preceding section. The HTML would be as follows:

<p class="intro">Welcome to the World of Widgets.</p>
<p class="intro">Widgets are available in many sizes.</p>

Our CSS would look like this:

.intro {
background-color: blue;

}

The following would also work, and is a slightly more specific rule:

p.intro {
background-color: blue;

}

Here’s how the CSS translates to jQuery code:

$(".intro").css("background-color", "blue").fadeIn("slow");

or

$("p.intro").css("background-color", "blue").fadeIn("slow");

In the first of the preceding examples, you’re asking jQuery to find any HTML element
that has the intro class, while the second example is subtly different. You instead ask for any
paragraph tag with an intro class. Note that the last example will be slightly faster because
there’s less HTML for jQuery to search through, given the example’s restriction to just the para-
graph tags using p.intro.

!Tip In CSS, the dot is a class selector that can be reused within a document, and the hash refers to a
unique ID selector whose name can only occur once per page.

Now that you’ve had a taste of how jQuery works, let’s see it in action within Drupal.

CHAPTER 17 ! USING JQUERY380

09898ch17final 7/30/08 1:53 PM Page 380

jQuery Within Drupal
Using jQuery within Drupal is easy because jQuery is preinstalled and is automatically
made available when JavaScript is added. In Drupal, JavaScript files are added via the
drupal_add_js() function. In this section, you’ll investigate some basic jQuery functionality
within Drupal.

Your First jQuery Code
Let’s get set up to play with jQuery.

1. Log into your Drupal site as user 1 (the administrative account).

2. At Administer " Site building " Modules, enable the PHP filter module.

3. Create a new node of type Page, but on the node creation form, be sure to select
“PHP code” under the “Input formats” section, as shown in Figure 17-2. Enter
Testing jQuery as the title, and add the following to the body section of the form:

<?php
drupal_add_js(
'$(document).ready(function(){
// Hide all the paragraphs.
$("p").hide();
// Fade them into visibility.
$("p").fadeIn("slow");

});',
'inline'

);
?>

<p id="one">Paragraph one</p>
<p>Paragraph two</p>
<p>Paragraph three</p>

Click Submit, and reload the page. The three paragraphs you created will slowly fade in.
Cool, eh? Refresh the page to see it again. Let’s study this example a little more.

CHAPTER 17 ! USING JQUERY 381

09898ch17final 7/30/08 1:53 PM Page 381

Figure 17-2. Experimenting with jQuery using the PHP filter

The jQuery code is contained in a file, misc/jquery.js. This file is not loaded for every
page within Drupal. Instead, anytime a drupal_add_js() call is made, jquery.js is loaded. Two
parameters are passed into drupal_add_js(). The first parameter is the JavaScript code you
wish to have executed, and the second parameter (inline) tells Drupal to write the code inside
a pair of <script></script> tags within the document’s <head> element.

!Note We’re using drupal_add_js() quite simply here, but it has many more possibilities which you can
discover at http://api.drupal.org/api/function/drupal_add_js/6.

CHAPTER 17 ! USING JQUERY382

09898ch17final 7/30/08 1:53 PM Page 382

http://api.drupal.org/api/function/drupal_add_js/6

Let’s look at the JavaScript jQuery code in more detail.

$(document).ready(function(){
// Hide all the paragraphs.
$("p").hide();
// Fade them into visibility.
$("p").fadeIn("slow");

});

The first line needs a little more explaining. When the browser is rendering a page, it gets
to a point where it has received the HTML and fully parsed the DOM structure of the page. The
next step is to render that DOM, which includes loading additional local—and possibly even
remote—files. If you try to execute JavaScript code before the DOM has been generated, the
code may throw errors and not run because the objects it wants to manipulate are not there
yet. JavaScript programmers used to get around this by using some variation of the following
code snippet:

window.onload = function(){ ... }

The difficulty with using window.onload is that it has to wait for the additional files to also
load, which is too long of a wait. Additionally, the window.onload approach allows the assign-
ment of only a single function. To circumvent both problems, jQuery has a simple statement
that you can use:

$(document).ready(function(){
// Your code here.

});

$(document).ready() is executed just after the DOM is generated. You’ll always want to
wrap jQuery code in the preceding statement for the reasons listed earlier. The function() call
defines an anonymous function in JavaScript—in this case, containing the code you want to
execute.

That leaves us with the actual meat of the code, which ought to be self-explanatory at this
point:

// Hide all the paragraphs.
$("p").hide();
// Fade them into visibility.
$("p").fadeIn("slow");

The preceding code finds all paragraph tags, hides them, and then slowly reveals them
within the page. In jQuery lingo, the fadeIn() part is referred to as a method.

CHAPTER 17 ! USING JQUERY 383

09898ch17final 7/30/08 1:53 PM Page 383

!Note We’re changing all the paragraph tags, so if you visit a node listing page such as http://
example.com/?q=node, you’ll find that all paragraph tags, not just the ones in the teaser from your test
page, are affected! In our example, we could limit the set of p tags being selected by changing our node.
tpl.php template file to surround the content with <div class='standalone'> when the node is being
displayed on a page by itself and starting the example with $(".standalone > p"). This query selects
only the p elements that are descendents of elements within the .standalone class.

Targeting an Element by ID
Let’s repeat our experiment, but this time target only the first paragraph, which we’ve identi-
fied with the ID of one:

<?php
drupal_add_js(
'$(document).ready(function(){
// Hide paragraph with ID "one".
$("#one").hide();
// Fade it into visibility.
$("#one").fadeIn("slow");

});',
'inline'

);
?>

<p id="one">Paragraph one</p>
<p>Paragraph two</p>
<p>Paragraph three</p>

!Note Accessing an element by ID is one of the fastest selector methods within jQuery because it trans-
lates to the native JavaScript: document.getElementById("one"). The alternative, $("p#one"), would
be slower because jQuery needs to find all paragraph tags and then look for an intro ID. The slowest selec-
tor method in jQuery is the class selector $(".foo"), because a search would have to be made through all
elements with the .foo selector class. (It would be faster to do $("p.foo") in that case.)

Method Chaining
We can concatenate a series of jQuery methods because most methods within jQuery return a
jQuery object. Let’s chain some methods together in a single jQuery command:

// Hide all the p tags, fade them in to visibility, then slide them up and down.
$("p").hide().fadeIn("slow").slideUp("slow").slideDown("slow");

CHAPTER 17 ! USING JQUERY384

09898ch17final 7/30/08 1:53 PM Page 384

http://example.com/?q=node
http://example.com/?q=node

jQuery calls are invoked from left to right. The preceding snippet finds all the paragraph
tags, fades them in, and then uses a sliding effect to move the paragraphs up and then down.
Because each of these methods returns the jQuery wrapper object containing the same set it
was given (all the p elements), we can manipulate the same set of elements over and over
again until the final effect is achieved.

Adding or Removing a Class
jQuery can dynamically change the CSS class of an element. Here, we turn the first paragraph
of our example red by selecting it by ID and then assigning Drupal’s error class to it:

$("#one").addClass("error");

The counterpart to the addClass() method is the removeClass() method. The following
snippet will remove the error class we just added:

$("#one").removeClass("error");

And then there’s the toggleClass() method, which adds or removes a class each time it
is called:

$("#one").toggleClass("error"); // Adds class "error".
$("#one").toggleClass("error"); // Removes class "error".
$("#one").toggleClass("error"); // Adds class "error" again.

Wrapping Existing Elements
Instead of just adding an error class to the <p id="one"> element, let’s wrap that element in a
div so that the red will show up better. The following jQuery snippet will do that:

<?php
drupal_add_js(
'$(document).ready(function(){
$("#one").wrap("<div class=\'error\'></div>");

});',
'inline'

);
?>

<p id="one">Paragraph one</p>
<p>Paragraph two</p>
<p>Paragraph three</p>

Note the escaping of the single quotes, which is necessary because we already have open
single quotes inside the drupal_add_js() function. The result of the div wrapping is shown in
Figure 17-3.

CHAPTER 17 ! USING JQUERY 385

09898ch17final 7/30/08 1:53 PM Page 385

Figure 17-3. The paragraph with ID “one” is wrapped in a div tag of class “error”.

Changing Values of CSS Elements
jQuery can be used to assign (or reassign) values to CSS elements. Let’s set the border sur-
rounding the first paragraph to solid (see Figure 7-4):

$("#one").wrap("<div class=\'error\'></div>").css("border", "solid");

Notice that the css method is still acting on the p element, not on the div element,
because the wrap method returned the targeted p element after wrapping it.

Figure 17-4. The border property of the target element is changed.

The preceding examples have demonstrated some basic tasks that barely scratched the
surface of what jQuery can do. You are urged to learn more at http://jquery.com/ or by pick-
ing up a good book on the subject.

Where to Put JavaScript
In the preceding examples, you have been testing jQuery by writing JavaScript in a node
with the PHP filter enabled. While this is handy for testing, that’s not a good approach for
a production site, where best practices dictate that the PHP filter be unavailable if at all
possible. There are several different options for including JavaScript files in your Drupal
site. For example, you can add them to your theme, include them from a module, or even
include them but give others the option of modifying or overriding your code.

CHAPTER 17 ! USING JQUERY386

09898ch17final 7/30/08 1:53 PM Page 386

http://jquery.com

Adding JavaScript via a Theme .info File
The most convenient but least flexible way to include JavaScript files is to include a line in
your theme’s .info file. Let’s add an effect to your site that emphasizes the logo of your site
by making it fade out and then fade in again when a page is loaded. Place the following
JavaScript code in a file called logofade.js in your current theme. For example, if you are
using the Garland theme, it would be at themes/garland/logofade.js.

// Id

// Selects the theme element with the id "logo", fades it out,
// then fades it in slowly.
if (Drupal.jsEnabled) {
$(document).ready(function(){
$("#logo").fadeOut("fast").fadeIn("slow");

});
}

The JavaScript file is in place; now we just have to tell Drupal to load it. Add the following
line to your current theme’s .info file:

scripts[] = logofade.js

The last step is to make Drupal reread the .info file so that it will see that it needs to load
logofade.js. To do that, go to Administer " Site building " Themes, temporarily switch to a
different theme, and then switch back.

This method of adding JavaScript is useful if the JavaScript will be loaded on every single
page of your web site. In the next section, you’ll see how to add JavaScript only when a module
that uses it is enabled.

A Module That Uses jQuery
Let’s build a small module that includes some jQuery functions in a JavaScript file. First, we’ll
need a use case. Hmm, how about some JavaScript code that controls blocks? Blocks can be
helpful in Drupal: they can show you your login status, tell you who’s new on the site or who’s
online, and provide helpful navigation. But sometimes you just want to focus on the content
of the page! Wouldn’t it be nice to hide blocks by default and show them only if you want to see
them? The following module does just that, using jQuery to identify and hide the blocks in the
left and right sidebar regions and providing a helpful button that will bring the blocks back.
Here’s sites/all/modules/custom/blockaway.info:

; Id
name = Block-Away
description = Uses jQuery to hide blocks until a button is clicked.
package = Pro Drupal Development
core = 6.x

CHAPTER 17 ! USING JQUERY 387

09898ch17final 7/30/08 1:53 PM Page 387

And here’s sites/all/modules/custom/blockaway.module:

<?php
// Id

/**
* @file
* Use this module to learn about jQuery.
*/

/**
* Implementation of hook_init().
*/
function blockaway_init() {
drupal_add_js(drupal_get_path('module', 'blockaway') .'/blockaway.js');

}

All the module does is include the following JavaScript file, which you can put at
sites/all/modules/custom/blockaway/blockaway.js:

// Id

/**
* Hide blocks in sidebars, then make them visible at the click of a button.
*/
if (Drupal.jsEnabled) {
$(document).ready(function() {
// Get all div elements of class 'block' inside the left sidebar.
// Add to that all div elements of class 'block' inside the
// right sidebar.
var blocks = $('#sidebar-left div.block, #sidebar-right div.block');

// Hide them.
blocks.hide();

// Add a button that, when clicked, will make them reappear.
$('#sidebar-left').prepend('<div id="collapsibutton">Show Blocks</div>');
$('#collapsibutton').css({
'width': '90px',
'border': 'solid',
'border-width': '1px',
'padding': '5px',
'background-color': '#fff'

});

CHAPTER 17 ! USING JQUERY388

09898ch17final 7/30/08 1:53 PM Page 388

// Add a handler that runs once when the button is clicked.
$('#collapsibutton').one('click', function() {
// Button clicked! Get rid of the button.
$('#collapsibutton').remove();
// Display all our hidden blocks using an effect.
blocks.slideDown("slow");

});
});

}

When you enable the module at Administer " Site building " Modules, any blocks you
have visible should disappear and be replaced with a plain button as shown in Figure 17-5.

Figure 17-5. A node being viewed with blockaway.module enabled

After clicking the button, the blocks should appear using a sliding effect, becoming visible
as shown in Figure 17-6.

Figure 17-6. After clicking the Show Blocks button, blocks become visible.

CHAPTER 17 ! USING JQUERY 389

09898ch17final 7/30/08 1:53 PM Page 389

Overridable JavaScript
The code in blockaway.module is simple and easy to understand. It just makes sure the
blockaway.js file is included. However, if the module were more complicated, it would
be friendlier to others to put the drupal_add_js() function call in a theme function instead
of in hook_init(). That way, those who wanted to use your module but customize the
JavaScript code in some way could do so without touching your module code at all (see
Chapter 8 for how the theme system works its magic). The code that follows is a revised
version of blockaway.module that declares a theme function using hook_theme(), moves
the drupal_add_js() call into the theme function, and calls the theme function from
hook_init(). The functionality is the same, but the blockaway.js file can now be over-
ridden by savvy developers.

<?php
// Id

/**
* @file
* Use this module to learn about jQuery.
*/

/**
* Implementation of hook_init().
*/
function blockaway_init() {
theme('blockaway_javascript');

}

/**
* Implementation of hook_theme().
* Register our theme function.
*/
function blockaway_theme() {
return array(
'blockaway_javascript' => array(
'arguments' => array(),

),
);

}

/**
* Theme function that just makes sure our JavaScript file
* gets included.
*/
function theme_blockaway_javascript() {
drupal_add_js(drupal_get_path('module', 'blockaway') .'/blockaway.js');

}

CHAPTER 17 ! USING JQUERY390

09898ch17final 7/30/08 1:53 PM Page 390

Let’s go ahead and see if this approach works. We’re going to override the JavaScript
provided by the module with JavaScript provided by the theme. Copy sites/all/modules/
custom/blockaway/blockaway.js to your current theme—for example, themes/garland/
blockaway.js. Let’s change the JavaScript file slightly so that we’ll know which JavaScript file
is being used. Change the effect from slideDown("slow") to fadeIn(5000); this will fade in
the blocks over a period of 5 seconds. Here is the new file:

// Id

/**
* Hide blocks in sidebars, then make them visible at the click of a button.
*/
if (Drupal.jsEnabled) {
$(document).ready(function() {
// Get all div elements of class 'block' inside the left sidebar.
// Add to that all div elements of class 'block' inside the
// right sidebar.
var blocks = $('#sidebar-left div.block, #sidebar-right div.block');

// Hide them.
blocks.hide();

// Add a button that, when clicked, will make them reappear.
// Translate strings with Drupal.t(), just like t() in PHP code.
var text = Drupal.t('Show Blocks');
$('#sidebar-left').prepend('<div id="collapsibutton">' + text + '</div>');
$('#collapsibutton').css({
'width': '90px',
'border': 'solid',
'border-width': '1px',
'padding': '5px',
'background-color': '#fff'

});

// Add a handler that runs once when the button is clicked.
$('#collapsibutton').one('click', function() {
// Button clicked! Get rid of the button.
$('#collapsibutton').remove();
// Display all our hidden blocks using an effect.
blocks.fadeIn(5000);

});
});

}

The last change we need to make is to tell Drupal to load this new JavaScript file instead
of the one in sites/all/modules/custom/blockaway. We do that by overriding the theme func-
tion. Add the following function to the template.php file of your theme (if your theme doesn’t
have a template.php file, it’s okay to create one):

CHAPTER 17 ! USING JQUERY 391

09898ch17final 7/30/08 1:53 PM Page 391

<?php
// Id

/**
* Override theme_blockaway_javascript() with the
* following function.
*/
function phptemplate_blockaway_javascript() {
drupal_add_js(path_to_theme() . '/blockaway.js');

}

Now when you visit a page in your web browser, you should see the Show Blocks button,
and clicking it should reveal the blocks via a gradual fade-in effect instead of the slide effect
we were using earlier. Congratulations! You’ve learned how to use jQuery in your module, how
to write it in a way that is friendly to themers and other developers, and coincidentally, how to
cleanly override or enhance JavaScript files provided by other module developers who have
been equally courteous.

Before we leave this example, let me demonstrate how to override a template file.
First, remove the phptemplate_blockaway_javascript() function that you added to the
template.php file. Next, in your current theme, create an empty file called blockaway-
javascript.tpl.php. For example, if you are using the Garland theme, create themes/
garland/blockaway-javascript.tpl.php. Don’t put anything inside this file. Now visit
Administer " Site building " Modules. The act of visiting this page will rebuild the theme
registry. Drupal will find the template file and use it instead of the theme function in your
module. The result is that blockaway.js will never be loaded; you’ve essentially commented
out the theme function by creating an empty template file (recall from Chapter 8 that,
when building the theme registry, Drupal will look for a template file and then for theme
functions).

Now, add the following to your blockaway-javascript.tpl.php file:

<?php drupal_add_js(path_to_theme() . '/blockaway.js'); ?>

When you reload your page, you should see that the JavaScript file is now loading. Do you
see how these techniques can be useful for substituting your own enhanced JavaScript file in a
third-party module or for preventing some JavaScript from loading?

!Note You cannot call drupal_add_js() from inside page.tpl.php or any theme functions that are
called in its preprocessing (such as blocks), because they are executed too late in the page building process.
See modules/block/block-admin-display-form.tpl.php for an example of a core template file that
adds JavaScript.

CHAPTER 17 ! USING JQUERY392

09898ch17final 7/30/08 1:53 PM Page 392

Building a jQuery Voting Widget
Let’s write a slightly more complicated jQuery-enabled Drupal module. We’ll build an AJAX
voting widget as shown in Figure 17-7, which lets users add a single point to a post they
like. We’ll use jQuery to cast the vote and change the total vote score without reloading the
entire page. We’ll also add a role-based permission so only users with the “rate content”
permission are allowed to vote. Because users can only add one point per vote, let’s name
the module plusone.

Figure 17-7. The voting widget

We’ll have to get some basic module building out of the way before we can get to the
actual jQuery part of plusone. Please see Chapter 2 if you’ve never built a module before.
Otherwise, let’s get to it!

Create a directory in sites/all/modules/custom, and name it plusone (you might need to
create the sites/all/modules/custom directory). Inside the plusone directory, create the file
plus1.info, which contains the following lines:

; Id
name = Plus One
description = "A +1 voting widget for nodes. "
package = Pro Drupal Development
core = 6.x

This file registers the module with Drupal so it can be enabled or disabled within the
administrative interface.

Next, you’ll create the plusone.install file. The functions within this PHP file are invoked
when the module is enabled, disabled, installed, or uninstalled; usually to create or delete
tables from the database. In this case, we’ll want to keep track of who voted on which node:

<?php
// Id

/**
* Implementation of hook_install().
*/
function plusone_install() {
// Create tables.
drupal_install_schema('plusone');

}

CHAPTER 17 ! USING JQUERY 393

09898ch17final 7/30/08 1:53 PM Page 393

/**
* Implementation of hook_uninstall().
*/
function plusone_uninstall() {
// Remove tables.
drupal_uninstall_schema('plusone');

}

/**
* Implementation of hook_schema().
*/
function plusone_schema() {
$schema['plusone_votes'] = array(
'description' => t('Stores votes from the plusone module.'),
'fields' => array(
'uid' => array(
'type' => 'int',
'not null' => TRUE,
'default' => 0,
'description' => t('The {user}.uid of the user casting the vote.'),

),
'nid' => array(
'type' => 'int',
'not null' => TRUE,
'default' => 0,
'description' => t('The {node}.nid of the node being voted on.'),

),
'vote_count' => array(
'type' => 'int',
'not null' => TRUE,
'default' => 0,
'description' => t('The number of votes cast.'),

),
),
'primary key' => array('uid', 'nid'),
'indexes' => array(
'nid' => array('nid'),
'uid' => array('uid'),

),
);
return $schema;

}

Also, add the file sites/all/modules/custom/plusone/plusone.css. This file isn’t strictly
needed, but it makes the voting widget a little prettier for viewing, as shown in Figure 17-8.

CHAPTER 17 ! USING JQUERY394

09898ch17final 7/30/08 1:53 PM Page 394

Figure 17-8. Comparison of voting widget with and without CSS

Add the following content to plusone.css:

div.plusone-widget {
width: 100px;
margin-bottom: 5px;
text-align: center;

}
div.plusone-widget .score {
padding: 10px;
border: 1px solid #999;
background-color: #eee;
font-size: 175%;

}
div.plusone-widget .vote {
padding: 1px 5px;
margin-top: 2px;
border: 1px solid #666;
background-color: #ddd;

}

Now that you have the supporting files created, let’s focus on the module file and the
jQuery JavaScript file. Create two empty files: sites/all/modules/custom/plusone/plusone.js
and sites/all/modules/custom/plusone/plusone.module. You’ll be gradually adding code to
these files in the next few steps. To summarize, you should have the following files:

sites/
all/
modules/
custom/
plusone/
plusone.js
plusone.css
plusone.info
plusone.install
plusone.module

Building the Module
Open up the empty plusone.module in a text editor and add the standard Drupal header
documentation:

CHAPTER 17 ! USING JQUERY 395

09898ch17final 7/30/08 1:53 PM Page 395

<?php
// Id

/**
* @file
* A simple +1 voting widget.
*/

Next you’ll start knocking off the Drupal hooks you’re going to use. An easy one is
hook_perm(), which lets you add the “rate content” permission to Drupal’s role-based access
control page. You’ll use this permission to prevent anonymous users from voting without first
creating an account or logging in.

/**
* Implementation of hook_perm().
*/
function plusone_perm() {
return array('rate content');
}

Now you’ll begin to implement some AJAX functionality. One of the great features of
jQuery is its ability to submit its own HTTP GET or POST requests, which is how you’ll submit
the vote to Drupal without refreshing the entire page. jQuery will intercept the clicking on the
Vote link and will send a request to Drupal to save the vote and return the updated total.
jQuery will use the new value to update the score on the page. Figure 17-9 shows a “big pic-
ture” overview of where we’re going.

Once jQuery intercepts the clicking of the Vote link, it needs to be able to call a Drupal
function via a URL. We’ll use hook_menu() to map the vote URL submitted by jQuery to a
Drupal PHP function. The PHP function saves the vote to the database and returns the new
score to jQuery in JavaScript Object Notation (JSON) (OK, so we’re not using XML and thus
it’s not strictly AJAX).

/**
* Implementation of hook_menu().
*/
function plusone_menu() {
$items['plusone/vote'] = array(
'page callback' => 'plusone_vote',
'access arguments' => array('rate content'),
'type' => MENU_CALLBACK,

);
return $items;

}

In the preceding function, whenever a request for the path plusone/vote comes in, the
function plusone_vote() handles it when the user requesting the path has the “rate content”
permission.

CHAPTER 17 ! USING JQUERY396

09898ch17final 7/30/08 1:53 PM Page 396

Figure 17-9. Overview of the vote updating process

CHAPTER 17 ! USING JQUERY 397

09898ch17final 7/30/08 1:53 PM Page 397

!Note If the user making the call does not have the “rate content” permission, Drupal will return an
Access Denied page. However, we’ll be sure to build our voting widget dynamically so that those ineligible
to vote do not see a vote link. But note how Drupal’s permission system is protecting us from those nefar-
ious people who might want to bypass our widget and hit the URL http://example.com/?q=plusone/
vote directly.

The path plusone/vote/3 translates into the PHP function call plusone_vote(3) (see
Chapter 4, about Drupal’s menu/callback system, for more details).

/**
* Called by jQuery, or by browser if JavaScript is disabled.
* Submits the vote request. If called by jQuery, returns JSON.
* If called by the browser, returns page with updated vote total.
*/
function plusone_vote($nid) {
global $user;
$nid = (int)$nid;

// Authors may not vote on their own posts. We check the node table
// to see if this user is the author of the post.
$is_author = db_result(db_query('SELECT uid FROM {node} WHERE nid = %d AND
uid = %d', $nid, $user->uid));

if ($nid > 0 && !$is_author) {
// Get current vote count for this user.
$vote_count = plusone_get_vote($nid, $user->uid);
if (!$vote_count) {
// Delete existing vote count for this user.
db_query('DELETE FROM {plusone_votes} WHERE uid = %d AND nid = %d',
$user->uid, $nid);

db_query('INSERT INTO {plusone_votes} (uid, nid, vote_count) VALUES
(%d, %d, %d)', $user->uid, $nid, $vote_count + 1);

watchdog('plusone', 'Vote by @user on node @nid.', array(
'@user' => $user->name, '@nid' => $nid));

}
}
// Get new total to display in the widget.
$total_votes = plusone_get_total($nid);

CHAPTER 17 ! USING JQUERY398

09898ch17final 7/30/08 1:53 PM Page 398

http://example.com/?q=plusone

// Check to see if jQuery made the call. The AJAX call used
// the POST method and passed in the key/value pair js = 1.
if (!empty($_POST['js'])) {
// jQuery made the call.
// This will return results to jQuery's request.
drupal_json(array(
'total_votes' => $total_votes,
'voted' => t('You voted')
)

);
exit();

}

// It was a non-JavaScript call. Redisplay the entire page
// with the updated vote total by redirecting to node/$nid
// (or any URL alias that has been set for node/$nid).
$path = drupal_get_path_alias('node/'. $nid);
drupal_goto($path);

}

The preceding plusone_vote() function saves the current vote and returns information
to jQuery in the form of an associative array containing the new total and the string You
voted, which replaces the Vote text underneath the voting widget. This array is passed into
drupal_json(), which converts PHP variables into their JavaScript equivalents, in this case
converting a PHP associative array to a JavaScript object, and sets the HTTP header to
Content-type: text/javascript. For more on how JSON works, see
http://en.wikipedia.org/wiki/JSON.

Notice that we’ve written the preceding function to degrade gracefully. When we write the
jQuery code, we’ll make sure that the AJAX call from jQuery will pass along a parameter called
js and will use the POST method. If the js parameter isn’t there, we’ll know that the user clicked
on the Vote link and the browser itself is requesting the path—for example, plusone/vote/3.
In that case, we don’t return JSON, because the browser is expecting a regular HTML page.
Instead, we update the vote total to reflect the fact that the user voted, and then we redirect
the browser back to the original page, which will be rebuilt by Drupal and will show the new
vote total.

We called plusone_get_vote() and plusone_get_total() in the preceding code, so let’s
create those:

/**
* Return the number of votes for a given node ID/user ID pair.
*/
function plusone_get_vote($nid, $uid) {
return (int)db_result(db_query('SELECT vote_count FROM {plusone_votes} WHERE
nid = %d AND uid = %d', $nid, $uid));

}

CHAPTER 17 ! USING JQUERY 399

09898ch17final 7/30/08 1:53 PM Page 399

http://en.wikipedia.org/wiki/JSON

/**
* Return the total vote count for a node.
*/
function plusone_get_total($nid) {
return (int)db_result(db_query('SELECT SUM(vote_count) FROM {plusone_votes}
WHERE nid = %d', $nid));

}

Now, let’s focus on getting the voting widget to display alongside the posts. There are two
parts to this. First, we’ll define some variables inside a plusone_widget() function. Then we’ll
pass those variables to a theme function. Here’s the first part:

/**
* Create voting widget to display on the web page.
*/
function plusone_widget($nid) {
global $user;

$total = plusone_get_total($nid);
$is_author = db_result(db_query('SELECT uid FROM {node} WHERE nid = %d
AND uid = %d', $nid, $user->uid));

$voted = plusone_get_vote($nid, $user->uid);

return theme('plusone_widget', $nid, $total, $is_author, $voted);
}

Remember that if we are going to have a themable item we will need to declare it to
Drupal using hook_theme() so it gets included in the theme registry. Here we go:

/**
* Implementation of hook_theme().
* Let Drupal know about our theme function.
*/
function plusone_theme() {
return array(
'plusone_widget' => array(
'arguments' => array('nid', 'total', 'is_author', 'voted'),

),
);

}

And then we need the actual theme function. Notice that this is where we include our
JavaScript and CSS files.

CHAPTER 17 ! USING JQUERY400

09898ch17final 7/30/08 1:53 PM Page 400

/**
* Theme for the voting widget.
*/
function theme_plusone_widget($nid, $total, $is_author, $voted) {
// Load the JavaScript and CSS files.
drupal_add_js(drupal_get_path('module', 'plusone') .'/plusone.js');
drupal_add_css(drupal_get_path('module', 'plusone') .'/plusone.css');

$output = '<div class="plusone-widget">';
$output .= '<div class="score">'. $total .'</div>';

$output .= '<div class="vote">';
if ($is_author) {
// User is author; not allowed to vote.
$output .= t('Votes');

}
elseif ($voted) {
// User already voted; not allowed to vote again.
$output .= t('You voted');

}
else {
// User is eligible to vote.
$output .= l(t('Vote'), "plusone/vote/$nid", array(
'attributes' => array('class' => 'plusone-link')
));

}
$output .= '</div>'; // Close div with class "vote".
$output .= '</div>'; // Close div with class "plusone-widget".

return $output;
}

In plusone_widget() in the preceding code, we set some variables and then hand off
the theming of the widget to a custom theme function we created called theme_plusone_
widget(). Keep in mind that theme('plusone_widget') actually calls theme_plusone_widget()
(see Chapter 8 for how that works). Creating a separate theme function rather than build-
ing the HTML inside the plusone_widget() function allows designers to override this
function if they want to change the markup.

Our theme function, theme_plusone_widget(), makes sure to add class attributes for the
key HTML elements to make targeting these elements within jQuery really easy. Also, take a
look at the URL of the link. It’s pointing to plusone/vote/$nid, where $nid is the current node
ID of the post. When the user clicks on the link, it will be intercepted and processed by jQuery
instead of Drupal. This happens because we’ll wire jQuery up to watch for the onClick event
for that link. See how we defined the plusone-link CSS selector when building the link? Look
for that selector to appear in our JavaScript later on as a.plusone-link. That is, an anchor (<a>)
HTML element with the CSS class plusone-link.

CHAPTER 17 ! USING JQUERY 401

09898ch17final 7/30/08 1:53 PM Page 401

The HTML of the widget that would appear on the page http://example.com/?q=node/4
would look like this:

<div class="plusone-widget">
<div class="score">0</div>
<div class="vote">
Vote

</div>
</div>

The theme_plusone_widget() function is what generates the voting widget to be sent to
the browser. You want this widget to appear in node views so that users can use it to vote on
the node they’re looking at. Can you guess which Drupal hook would be a good one to use?
It’s our old friend hook_nodeapi(), which allows us to modify any node as it’s being built.

/**
* Implementation of hook_nodeapi().
*/
function plusone_nodeapi(&$node, $op, $teaser, $page) {
switch ($op) {
case 'view':
// Show the widget, but only if the full node is being displayed.
if (!$teaser) {
$node->content['plusone_widget'] = array(

'#value' => plusone_widget($node->nid),
'#weight' => 100,

);
}
break;

case 'delete':
// Node is being deleted; delete associated vote data.
db_query('DELETE FROM {plusone_vote} WHERE nid = %d', $node->nid);
break;

}
}

We set the weight element to a large (or “heavy”) number so that it shows at the bottom
rather than the top of the post. We sneak a delete case in to remove voting records for a node
when that node is deleted.

That’s it for the content of plusone.module. All that’s left until our module is complete is
filling out plusone.js, with the jQuery code that will make the AJAX call, update the vote total,
and change the Vote string to You voted.

CHAPTER 17 ! USING JQUERY402

09898ch17final 7/30/08 1:53 PM Page 402

http://example.com/?q=node/4

// Id

// Only run if we are in a supported browser.
if (Drupal.jsEnabled) {
// Run the following code when the DOM has been fully loaded.
$(document).ready(function () {
// Attach some code to the click event for the
// link with class "plusone-link".
$('a.plusone-link').click(function () {
// When clicked, first define an anonymous function
// to the variable voteSaved.
var voteSaved = function (data) {
// Update the number of votes.
$('div.score').html(data.total_votes);
// Update the "Vote" string to "You voted".
$('div.vote').html(data.voted);

}
// Make the AJAX call; if successful the
// anonymous function in voteSaved is run.
$.ajax({
type: 'POST', // Use the POST method.
url: this.href,
dataType: 'json',
success: voteSaved,
data: 'js=1' // Pass a key/value pair.

});
// Prevent the browser from handling the click.
return false;

});
});

}

You should wrap all your jQuery code in a Drupal.jsEnabled test. This test makes sure cer-
tain DOM methods are supported within the current browser (if they’re not, there’s no point in
our JavaScript being run).

This JavaScript adds an event listener to a.plusone-link (remember we defined
plusone-link as a CSS class selector?) so that when users click the link it fires off an HTTP
POST request to the URL it’s pointing to. The preceding code also demonstrates how jQuery
can pass data back into Drupal. After the AJAX request is completed, the return value (sent
over from Drupal) is passed as the data parameter into the anonymous function that’s
assigned to the variable voteSaved. The array is referenced by the associative array keys that
were initially built in the plusone_vote() function inside Drupal. Finally, the JavaScript
updates the score and changes the Vote text to You voted.

To prevent the entire page from reloading (because the JavaScript handled the click), use
a return value of false from the JavaScript jQuery function.

CHAPTER 17 ! USING JQUERY 403

09898ch17final 7/30/08 1:53 PM Page 403

Using Drupal.behaviors
JavaScript interaction works by attaching behaviors (i.e., actions triggered by events such
as a mouse click) to elements in the DOM. A change in the DOM can result in this binding
being lost. So while the plusone.js file we used previously will work fine for a basic Drupal
site, it might have trouble if other JavaScript files manipulate the DOM. Drupal provides a
central object called Drupal.behaviors with which JavaScript functions may register to
ensure that rebinding of behaviors takes place when necessary. The following version of
plusone.js allows voting via AJAX just like the previous version but safeguards our bind-
ings by registering with Drupal.behaviors:

// Id

Drupal.behaviors.plusone = function (context) {
$('a.plusone-link:not(.plusone-processed)', context)
.click(function () {
var voteSaved = function (data) {
$('div.score').html(data.total_votes);
$('div.vote').html(data.voted);

}
$.ajax({
type: 'POST',
url: this.href,
dataType: 'json',
success: voteSaved,
data: 'js=1'

});
return false;

})
.addClass('plusone-processed');

}

Note that we don’t even have to test for Drupal.jsEnabled, since Drupal now takes care of
that for us. For more details on Drupal.behaviors, see misc/drupal.js.

Ways to Extend This Module
A nice extension to this module would be to allow the site administrator to enable the voting
widget for only certain node types. You could do that the same way we did for the node anno-
tation module we built in Chapter 2. Then you would need to check whether or not voting was
enabled for a given node type inside hook_nodeapi('view') before adding the widget. There
are plenty of other possible enhancements, like weighting votes based on roles or limiting a
user to a certain number of votes per 24-hour period. Our purpose here was to keep the mod-
ule simple to emphasize the interactions between Drupal and jQuery.

CHAPTER 17 ! USING JQUERY404

09898ch17final 7/30/08 1:53 PM Page 404

Compatibility
jQuery compatibility, as well as a wealth of information about jQuery, can be found at
http://docs.jquery.com/. In short, jQuery supports the following browsers:

• Internet Explorer 6.0 and greater

• Mozilla Firefox 1.5 and greater

• Apple Safari 2.0.2 and greater

• Opera 9.0 and greater

More detailed information on browser compatibility can be found at http://docs.
jquery.com/Browser_Compatibility.

Next Steps
To learn more about how Drupal leverages jQuery, take a look at the misc directory of your
Drupal installation. There, you’ll find the JavaScript files responsible for form field automatic
completion, batch processing, fieldset collapsibility, progress bar creation, draggable table
rows, and more. See also the Drupal JavaScript Group at http://groups.drupal.org/
javascript.

Summary
In this chapter, you learned

• What jQuery is

• The general concepts of how jQuery works

• How to include JavaScript files with your module

• How jQuery and Drupal interact to pass requests and data back and forth

• How to build a simple voting widget

CHAPTER 17 ! USING JQUERY 405

09898ch17final 7/30/08 1:53 PM Page 405

http://docs.jquery.com
http://docs
http://groups.drupal.org

09898ch17final 7/30/08 1:53 PM Page 406

Localization and Translation

Localization is the replacement of strings in the user interface with translated strings
appropriate for the user’s locale. Drupal is developed and used by an international commu-
nity. Therefore, it supports localization by default, as well as offering theming support for
right-to-left languages such as Arabic and Hebrew. In this chapter, you’ll see how to enable
localization and how to use interface translation to selectively replace Drupal’s built-in
strings with strings of your own. Then, we’ll look at full-fledged translations and learn how
to create, import, and export them. Finally, we’ll examine Drupal’s ability to present the
same content in multiple languages (such as a Canadian web site that presents content in
English and French) and learn how Drupal selects the appropriate language to display.

Enabling the Locale Module
The locale module, which provides language handling functionality and user interface trans-
lation for Drupal, is not enabled when you install Drupal. This is in accordance with Drupal’s
philosophy of enabling functionality only when needed. You can enable the locale module at
Administer ! Site building ! Modules. If Drupal has been installed using a language transla-
tion other than English, the locale module is enabled as part of the installation process. The
examples in this chapter assume the locale module is enabled.

User Interface Translation
The interface for Drupal is made up of words, phrases, and sentences that communicate with
the user. In the following sections, you’ll see how they can be changed. Our examples will
focus on string replacement, with the understanding that translation has its foundation in
string replacement.

Strings
From a programming perspective, a string is a series of characters, such as the five-character
string Hello. The translation of strings forms the basis of user interface translation in Drupal.
When Drupal prepares a string for output, it checks if the string needs to be translated so that
if the English language is enabled the word “Hello” is displayed, while if the French language is
enabled the word “Bonjour” is displayed. Let’s examine how that happens.

407

C H A P T E R 1 8

09898ch18final 7/30/08 1:48 PM Page 407

Translating Strings with t()
All strings that will be shown to the end user in Drupal should be run through the t()
function; this is Drupal’s translate function, with the function name shortened to “t” for
convenience because of its frequent use.

"Note Some places in Drupal run t() implicitly, such as strings passed to watchdog() or titles and
descriptions in the menu hook. Plurals are translated with format_plural(), which takes care of calling
t() (see http://api.drupal.org/api/function/format_plural/6).

The locale-specific part of the t() function looks like this:

function t($string, $args = array(), $langcode = NULL) {
global $language;
static $custom_strings;

$langcode = isset($langcode) ? $langcode : $language->language;

// First, check for an array of customized strings. If present, use the array
// *instead of* database lookups. This is a high performance way to provide a
// handful of string replacements. See settings.php for examples.
// Cache the $custom_strings variable to improve performance.
if (!isset($custom_strings[$langcode])) {
$custom_strings[$langcode] = variable_get('locale_custom_strings_'.
$langcode, array());

}
// Custom strings work for English too, even if locale module is disabled.
if (isset($custom_strings[$langcode][$string])) {
$string = $custom_strings[$langcode][$string];

}
// Translate with locale module if enabled.
elseif (function_exists('locale') && $langcode != 'en') {
$string = locale($string, $langcode);

}
if (empty($args)) {
return $string;

}
...

}

In addition to translation, the t() function also handles insertion of values into place-
holders in strings. The values are typically user-supplied input, which must be run through a
text transformation before being displayed.

CHAPTER 18 " LOCALIZATION AND TRANSLATION408

09898ch18final 7/30/08 1:48 PM Page 408

http://api.drupal.org/api/function/format_plural/6

t('Hello, my name is %name.', array('%name' => 'John');

Hello, my name is John.

The placement of the text to be inserted is denoted by placeholders, and the text to be
inserted is in a keyed array. This text transformation process is critical to Drupal security (see
Chapter 20 for more information). Figure 18-1 shows you how t() handles translation; see Fig-
ure 20-1 to see how t() handles placeholders.

Figure 18-1. How t() does translation and placeholder insertion, assuming the current language
is set to French

CHAPTER 18 " LOCALIZATION AND TRANSLATION 409

09898ch18final 7/30/08 1:48 PM Page 409

Replacing Built-In Strings with Custom Strings
Translating the user interface is essentially replacing one string with another. Let’s start small,
choosing just a few strings to change. There are a couple of possible solutions to the transla-
tion problem. We’ll approach them from the simplest to the most complex. The first involves
editing your settings file, and the second involves the locale module. Let’s start by doing a sim-
ple string replacement in the breadcrumb trail and move on to replacing Blog with Journal.

String Overrides in settings.php
Find your settings.php file (typically at sites/default/settings.php). You may need to make
the file writable before making changes, as Drupal tries its best to keep this file read-only.
Scroll to the end of settings.php. We’ll add the following custom string array:

/**
* String overrides:
*
* To override specific strings on your site with or without enabling locale
* module, add an entry to this list. This functionality allows you to change
* a small number of your site's default English language interface strings.
*
* Remove the leading hash signs to enable.
*/
$conf['locale_custom_strings_en'] = array(
'forum' => 'Discussion board',
'@count min' => '@count minutes',
);

$conf['locale_custom_strings_en'] = array(
'Home' => 'Sweet Home',

);

If you visit your site, you’ll notice that in the breadcrumb trail, Home has been changed to
Sweet Home, as shown in Figure 18-2.

Now that you know how to do string overrides, let’s go ahead and replace the word Blog
with the word Journal:

$conf['locale_custom_strings_en'] = array(
'Blog' => 'Journal',

);

Then enable the blog module at Administer ! Site building ! Modules. Go to Create con-
tent ! Blog entry, and you should see a screen like the one shown in Figure 18-3.

CHAPTER 18 " LOCALIZATION AND TRANSLATION410

09898ch18final 7/30/08 1:48 PM Page 410

Figure 18-2. The string Home is replaced with Sweet Home in the breadcrumb trail.

Figure 18-3. The string Blog entry has not become Journal entry.

CHAPTER 18 " LOCALIZATION AND TRANSLATION 411

09898ch18final 7/30/08 1:48 PM Page 411

What’s wrong? Why was your custom string replacement array ignored? It’s because the
string Blog entry is not the same as the string Blog. You can’t just pick substrings for replace-
ment; you have to match the full string.

How do you find all the strings that contain the word Blog so that you can replace each
string with its Journal equivalent? The locale module can help with this.

"Tip Using string overrides in settings.php is highly performant (for small sets of strings only) because
no database call is needed; the replacement string is simply looked up in an array. You don’t even have to
have the locale module enabled for string overrides to work. See also the string overrides module at
http://drupal.org/project/stringoverrides.

Replacing Strings with the Locale Module
Instead of using string replacement by defining a list of custom string replacements in
settings.php, you can use the locale module to find strings for replacement and define
what the replacements will be. A language translation is a set of custom string replacements
for Drupal. When Drupal prepares to display a string, it will run the string through the t()
function as outlined previously. If it finds a replacement in the current language translation,
it will use the replacement; if not, it will simply use the original string. This process, which is
what the locale() function does, is shown in a simplified form in Figure 18-4. The approach
is to create a language with the language code en-US containing only the string(s) we want
replaced.

Figure 18-4. If the locale module does not find a replacement string in the current language
translation, it will fall back to using the original string.

CHAPTER 18 " LOCALIZATION AND TRANSLATION412

09898ch18final 7/30/08 1:48 PM Page 412

http://drupal.org/project/stringoverrides

Okay, let’s begin the process of changing any strings containing “blog” to strings contain-
ing “journal.” Because Drupal will fall back to using the original string if no translation is
found, we only need to provide the strings we want to change. We can put the strings into a
custom language and let Drupal fall back to original strings for any strings we don’t provide.
First, let’s add a custom language to hold our custom strings. The interface for doing that is
shown in Figure 18-5. We’ll call it English-custom and use en-US for the language code and
path prefix.

Figure 18-5. Adding a custom language for targeted string translation

Now, enable your new language, and make it the default, as shown in Figure 18-6. Click
“Save configuration,” uncheck the Enabled check box next to English, and click “Save con-
figuration” again, as shown in Figure 18-7. With only one language enabled, users will not be

CHAPTER 18 " LOCALIZATION AND TRANSLATION 413

09898ch18final 7/30/08 1:48 PM Page 413

presented with the somewhat confusing “Language settings” choice shown in Figure 18-8
when editing their user accounts.

Figure 18-6. Enabling the new language and selecting it as the default

Figure 18-7. Disabling English so that English-custom will be the only enabled language

Figure 18-8. The user interface on the “My account” page, where a user may select the preferred
language for e-mail sent by the site. (The interface only appears if multiple languages are
enabled.)

CHAPTER 18 " LOCALIZATION AND TRANSLATION414

09898ch18final 7/30/08 1:48 PM Page 414

Okay, you’ve got a single language translation called English-custom enabled. It is cur-
rently empty, since we haven’t added any string replacements yet. So for every string, Drupal
will go through the process shown in Figure 18-4, fail to find a string replacement in English-
custom, and fall back to returning the original English string from the English language. Let’s
set up some string replacements. Navigate to Administer ! Site building ! Translate interface,
which is shown in Figure 18-9.

Figure 18-9. The overview page of the “Translate interface” screen

Drupal uses just-in-time translation. When a page is loaded, each string is passed through
the t() function and on through the locale() function where, if the string is not already pres-
ent in the locales_source and locales_target database tables, it is added to those tables. So
the values in the “Built-in interface” column in Figure 18-9 show that 301 strings have passed
through t() and are available for translation. Go ahead and click around to some other pages
in Drupal and then return to this one. You should see that the number of strings has increased
as Drupal encounters more and more parts of the interface that will need translation. We’ll
now use the locale module’s web interface to translate some strings.

After clicking on the Search tab, we are presented with a search interface that allows us to
find strings for translation. Let’s search for all of those 301 or more strings that are available to
us so far. The search interface is shown in Figure 18-10.

CHAPTER 18 " LOCALIZATION AND TRANSLATION 415

09898ch18final 7/30/08 1:48 PM Page 415

Figure 18-10. The search interface for showing translatable strings

Selecting our language (English-custom), searching for all strings, and leaving the search
box blank will show us all translatable strings. Each string has an “edit” link next to it. After the
list of strings, the search interface is shown again at the bottom of the page. Since the list of
strings is quite long, let’s reduce it to only the strings that contain the word “Search.” Type the
word Search in the “String contains” field, and click the Search button. The result should be a
list of strings that contain the word “Search,” as shown in Figure 18-11. Let’s change the string
Search to Search now by clicking the “edit” link.

Figure 18-11. A list of translatable strings containing the word “search” and their statuses

CHAPTER 18 " LOCALIZATION AND TRANSLATION416

09898ch18final 7/30/08 1:48 PM Page 416

After you’ve edited the string, you are returned to the Search tab. But wait! It’s now called
the “Search now” tab! And the button at the bottom of the search form is now labeled “Search
now” instead of “Search,” as shown in Figure 18-12. In fact, in every place the word “Search”
occurred, it is replaced with “Search now.”

Figure 18-12. The string Search is now replaced by the string Search now.

Go ahead and search for the string Search again. You should see in the resulting list of
strings that the strikethrough is removed from the Languages column for this entry, indicating
that the string has been translated, as shown in Figure 18-13.

Figure 18-13. The list of translatable strings after editing “Search”

CHAPTER 18 " LOCALIZATION AND TRANSLATION 417

09898ch18final 7/30/08 1:48 PM Page 417

Note that the original string is shown, not the translation. If you return to the Overview
tab, you will see that English-custom now has one replacement string available.

Now that you’ve learned how to change strings, we can get on to the business of changing
all occurrences of “blog” to “journal.” After enabling the blog module and visiting the blog-
related pages (such as /node/add/blog and blog/1), the translatable strings should be available
for us to translate. The search at Administer ! Site building ! Translate interface is case-
sensitive, so one search for “blog” and another for “Blog” will show us all the occurrences and
let us change them to equivalent replacement strings using our preferred words “journal”
and “Journal.”

"Caution The method we are introducing here is for touching up Drupal sites and targeting certain inter-
face elements for string replacement, and it is not complete. For example, if a module containing the word
“blog” were not enabled, we would miss the translation of those strings. A more complete method is intro-
duced in the “Starting a New Translation” section of this chapter.

That change is all well and good, but it’s still bothersome that the URL for creating
a new journal entry is still http://example.com/?q=node/add/blog; shouldn’t it be http://
example.com/?q=node/add/journal instead? Sure, it should. We can fix that quickly by
enabling the path module and adding an alias with node/add/blog as the existing system
path and node/add/journal as the alias. Presto! All references to “blog” have disappeared,
and you can use the site without shuddering at seeing the word “blog”.

"Tip A third-party module that will make string translation easier is the Localization client module, avail-
able at http://drupal.org/project/l10n_client. The module provides an on-page localization editor
interface and makes extensive use of AJAX.

Exporting Your Translation
After you’ve gone through the work of selecting and translating the strings you want to
change, it would be a shame to have to do it all over again when you set up your next Drupal
site. By using the Export tab at Administer ! Site building ! Translate interface, you can save
the translation to a special file called a portable object (.po) file. This file will contain all of the
strings that Drupal has passed through t(), as well as any replacement strings you have
defined.

CHAPTER 18 " LOCALIZATION AND TRANSLATION418

09898ch18final 7/30/08 1:48 PM Page 418

http://example.com/?q=node/add/blog
http://example.com/?q=node/add/journal
http://example.com/?q=node/add/journal
http://drupal.org/project/l10n_client

Portable Object Files

The first few lines of the file that results from exporting our English-custom translation follow:

English-custom translation of Drupal 6
Copyright (c) 2007 drupalusername <me@example.com>
#
msgid ""
msgstr ""
"Project-Id-Version: PROJECT VERSION\n"
"POT-Creation-Date: 2008-05-09 12:46-0500\n"
"PO-Revision-Date: 2008-05-09 12:46-0500\n"
"Last-Translator: drupalusername <me@example.com>\n"
"Language-Team: English-custom <me@example.com>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"

#: /example.com/?q=admin/build/translate/search
msgid "Search"
msgstr "Search now"

#: /example.com/?q=node/add/blog
msgid "blog"
msgstr "journal"

#: /example.com/?q=admin/build/modules/list/confirm
msgid "Blog entry"
msgstr "Journal entry"

#: /example.com/?q=admin/build/translate/search
msgid ""
"A blog entry is a single post to an online journal, or "
"blog."
msgstr "A journal entry is a single post to an online journal."
...

The .po file consists of some metadata headers followed by the translated strings. Each
string has three components: a comment that shows where the string first occurred, a msgid
denoting the original string, and a msgstr denoting the translated string to use. For a full
description of the .po file format, see http://www.gnu.org/software/gettext/manual/
gettext.html#PO-Files.

The en-US.po file can now be imported into another Drupal site (that has the locale mod-
ule enabled) using the import tab at Administer ! Site building ! Translate interface.

CHAPTER 18 " LOCALIZATION AND TRANSLATION 419

09898ch18final 7/30/08 1:48 PM Page 419

mailto:me@example.com
http://www.gnu.org/software/gettext/manual

Portable Object Templates

While a translation consists of some metadata and a lot of original and translated strings, a
portable object template (.pot) file contains all the strings available for translation, without
any translated strings. This is useful if you are starting a language translation from scratch or
want to determine whether any new strings were added to Drupal since the last version before
modifying your site (another way to find this out would be to upgrade a copy of your Drupal
site and search for untranslated strings as shown in the “Replacing Built-In Strings with Cus-
tom Strings” section).

Starting a New Translation
Drupal’s user interface has been translated into many languages. If you’d like to volunteer to
assist in translating, chances are you will be warmly welcomed. Each existing language trans-
lation has a project page where development is tracked. For example, the French translation
is at http://drupal.org/project/fr. Assistance for translation in general can be found in the
translations forum at http://drupal.org/forum/30.

"Note Serious translators working with languages other than English do not use the string replacement
methods first introduced in this chapter. They become comfortable working with .pot and .po files, often
using special software to help them manage translations (see http://drupal.org/node/11131). See also
the project to create a web-based tool for translators at http://drupal.org/project/l10n_server.

Getting .pot Files for Drupal
The definitive .pot files for Drupal can be downloaded from http://drupal.org/project/
drupal-pot. After downloading and extracting the .tar.gz file for the branch of Drupal you are
interested in, you should have a directory full of .pot files corresponding to Drupal files. For
example, modules-aggregator.pot contains the translatable strings from Drupal’s aggregator
module.

$ gunzip drupal-pot-6.x-1.0.tar.gz
$ tar -xf drupal-pot-6.x-1.0.tar
$ ls drupal-pot
LICENSE.txt modules-dblog.pot modules-statistics.pot
README.txt modules-filter.pot modules-syslog.pot
general.pot modules-forum.pot modules-system.pot
includes.pot modules-help.pot modules-taxonomy.pot
installer.pot modules-locale.pot modules-throttle.pot
misc.pot modules-menu.pot modules-tracker.pot
modules-aggregator.pot modules-node.pot modules-translation.pot
modules-block.pot modules-openid.pot modules-trigger.pot
modules-blog.pot modules-path.pot modules-update.pot
modules-blogapi.pot modules-php.pot modules-upload.pot

CHAPTER 18 " LOCALIZATION AND TRANSLATION420

09898ch18final 7/30/08 1:48 PM Page 420

http://drupal.org/project/fr
http://drupal.org/forum/30
http://drupal.org/node/11131
http://drupal.org/project/l10n_server
http://drupal.org/project

modules-book.pot modules-ping.pot modules-user.pot
modules-color.pot modules-poll.pot themes-chameleon.pot
modules-comment.pot modules-profile.pot themes-garland.pot
modules-contact.pot modules-search.pot themes-pushbutton.pot

You’ll notice a few other files in the distribution as well. There’s an informative README.txt
file (read it!), a file named general.pot, and a file named installer.pot. The general.pot file is
the place to start when translating, as it contains strings that occur in more than one place.
The installer.pot contains the strings that must be translated if you want to create a trans-
lation of the installer interface.

Generating .pot Files with Translation Template Extractor
The contributed translation template extractor module (see http://drupal.org/project/
potx) can generate .pot files for you. This is useful if you’ve written your own module or
downloaded a contributed module for which there is no existing translation. The translation
template extractor module contains both a command-line version and a web-based version
of the extractor. If you are familiar with the xgettext program for Unix, think of this module
as a Drupal-savvy version of that program.

Creating a .pot File for Your Module
Let’s generate a .pot file for the annotation module we created in Chapter 2.

First, we’ll need to download the translation template extractor module from http://
drupal.org/project/potx, and place the resulting folder at sites/all/modules/potx.

Using the Command Line

Copy potx.inc and potx-cli.php into the annotate module’s directory at sites/all/
modules/custom/annotate. Next, we need to run the extractor, so it can create the .pot files.

"Caution You’re adding to your Drupal site an executable PHP script that needs write privileges to the
directory it runs in (so it can write the .pot file). Always do template extraction on a copy of your site on
your development machine, never on a live site.

Here are the results from running the extractor:

$ cd sites/all/modules/custom/annotate
$ php potx-cli.php
Processing annotate.admin.inc...
Processing annotate.module...
Processing annotate.install...
Processing annotate.info...

Done.

CHAPTER 18 " LOCALIZATION AND TRANSLATION 421

09898ch18final 7/30/08 1:48 PM Page 421

http://drupal.org/project
http://drupal.org/project/potx
http://drupal.org/project/potx

Let’s see what was generated:

annotate.admin.inc general.pot
annotate.info potx-cli.php
annotate.install potx.inc
annotate.module

Running the extractor script resulted in a new file called general.pot, which contains
the strings from annotate.module, annotate.info, and annotate.install. The script placed
all the strings into general.pot by default but can generate separate files if you’d prefer. Run

$ php potx-cli.php –-help

to see the various options offered by the extractor script. In the present case, it’s handy to have
all of the strings in one file. If we were to share this translation template with others, we’d cre-
ate a translations subdirectory inside the annotate directory, move the general.pot into the
translations directory and rename it annotate.pot. If we then made a French translation by
opening the combined .pot file, translating the strings, and saving it as fr.po, our module
directory would look like this:

annotate.admin.inc
annotate.info
annotate.install
annotate.module
translations/
annotate.pot
fr.po

Using the Web-Based Extractor

Instead of using the command line, you can extract strings from your module using the web-
based user interface provided by the translation template extractor module. After making sure
that you have downloaded the module and moved it to sites/all/modules/potx as described
previously, go to Administer ! Site building ! Modules, and enable both the annotate and
translation template extractor modules. Next, go to Administer ! Site building ! Translate
interface, and notice the new Extract tab. Click it, and you’ll be able to generate a .pot file by
choosing “Language independent template” and clicking the Extract button, as shown in Fig-
ure 18-14. The .pot file will be downloaded via your web browser. You can then place it in
sites/all/custom/annotate/translations as we did with the command-line extractor.

CHAPTER 18 " LOCALIZATION AND TRANSLATION422

09898ch18final 7/30/08 1:48 PM Page 422

Figure 18-14. Extracting a .pot file for the annotate module using the web-based user interface
of the translation template extractor module

Creating .pot Files for an Entire Site
If you wish to create .pot files for all translatable strings in your site, place the potx.inc and
potx-cli.php files at the root of your site, ensure you have write access to that current direc-
tory, and run potx-cli.php. You would run the script from the command line with the mode
parameter set to core if you want to generate .pot files with the same layout as those available
at http://drupal.org/project/Translations:

$ php potx-cli.php --mode=core

The script always outputs .pot files in the same directory the script is in; for example,
modules-aggregator.pot will be created in the root directory of your site, not in modules/
aggregator/. The name of the .pot file reflects where it was found. So in the previous example,
a sites-all-modules-custom-annotate.pot file would be generated.

CHAPTER 18 " LOCALIZATION AND TRANSLATION 423

09898ch18final 7/30/08 1:48 PM Page 423

http://drupal.org/project/Translations:

Installing a Language Translation
Drupal can either be installed in a language other than English or the language translation can
be added later. Let’s cover both possibilities.

Setting Up a Translation at Install Time
Drupal’s installer recognizes installer translations with the st() function rather than t(),
which isn’t available to the installer at runtime because, well, Drupal isn’t installed yet.
Installer translations are offered as a choice during installation and are based on the
installer.pot file (see the “Getting .pot Files for Drupal” section).

To view the installer’s translation capabilities in action, let’s download the French transla-
tion of Drupal from http://drupal.org/project/Translations. This results in the file
fr-6.x-1.x.tar.gz. You can tell from the .tar.gz ending that this is a .tar file that has been
compressed with GZIP compression. One way to extract the file is by using the Unix tar utility:

$ tar -xzvf fr-6.x-1.x.tar.gz

"Caution The file contains a directory structure that mirrors the directory structure of Drupal. When
extracting it, be careful to use an extraction method that merges the directory structure in the tarball with
your existing Drupal directory structure. The default extractor in Mac OS X will not do it correctly. If you end
up with a folder called fr-6.x-1.x-dev after extraction, the merge did not take place. See http://
www.lullabot.com/videocast/installing-drupal-translation for a screencast demonstrating
the proper way to do the extraction.

After successful extraction of the translation, additional folders called translations
should be found in your Drupal directories. For example, the profiles/default folder (where
Drupal’s default installation profile lives) now has a translations subfolder containing a fr.po
file. That’s the French translation of the installer. When Drupal’s installer runs, you can see the
new choice presented, as shown in Figure 18-15.

If you choose French, the installation will proceed in French, and the default language for
the site will be set to French.

CHAPTER 18 " LOCALIZATION AND TRANSLATION424

09898ch18final 7/30/08 1:48 PM Page 424

http://drupal.org/project/Translations
http://www.lullabot.com/videocast/installing-drupal-translation
http://www.lullabot.com/videocast/installing-drupal-translation

Figure 18-15. When a .po file exists in the installation profile’s translations subdirectory, Drupal’s
installer allows you to choose a language for the installer.

Installing a Translation on an Existing Site
To install a language translation on an existing site, the same extraction steps outlined in the
previous section need to be followed. When the translation files have been properly extracted
(you can check by looking for the new translations subdirectories), you can add the language
by navigating to Administer ! Site configuration ! Languages and clicking the “Add language”
tab. Next, simply choose the language that corresponds with the language translation files you
have extracted, and click “Add language,” as shown in Figure 18-16. If you have correctly
extracted the translation files, Drupal will show a progress bar as it installs them. The new lan-
guage will then be shown in the table at Administer ! Site configuration ! Languages.

Figure 18-16. Installing a language. (Translation files must be properly extracted prior to clicking
the Add language button.)

CHAPTER 18 " LOCALIZATION AND TRANSLATION 425

09898ch18final 7/30/08 1:49 PM Page 425

Right-to-Left Language Support
The directionality of a language is displayed in the list of language translations that have been
added to Drupal, as shown in Figure 18-17.

Figure 18-17. Right-to-left languages can be identified using the Direction column of the
language table.

Drupal’s support for right-to-left languages such as Hebrew is at the theming layer. When
Drupal is informed that a style sheet should be included in the current page, and the current
language is a right-to-left language, Drupal will check for a corresponding style sheet name
that ends in -rtl.css. If that style sheet exists, it will be loaded in addition to the requested
style sheet. The logic is shown in Figure 18-18. Thus, themes that support right-to-left lan-
guages generally have the styles defined in the main style sheet, and CSS overrides defined in
the corresponding right-to-left style sheet.

For example, if the current language is Hebrew and the theme is set to Bluemarine,
when Drupal adds the themes/bluemarine/style.css style sheet, the themes/bluemarine/
style-rtl.css file is included as well. Check out the right-to-left style sheets in Drupal’s
default themes to see what kind of CSS elements are overridden.

The direction of a language can be changed by going to Administer ! Site configura-
tion ! Languages and clicking the “edit” link for the language in question.

Testing for the directionality of the current language can be done in code using the fol-
lowing approach:

if (defined('LANGUAGE_RTL') && $language->direction == LANGUAGE_RTL) {
// Do something.

}

The reason this works is that the constant LANGUAGE_RTL is defined by the locale module,
so if the locale module is not loaded, right-to-left language support is not available.

CHAPTER 18 " LOCALIZATION AND TRANSLATION426

09898ch18final 7/30/08 1:49 PM Page 426

Figure 18-18. If the current language is a right-to-left language, an additional style sheet will be
included if the additional style sheet exists.

Language Negotiation
Drupal implements most of the common ways of determining a user’s language so that when
multiple languages are enabled on a Drupal site, the user’s preferred language is used. In the
following sections we will assume that the French translation of Drupal has been installed as
described in the previous section. The way that Drupal determines the language setting is
configured at Administer ! Site configuration ! Languages under the Configure tab. The rele-
vant user interface is shown in Figure 18-19. Let’s examine each of these options.

Figure 18-19. The possible settings for language negotiation

CHAPTER 18 " LOCALIZATION AND TRANSLATION 427

09898ch18final 7/30/08 1:49 PM Page 427

None
This is the default option and the simplest one. The language that is set as the default lan-
guage is used for all users when displaying pages. See Figure 18-17 to see the user interface in
which the default language is specified.

User-Preferred Language
If more than one language is enabled, users will see the fieldset shown in Figure 18-20 when
they edit their “My account” pages.

Figure 18-20. Choosing a user-specific language for e-mail messages

The language that a user has chosen can be retrieved as follows:

// Retrieve user 3's preferred language.
$account = user_load(array('uid' => 3));
$language = user_preferred_language($account);

If the user has not set a preferred language, the default language for the site will be
returned. The result will be a language object (see the next section for more about the
language object). When the “Language negotiation” setting is set to None, the user’s preferred
language is used only for determining which language should be used for e-mail sent from
the site. The user’s preferred language has no effect on the language used for page display
when the “Language negotiation” setting is set to None.

The Global $language Object
You can determine the current language programmatically by looking at the global $language
variable, which is an object. The variable is initialized during the DRUPAL_BOOTSTRAP_LANGUAGE
portion of bootstrap. You can see what the object looks like by doing a var_dump():

global $language;
var_dump($language);

CHAPTER 18 " LOCALIZATION AND TRANSLATION428

09898ch18final 7/30/08 1:49 PM Page 428

Results are shown here:

object(stdClass) (11) {
["language"] => string(2) "fr"
["name"] => string(6) "French"
["native"] => string(9) "Français"
["direction"] => string(1) "0"
["enabled"] => int(1)
["plurals"] => string(1) "2"
["formula"] => string(6) "($n>1)"
["domain"] => string(0) ""
["prefix"] => string(2) "fr"
["weight"] => string(1) "0"
["javascript"]=> string(0) ""

}

The RFC 4646 language identifier (such as fr in the previous example) can be retrieved by
getting the language property of the $language object:

global $language;
$lang = $language->language;

Path Prefix Only
When language negotiation is set to Path Prefix Only, there are only two possibilities. Either
a language path prefix is found in the path, or the default language is used. For example, sup-
pose you are creating a site that supports users in both English and French. English is the
default language for the site, but the French translation has also been installed and enabled.
Going to Administer ! Site configuration ! Languages and clicking the “edit” link next to the
French language will show you the user interface shown in Figure 18-21. Notice that the “Path
prefix” field is set to fr. This value could be changed to any string.

With the path prefix set to fr, Drupal will determine the current language by looking at
the requested URL. The process is shown in Figure 18-22.

CHAPTER 18 " LOCALIZATION AND TRANSLATION 429

09898ch18final 7/30/08 1:49 PM Page 429

Figure 18-21. User interface for the Edit language screen showing the “Path prefix” field

Figure 18-22. Determination of language using the path prefix for French

CHAPTER 18 " LOCALIZATION AND TRANSLATION430

09898ch18final 7/30/08 1:49 PM Page 430

Path Prefix with Language Fallback
When language negotiation is set to this setting, Drupal will first look at the path prefix. If a
match is not made, the user’s preferred language is checked by examining $user->language. If
the user has not selected a preferred language, Drupal next tries to determine the user’s pre-
ferred language by looking at the Accept-language HTTP header in the browser’s HTTP
request. If the browser does not specify a preferred language, the default language for the site
is used. Assuming that English is the default language for the site, and both French and
Hebrew are enabled, the process of language determination is shown in Figure 18-23.

Figure 18-23. Determination of language using “Path prefix with language fallback”

Domain Name Only
When language negotiation is set to this setting, Drupal will determine the current language
by attempting to match the domain of the current URL with the language domain specified in
the “Language domain” field of the “Edit language” page of a language (see Figure 18-21). For
example, with English as the default language, specifying http://fr.example.com as the lan-
guage domain for the French language would set the current language to French for users
visiting http://fr.example.com/?q=node/2 and English for users visiting http://example.com/
?q=node/2.

CHAPTER 18 " LOCALIZATION AND TRANSLATION 431

09898ch18final 7/30/08 1:49 PM Page 431

http://fr.example.com
http://fr.example.com/?q=node/2
http://example.com

"Note A user’s preferred language setting from the “My account” page and the client browser settings are
ignored when “Language negotiation” is set to Domain Name Only.

Content Translation
So far, we’ve been focusing on the translation of Drupal’s user interface. But what about the
content? Once the current language setting has been determined, there’s a good chance that
the user wants to see the site content in that language! Let’s find out how content translation
works.

Introducing the Content Translation Module
Drupal comes with a built-in way to manage translation of content: the content translation
module. This module adds additional multilingual support and translation management
options to Drupal content types.

Multilingual Support
After going to Administer ! Site building ! Modules and enabling the locale and content
translation modules, “Multilingual support” options will show up in the “Workflow settings”
fieldset of each content type. To see the settings, go to Administer ! Content management !
Content types, and click the “edit” link for the Page content type. Expanding the “Workflow
settings” fieldset should reveal the new settings for “Multilingual support,” as shown in
Figure 18-24. The locale module provides the Disabled and Enabled settings while the content
translation module provides the “Enabled, with translation” setting.

Figure 18-24. The multilingual settings for a content type

CHAPTER 18 " LOCALIZATION AND TRANSLATION432

09898ch18final 7/30/08 1:49 PM Page 432

Now if you go to Create content ! Page, you will see a new dropdown field on the content
creation form that allows you to select which language the content will be written in or
whether the content is “Language neutral.” The field is shown in Figure 18-25.

Figure 18-25. The language selection field on the content creation form

After creating a few pages in different languages, you can see that the administration page
for content at Administer ! Content management ! Content has changed to display the lan-
guage of the post. Also, an option to filter content by language has been added, as shown in
Figure 18-26.

Figure 18-26. The content administration page with multilingual support enabled

Multilingual Support with Translation
Having the ability to create content in multiple languages is good. However, most sites do
not have one piece of content in English and another unrelated piece of content in French.
Instead, the French content is usually a translation of the English content (or vice versa).
When “Multilingual support” for a content type is set to “Enabled, with translation” (see Fig-
ure 18-24) that becomes possible. It involves the following approach:

1. A post is created in one language. This is the source post.

2. Translations of the post are created.

Let’s step through these tasks with an example. First, make sure that the current “Multi-
lingual support” setting for the Page content type is set to “Enabled, with translation.” Next,
we’ll create a simple page in English. Go to Create content ! Page, and type Hello for the title
and Have a nice day. for the body. Set the language selection to English, and click the Save

CHAPTER 18 " LOCALIZATION AND TRANSLATION 433

09898ch18final 7/30/08 1:49 PM Page 433

button. You should now see a Translate tab in addition to the usual View and Edit tabs (see
Figure 18-27).

Figure 18-27. The node now has a tab for translation.

Clicking the Translate tab reveals a summary of the post’s translation status. As shown in
Figure 18-28, a source post exists in English, but that’s all. Let’s create a French translation by
clicking the “add translation” link.

Figure 18-28. Clicking the translate tab shows a summary of the translation status.

Clicking the “add translation” link brings up the node editing form again, but this time,
the language selection is set to French. Type Bonjour for the title and Ayez un beau jour. for
the body. When the Save button is clicked, a new node will be added. Drupal will automati-
cally create links between the source node and the translations, labeled with the language.
Figure 18-29 shows how the French translation of the source node looks when the source node
is in English and an additional translation exists in Hebrew.

Figure 18-29. The French translation of the source node has links to English and Hebrew versions.

The links are built by the implementation of hook_link() in modules/translation/
translation.module:

CHAPTER 18 " LOCALIZATION AND TRANSLATION434

09898ch18final 7/30/08 1:49 PM Page 434

/**
* Implementation of hook_link().
*
* Display translation links with native language names, if this node
* is part of a translation set.
*/
function translation_link($type, $node = NULL, $teaser = FALSE) {
$links = array();
if ($type == 'node' && ($node->tnid) &&
$translations = translation_node_get_translations($node->tnid)) {
// Do not show link to the same node.
unset($translations[$node->language]);
$languages = language_list();
foreach ($translations as $language => $translation) {
$links["node_translation_$language"] = array(
'title' => $languages[$language]->native,
'href' => "node/$translation->nid",
'language' => $languages[$language],
'attributes' => array(
'title' => $translation->title,
'class' => 'translation-link'

)
);

}
}
return $links;

}

In addition to the links that are generated, the locale module provides a language
switcher block that can be enabled under Administer ! Site building ! Blocks. The language
switcher block will only show up if multiple languages are enabled and the “Language negoti-
ation” setting is set to something other than None. The language switcher block is shown in
Figure 18-30.

CHAPTER 18 " LOCALIZATION AND TRANSLATION 435

09898ch18final 7/30/08 1:49 PM Page 435

Figure 18-30. The language switcher block

Let’s get back to our discussion of source nodes and their translations. If a node is a
source node, editing it will show an additional fieldset called “Translation settings” in the node
editing form. This fieldset contains a single check box labeled “Flag translations as outdated,”
as shown in Figure 18-31.

Figure 18-31. The “Translation settings” fieldset in the node editing form of a source node

The check box is used to indicate that edits to the source node have been major enough
to require retranslation. Checking the box to flag translations as outdated simply causes the
word “outdated” to be displayed when viewing the translation status of a node. Compare Fig-
ure 18-28 with Figure 18-32.

Figure 18-32. The source post has been edited, and the translated post is flagged as outdated.

CHAPTER 18 " LOCALIZATION AND TRANSLATION436

09898ch18final 7/30/08 1:49 PM Page 436

A source node and translations of the source node have separate node numbers and, in
fact, exist as completely separate nodes in the database. They are related to each other by
the tnid column of the node table, which has as its value the node ID of the source node.
Assuming that the English version is the source node and is the first node on the site and the
French and Hebrew translations are the next two nodes added, the node table will look like
Figure 18-33.

Figure 18-33. The tnid column tracks relationships between source nodes and their translations.

Notice that the 1 in the translate column indicates an outdated translation.

Localization- and Translation-Related Files
Sometimes, knowing which parts of Drupal are responsible for which localization or transla-
tion functions is difficult. Table 18-1 shows these files and their responsibilities.

Table 18-1. Files Related to Localization and Translation Within Drupal

File Responsibility
includes/bootstrap.inc Runs the DRUPAL_BOOTSTRAP_LANGUAGE phase that

determines the current language.

includes/language.inc Included by bootstrap if multiple languages are
enabled. Provides code for choosing a language
and rewriting internal URLs to be language-
specific.

includes/common.inc t() is found here, as is drupal_add_css(), which
supports right-to-left languages.

includes/locale.inc Contains user interfaces and functions for
managing language translations.

modules/locale/locale.module Provides string replacement and translation
imports when modules or themes are installed
or enabled. Adds language settings interface to
path, node, and node type forms.

modules/translation/translation.module Manages source nodes and translations thereof.

modules/translation/translation.admin.inc Provides the translation overview shown when
the Translate tab is clicked (see Figure 18-31).

Additional Resources
Internationalization support is very important to the Drupal project. To follow the progress of
this effort or to get involved, see http://groups.drupal.org/i18n.

CHAPTER 18 " LOCALIZATION AND TRANSLATION 437

09898ch18final 7/30/08 1:49 PM Page 437

http://groups.drupal.org/i18n

Summary
In this chapter, you’ve learned the following:

• How the t() function works

• How to customize built-in Drupal strings

• How to export your customizations

• What portable object and portable object template files are

• How to download portable object template files and generate your own

• How to import an existing Drupal translation

• How to use style sheets for right-to-left language support

• How language negotiation settings affect Drupal

• How content translation works

CHAPTER 18 " LOCALIZATION AND TRANSLATION438

09898ch18final 7/30/08 1:49 PM Page 438

XML-RPC

Drupal “plays well with others.” That is, if there’s an open standard out there, chances are
that Drupal supports it either natively or through a contributed module. XML-RPC is no
exception; Drupal supports it natively. In this chapter, you’ll learn how to take advantage
of Drupal’s ability both to send and receive XML-RPC calls.

What Is XML-RPC?
A remote procedure call is when one program asks another program to execute a function.
XML-RPC is a standard for remote procedure calls where the call is encoded with XML and
sent over HTTP. The XML-RPC protocol was created by Dave Winer of UserLand Software in
collaboration with Microsoft. It’s specifically targeted at distributed web-based systems talk-
ing to each other, as when one Drupal site asks another Drupal site for some information.

There are two players when XML-RPC happens. One is the site from which the request
originates, known as the client. The site that receives the request is the server.

Prerequisites for XML-RPC
If your site will be acting only as a server, there’s nothing to worry about because incoming
XML-RPC requests use the standard web port (usually port 80). The file xmlrpc.php in your
Drupal installation contains the code that’s run for an incoming XML-RPC request. It’s known
as the XML-RPC endpoint.

!Note Some people add security through obscurity by renaming the xmlrpc.php file to change their
XML- RPC endpoint. This prevents evil wandering robots from probing the server’s XML-RPC interfaces. Oth-
ers delete it altogether if the site isn’t accepting XML-RPC requests.

For your Drupal site to act as a client, it must have the ability to send outgoing HTTP
requests. Some hosting companies don’t allow this for security reasons, and your attempts
won’t get past their firewall.

439

C H A P T E R 1 9

09898ch19final 7/30/08 1:44 PM Page 439

XML-RPC Clients
The client is the computer that will be sending the request. It sends a standard HTTP POST
request to the server. The body of this request is composed of XML and contains a single
tag named <methodCall>. Two tags, <methodName> and <params>, are nested inside the
<methodCall> tag. Let’s see how this works using a practical example.

!Note The remote procedure being called is referred to as a method. That’s why the XML encoding of an
XML-RPC call wraps the name of the remote procedure in a <methodName> tag.

XML-RPC Client Example: Getting the Time
The site that hosts the XML-RPC specification (http://www.xmlrpc.com/) also hosts some test
implementations. In our first example, let’s ask the site for the current time via XML-RPC:

$time = xmlrpc('http://time.xmlrpc.com/RPC2', 'currentTime.getCurrentTime');

You’re calling Drupal’s xmlrpc() function, telling it to contact the server time.xmlrpc.com
with the path RPC2, and to ask that server to execute a method called currentTime.
getCurrentTime(). You’re not sending any parameters along with the call. Drupal turns this
into an HTTP request that looks like this:

POST /RPC2 HTTP/1.0
Host: time.xmlrpc.com
User-Agent: Drupal (+http://drupal.org/)
Content-Length: 118
Content-Type: text/xml

<?xml version="1.0"?>
<methodCall>
<methodName>currentTime.getCurrentTime</methodName>
<params></params>

</methodCall>

The server time.xmlrpc.com happily executes the function and returns the following
response to you:

HTTP/1.1 200 OK
Connection: close
Content-Length: 183
Content-Type: text/xml
Date: Wed, 23 Apr 2008 16:14:30 GMT
Server: UserLand Frontier/9.0.1-WinNT

CHAPTER 19 ! XML-RPC440

09898ch19final 7/30/08 1:44 PM Page 440

http://www.xmlrpc.com
http://time.xmlrpc.com/RPC2
http://drupal.org

<?xml version="1.0"?>
<methodResponse>
<params>
<param>
<value>
<dateTime.iso8601>20080423T09:14:30</dateTime.iso8601>

</value>
</param>

</params>
</methodResponse>

When the response comes back, Drupal parses it and recognizes it as a single value in
ISO 8601 international date format. Drupal then helpfully returns not only the ISO 8601 rep-
resentation of the time but also the year, month, day, hour, minute, and second components
of the time. The object with these properties is assigned to the $time variable, as shown in
Figure 19-1.

Figure 19-1. Result of XML-RPC call to get the current time

The important lessons here are as follows:

• You called a remote server and it answered you.

• The request and response were represented in XML.

• You used the xmlrpc() function and included a URL and the name of the remote
procedure to call.

• The value returned to you was tagged as a certain data type.

• Drupal recognized the data type and parsed the response automatically.

• You did this all with one line of code.

XML-RPC Client Example: Getting the Name of a State
Let’s try a slightly more complicated example. It’s only more complicated because you’re send-
ing a parameter along with the name of the remote method you’re calling. UserLand Software
runs a web service at betty.userland.com that has the 50 United States listed in alphabetical

CHAPTER 19 ! XML-RPC 441

09898ch19final 7/30/08 1:44 PM Page 441

order. So if you ask for state 1, it returns Alabama; state 50 is Wyoming. The name of the
method is examples.getStateName. Let’s ask it for state number 3 in the list:

$state_name = xmlrpc('http://betty.userland.com/RPC2', 'examples.getStateName', 3);

This sets $state_name to Arizona. Here’s the XML Drupal sends (we’ll ignore the HTTP
headers for clarity from now on):

<?xml version="1.0"?>
<methodCall>
<methodName>examples.getStateName</methodName>
<params>
<param>
<value>
<int>3</int>

</value>
</param>

</params>
</methodCall>

Here’s the response you get from betty.userland.com:

<?xml version="1.0"?>
<methodResponse>
<params>
<param>
<value>Arizona</value>

</param>
</params>

</methodResponse>

Notice that Drupal automatically saw that the parameter you sent was an integer and
encoded it as such in your request. But what’s happening in the response? The value doesn’t
have any type tags around it! Shouldn’t that be <value><string>Arizona</string></value>?
Well, yes, that would work as well; but in XML-RPC a value without a type is assumed to be
a string, so this is less verbose.

That’s how simple it is to make an XML-RPC client call in Drupal. One line:

$result = xmlrpc($url, $method, $param_1, $param_2, $param_3...)

Handling XML-RPC Client Errors
When dealing with remote servers, much can go wrong. For example, you could get the syntax
wrong; the server could be offline; or the network could be down. Let’s take a look at what
Drupal does in each of these situations.

CHAPTER 19 ! XML-RPC442

09898ch19final 7/30/08 1:44 PM Page 442

http://betty.userland.com/RPC2

Network Errors
Drupal uses the drupal_http_request() function in includes/common.inc to issue outgoing
HTTP requests, including XML-RPC requests. Inside that function, the PHP function
fsockopen is used to open a socket to the remote server. If the socket cannot be opened,
Drupal will either set a negative error code or a code of 0, depending on which platform
PHP is running on and at what point in opening the socket that the error occurs. Let’s mis-
spell the name of the server when getting the state name:

$state_name = xmlrpc('http://betty.userland.comm/RPC2', 'examples.getStateName', 3);
if ($error = xmlrpc_error()) {
if ($error->code <= 0) {
$error->message = t('Outgoing HTTP request failed because the socket could
not be opened.');

}
drupal_set_message(t('Could not get state name because the remote site gave
an error: %message (@code).', array(
'%message' => $error->message,
'@code' => $error->code

)
)

);

This will result in the following message being displayed:

Could not get state name because the remote site gave an error: Outgoing HTTP
request failed because the socket could not be opened. (-19891355).

HTTP Errors
The preceding code will work for HTTP errors, such as when a server is up but no web service
is running at that path. Here, we ask drupal.org to run the web service, and drupal.org points
out that there is nothing at http://drupal.org/RPC2:

$state = xmlrpc('http://drupal.org/RPC2', 'examples.getStateName');
if ($error = xmlrpc_error()) {
if ($error->code <= 0) {
$error->message = t('Outgoing HTTP request failed because the socket could
not be opened.');

}
drupal_set_message(t('Could not get state name because the remote site gave
an error: %message (@code).', array(
'%message' => $error->message,
'@code' => $error->code

)
)

);

CHAPTER 19 ! XML-RPC 443

09898ch19final 7/30/08 1:44 PM Page 443

http://betty.userland.comm/RPC2
http://drupal.org/RPC2:
http://drupal.org/RPC2

This will result in the following message being displayed:

Could not get state name because the remote site gave an error: Not Found (404).

Call Syntax Errors
Here’s what is returned if you can successfully reach the server but try to get a state name from
betty.userland.com without giving the state number, which is a required parameter:

$state_name = xmlrpc('http://betty.userland.com/RPC2', 'examples.getStateName');

The remote server returns the following:

<?xml version="1.0"?>
<methodResponse>
<fault>
<value>
<struct>
<member>
<name>faultCode</name>
<value>
<int>4</int>

</value>
</member>
<member>
<name>faultString</name>
<value>
<string>Can't call "getStateName" because there aren't enough
parameters.</string>

</value>
</member>

</struct>
</value>

</fault>
</methodResponse>

The server was up and our communication with it is fine; the preceding code is returned
with an HTTP response code of 200 OK. The error is identified by a fault code and a string
describing the error in the XML response. Your error-handling code would be the same:

$state_name = xmlrpc('http://betty.userland.com/RPC2', 'examples.getStateName');
if ($error = xmlrpc_error()) {
if ($error->code <= 0) {
$error->message = t('Outgoing HTTP request failed because the socket could
not be opened.');

}

CHAPTER 19 ! XML-RPC444

09898ch19final 7/30/08 1:44 PM Page 444

http://betty.userland.com/RPC2
http://betty.userland.com/RPC2

drupal_set_message(t('Could not get state name because the remote site gave
an error: %message (@code).', array(
'%message' => $error->message,
'@code' => $error->code

)
)

);

This code results in the following message being displayed to the user:

Could not get state name because the remote site gave an error: Can't call
"getStateName" because there aren't enough parameters. (4)

Note that when you report errors, you should tell three things: what you were trying to do,
why you can’t do it, and additional information to which you have access. Often a friendlier
error is displayed using drupal_set_message() to notify the user, and a more detailed error is
written to the watchdog and is viewable at Administer " Reports " Recent log entries.

Casting Parameter Types
Often the remote procedure that you’re calling requires that parameters be in certain
XML-RPC types, such as integers or arrays. One way to ensure this is to send your parameters
using PHP typecasting:

$state_name = xmlrpc('http://betty.userland.com/RPC2', 'examples.getStateName',
(int)$state_num);

A better way to do it is to ensure that elsewhere in your code when the variable is assigned
that the variable is already set to the correct type.

A Simple XML-RPC Server
As you’ve seen in the XML-RPC client examples, Drupal does most of the heavy lifting for you.
Let’s go through a simple server example. You need to do three things to set up your server:

1. Define the function you want to execute when a client request arrives.

2. Map that function to a public method name.

3. Optionally define a method signature.

As usual with Drupal, you want to keep your code separate from the core system and just plug
it in as a module. So here’s a brief module that says “hello” via XML-RPC. Create the sites/
all/modules/custom/remotehello/remotehello.info file:

CHAPTER 19 ! XML-RPC 445

09898ch19final 7/30/08 1:44 PM Page 445

http://betty.userland.com/RPC2

; Id
name = Remote Hello
description = Greets XML-RPC clients by name.
package = Pro Drupal Development
core = 6.x

Here’s remotehello.module:

<?php
// Id

/**
* Implementation of hook_xmlrpc().
* Map external names of XML-RPC methods to PHP callback functions.
*/
function remotehello_xmlrpc() {
$methods['remoteHello.hello'] = 'xmls_remotehello_hello';
return $methods;

}

/**
* Greet a user.
*/
function xmls_remotehello_hello($name) {
if (!$name) {
return xmlrpc_error(1, t('I cannot greet you by name if you do not
provide one.'));

}
return t('Hello, @name!', array('@name' => $name));

}

Mapping Your Method with hook_xmlrpc()
The xmlrpc hook describes external XML-RPC methods provided by the module. In our exam-
ple we’re only providing one method. In this case the method name is remoteHello.hello. This
is the name that requestors will use, and it’s completely arbitrary. A good practice is to build
the name as a dot-delimited string using your module name as the first part and a descriptive
verb as the latter part.

!Note Although camelCase is generally shunned in Drupal, external XML-RPC method names are the
exception.

The second part of the array is the name of the function that will be called when a
request for remoteHello.hello comes in. In our example, we’ll call the PHP function
xmls_remotehello_hello(). As you develop modules, you’ll be writing many functions.

CHAPTER 19 ! XML-RPC446

09898ch19final 7/30/08 1:44 PM Page 446

By including “xmls” (shorthand for XML-RPC Server) in the function name, you’ll be able to
tell at a glance that this function talks to the outside world. Similarly, you can use “xmlc” for
functions that call out to other sites. This is particularly good practice when you’re writing a
module that essentially calls itself, though on another web site, because otherwise debugging
can be very confusing.

When your module determines that an error has been encountered, use xmlrpc_error()
to define an error code and a helpful string describing what went wrong to the client. Numeric
error codes are arbitrary and application-specific.

Assuming the site with this module lives at example.com, you’re now able to send your
name from a separate Drupal installation (say, at example2.com) using the following code:

$url = 'http://example.com/xmlrpc.php';
$method_name = 'remoteHello.hello';
$name = t('Joe');
$result = xmlrpc($url, $method_name, $name);

$result is now "Hello, Joe."

Automatic Parameter Type Validation with hook_xmlrpc()
The xmlrpc hook has two forms. In the simpler form, shown in our remotehello.module exam-
ple, it simply maps an external method name to a PHP function name. In the more advanced
form, it describes the method signature of the method; that is, what XML-RPC type it returns
and what the type of each parameter is (see http://www.xmlrpc.com/spec for a list of types).
Here’s the more complex form of the xmlrpc hook for remotehello.module:

/**
* Implementation of hook_xmlrpc().
* Map external names of XML-RPC methods to callback functions.
* Verbose syntax, specifying data types of return value and parameters.
*/
function remotehello_xmlrpc() {
$methods = array();
$methods[] = array(
'remoteHello.hello', // External method name.
'xmls_remotehello_hello', // PHP function to run.
array('string', 'string'), // The return value's type,

// then any parameter types.
t('Greets XML-RPC clients by name.') // Description.

);
return $methods;

}

Figure 19-2 shows the XML-RPC request life cycle of a request from an XML-RPC client
to our module. If you implement the xmlrpc hook for your module using the more complex
form, you’ll get several benefits. First, Drupal will validate incoming types against your
method signature automatically and return -32602: Server error. Invalid method

CHAPTER 19 ! XML-RPC 447

09898ch19final 7/30/08 1:44 PM Page 447

http://example.com/xmlrpc.php
http://www.xmlrpc.com/spec

parameters to the client if validation fails. (This also means that your function will be pick-
ier. No more automatic type coercion, like accepting the string '3' if the integer 3 is meant!)
Also, if you use the more complex form of the xmlrpc hook, Drupal’s built-in XML-RPC
methods system.methodSignature and system.methodHelp will return information about
your method. Note that the description you provide in your xmlrpc hook implementation
will be returned as the help text in the system.methodHelp method, so take care to write a
useful description.

Figure 19-2. Processing of an incoming XML-RPC request

CHAPTER 19 ! XML-RPC448

09898ch19final 7/30/08 1:44 PM Page 448

Built-In XML-RPC Methods
Drupal comes with several XML-RPC methods enabled out of the box. The following sections
describe these built-in methods.

system.listMethods
The system.listMethods method lists which XML-RPC methods are available. This is the
response a Drupal site will give when queried for which methods it provides:

// Get an array of all the XML-RPC methods available on this server.
$url = 'http://example.com/xmlrpc.php';
$methods = xmlrpc($url, 'system.listMethods');

The response from the server follows:

<?xml version="1.0"?>
<methodResponse>
<params>
<param>
<value>
<array>
<data>
<value>
<string>system.multicall</string>

</value>
<value>
<string>system.methodSignature</string>

</value>
<value>
<string>system.getCapabilities</string>

</value>
<value>
<string>system.listMethods</string>

</value>
<value>
<string>system.methodHelp</string>

</value>
<value>
<string>remoteHello.hello</string>

</value>
</data>

</array>
</value>

</param>
</params>

</methodResponse>

CHAPTER 19 ! XML-RPC 449

09898ch19final 7/30/08 1:44 PM Page 449

http://example.com/xmlrpc.php

The content of $methods is now an array of method names available on the server:
('system.multicall', 'system.methodSignature', 'system.getCapabilities',
'system.listMethods', 'system.methodHelp', 'remoteHello.hello').

system.methodSignature
This built-in Drupal XML-RPC method returns an array of data types. Listed first is the data
type of the return value of the function; next come any parameters that a given method
expects. For example, the remoteHello.hello method returns a string and expects one param-
eter: a string containing the name of the client. Let’s call system.methodSignature to see if
Drupal agrees:

// Get the method signature for our example method.
$url = 'http://example.com/xmlrpc.php';
$signature = xmlrpc($url, 'system.methodSignature', 'remoteHello.hello');

Sure enough, the value of $signature becomes an array: ('string', 'string').

system.methodHelp
This built-in Drupal XML-RPC method returns the description of the method that is defined
in the xmlrpc hook implementation of the module providing the method.

// Get the help string for our example method.
$url = 'http://example.com/xmlrpc.php';
$help = xmlrpc($url, 'system.methodHelp', 'remoteHello.hello');

The value of $help is now a string: Greets XML-RPC clients by name.

system.getCapabilities
This built-in Drupal XML-RPC method describes the capabilities of Drupal’s XML-RPC server
in terms of which specifications are implemented. Drupal implements the following specifi-
cations:

xmlrpc:
specURL http://www.xmlrpc.com/spec
specVersion 1

faults_interop:
specURL http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php
specVersion 20010516

system.multicall
specURL http://www.xmlrpc.com/discuss/msgReader$1208
specVerson 1

introspection
specURL http://scripts.incutio.com/xmlrpc/introspection.html
specVersion 1

CHAPTER 19 ! XML-RPC450

09898ch19final 7/30/08 1:44 PM Page 450

http://example.com/xmlrpc.php
http://example.com/xmlrpc.php
http://www.xmlrpc.com/spec
http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php
http://www.xmlrpc.com/discuss/msgReader$1208
http://scripts.incutio.com/xmlrpc/introspection.html

system.multiCall
The other built-in method worth mentioning is system.multiCall, which allows you to make
more than one XML-RPC method call per HTTP request. For more information on this con-
vention (which isn’t in the XML-RPC spec) see the following URL (note that it is one continu-
ous string): http://web.archive.org/web/20060502175739/http://www.xmlrpc.com/discuss/
msgReader$1208.

Summary
After reading this chapter, you should

• Be able to send XML-RPC calls from a Drupal site to a different server

• Be able to implement a basic XML-RPC server

• Understand how Drupal maps XML-RPC methods to PHP functions

• Be able to implement simple and complex versions of the xmlrpc hook

• Know Drupal’s built-in XML-RPC methods

CHAPTER 19 ! XML-RPC 451

09898ch19final 7/30/08 1:44 PM Page 451

http://web.archive.org/web/20060502175739/www.xmlrpc.com/discuss

09898ch19final 7/30/08 1:44 PM Page 452

Writing Secure Code

It seems that almost daily we see headlines about this or that type of software having a secu-
rity flaw. Keeping unwanted guests out of your web application and server should be a high
priority for any serious developer.

There are many ways in which a user with harmful intent can attempt to compromise
your Drupal site. Some of these include slipping code into your system and getting it to exe-
cute, manipulating data in your database, viewing materials to which the user should not have
access, and sending unwanted e-mail through your Drupal installation. In this chapter, you’ll
learn how to program defensively to ward off these kinds of attacks.

Fortunately, Drupal provides some tools that make it easy to eliminate the most common
causes of security breaches.

Handling User Input
When users interact with Drupal, it is typically through a series of forms, such as the node
submission form or the comment submission form. Users might also post remotely to a
Drupal-based blog via XML-RPC using the blogapi module. Drupal’s approach to user input
can be summarized as store the original; filter on output. The database should always contain
an accurate representation of what the user entered. As user input is being prepared to be
incorporated into a web page, it is sanitized (i.e., potentially executable code is neutralized).

Security breaches can be caused when text entered by a user is not sanitized and is exe-
cuted inside your program. This can happen when you don’t think about the full range of
possibilities when you write your program. You might expect users to enter only standard
characters, when in fact they could enter nonstandard strings or encoded characters, such
as control characters. You might have seen URLs with the string %20 in them; for example,
http://example.com/my%20document.html. This is a space character that has been encoded
in compliance with the URL specification (see http://www.w3.org/Addressing/URL/url-spec.
html). When someone saves a file named my document.html and it’s served by a web server, the
space is encoded. The % denotes an encoded character, and the 20 shows that this is ASCII
character 32 (20 is the hexadecimal representation of 32). Tricky use of encoded characters by
nefarious users can be problematic, as you’ll see later in this chapter.

Thinking About Data Types
When dealing with text in a system such as Drupal where user input is displayed as part of
a web site, it’s helpful to think of the user input as a typed variable. If you’ve programmed in

453

C H A P T E R 2 0

09898ch20final 7/30/08 1:41 PM Page 453

http://example.com/my%20document.html
http://www.w3.org/Addressing/URL/url-spec

a strongly typed language such as Java, you’ll be familiar with typed variables. For example,
an integer in Java is really an integer, and will not be treated as a string unless the programmer
explicitly makes the conversion. In PHP (a weakly typed language), you’re usually fine treating
an integer as a string or an integer, depending on the context, due to PHP’s automatic type
conversion. But good PHP programmers think carefully about types and use automatic type
conversion to their advantage. In the same way, even though user input from, say, the Body
field of a node submission form can be treated as text, it’s much better to think of it as a cer-
tain type of text. Is the user entering plain text? Or is the user entering HTML tags and expect-
ing that they’ll be rendered? If so, could these tags include harmful tags, such as JavaScript
that replaces your page with an advertisement for cell phone ringtones? A page that will be
displayed to a user is in HTML format; user input is in a variety of “types” of textual formats
and must be securely converted to HTML before being displayed. Thinking about user input
in this way helps you to understand how Drupal’s text conversion functions work. Common
types of textual input, along with functions to convert the text to another format, are shown
in Table 20-1.

Table 20-1. Secure Conversions from One Text Type to Another

Source Format Target Format Drupal Function What It Does
Plain text HTML check_plain() Encodes special characters into HTML

entities

HTML text HTML filter_xss() Checks and cleans HTML using a tag
whitelist

Rich text HTML check_markup() Runs text through filters

Plain text URL drupal_urlencode() Encodes special characters into %0x

URL HTML check_url() Strips out harmful protocols, such as
javascript:

Plain text MIME mime_header_encode() Encodes non-ASCII, UTF-8 encoded
characters

Plain Text
Plain text is text that is supposed to contain only, well, plain text. For example, if you ask a user
to type in his or her favorite color in a form, you expect the user to answer “green” or “purple,”
without markup of any kind. Including this input in another web page without checking to
make sure that it really does contain only plain text is a gaping security hole. For example, the
user might enter the following instead of entering a color:

<img src="javascript:window.location ='
http://evil.example.com/133/index.php?s=11&;ce_cid=38181161'">

Thus, we have the function check_plain() available to enforce that all other characters
are neutralized by encoding them as HTML entities. The text that is returned from check_
plain() will have no HTML tags of any kind, as they’ve all been converted to entities. If a user
enters the evil JavaScript in the preceding code, the check_plain() function will turn it into
the following text, which will be harmless when rendered in HTML:

CHAPTER 20 ! WRITING SECURE CODE454

09898ch20final 7/30/08 1:41 PM Page 454

http://evil.example.com/133/index.php?s=11&

<img src="javascript:window.location ='http://evil.
example.com/133/index.php?s=11&;ce_cid=38181161'">

HTML Text
HTML text can contain HTML markup. However, you can never blindly trust that the user has
entered only “safe” HTML; generally you want to restrict users to using a subset of the avail-
able HTML tags. For example, the <script> tag is not one that you generally want to allow
because it permits users to run scripts of their choice on your site. Likewise, you don’t want
users using the <form> tag to set up forms on your site.

Rich Text
Rich text is text that contains more information than plain text but is not necessarily in HTML.
It may contain wiki markup, or Bulletin Board Code (BBCode), or some other markup lan-
guage. Such text must be run through a filter to convert the markup to HTML before display.

!Note For more information on filters, see Chapter 11.

URL
URL is a URL that has been built from user input or from another untrusted source. You might
have expected the user to enter http://example.com, but the user entered javascript:
runevilJS() instead. Before displaying the URL in an HTML page, you must run it through
check_url() to make sure it is well formed and does not contain attacks.

Using check_plain() and t() to Sanitize Output
Use check_plain() any time you have text that you don’t trust and in which you do not want
any markup.

Here is a naïve way of using user input, assuming the user has just entered a favorite color
in a text field:

The following code is insecure:

drupal_set_message("Your favorite color is $color!"); // No input checking!

The following is secure but bad coding practice:

drupal_set_message('Your favorite color is ' . check_plain($color));

This is bad code because we have a text string (namely the implicit result of the check_
plain() function), but it isn’t inside the t() function, which should always be used for text
strings. If you write code like the preceding, be prepared for complaints from angry transla-
tors, who will be unable to translate your phrase because it doesn’t pass through t().

You cannot just place variables inside double quotes and give them to t().

CHAPTER 20 ! WRITING SECURE CODE 455

09898ch20final 7/30/08 1:41 PM Page 455

http://evil.example.com/133/index.php?s=11&">
http://evil
http://example.com

The following code is still insecure because no placeholder is being used:

drupal_set_message(t("Your favorite color is $color!")); // No input checking!

The t() function provides a built-in way of making your strings secure by using a place-
holding token with a one-character prefix, as follows.

The following is secure and in good form:

drupal_set_message(t('Your favorite color is @color', array('@color' => $color));

Note that the key in the array (@color) is the same as the replacement token in the string.
This results in a message like the following:

Your favorite color is brown.

The @ prefix tells t() to run the value that is replacing the token through check_plain().

!Note When running a translation of Drupal, the token is run through check_plain(), but the translated
string is not. So you need to trust your translators.

In this case, we probably want to emphasize the user’s choice of color by changing
the style of the color value. This is done using the % prefix, which means “execute theme
('placeholder', $value) on the value.” This passes the value through check_plain() indi-
rectly, as shown in Figure 20-1. The % prefix is the most commonly used prefix.

The following is secure and good form:

drupal_set_message(t('Your favorite color is %color', array('%color' => $color));

This results in a message like the following. In addition to escaping the value, theme_
placeholder() has wrapped the value in tags.

Your favorite color is brown.

If you have text that has been previously sanitized, you can disable checks in t() by
using the ! prefix. For example, the l() function builds a link, and for convenience, it runs
the text of the link through check_plain() while building the link. So in the following exam-
ple, the ! prefix can be safely used:

// The l() function runs text through check_plain() and returns sanitized text
// so no need for us to do check_plain($link) or to have t() do it for us.
$link = l($user_supplied_text, $path);
drupal_set_message(t('Go to the website !website', array('!website' => $link));

CHAPTER 20 ! WRITING SECURE CODE456

09898ch20final 7/30/08 1:41 PM Page 456

!Note The l() function passes the text of the link through check_plain() unless you have indicated to
l() that the text is already in HTML format by setting html to TRUE in the options parameter. See http://
api.drupal.org/api/function/l/6.

The effect of the @, %, and ! placeholders on string replacement in t() is shown in
Figure 20-1. Although for simplicity’s sake it isn’t shown in the figure, remember that you
may use multiple placeholders by defining them in the string and adding members to the
array, for example:

drupal_set_message(t('Your favorite color is %color and you like %food',
array('%color' => $color, '%food' => $food)));

Be especially cautious with the use of the ! prefix, since that means the string will not be
run through check_plain().

Figure 20-1. Effect of the placeholder prefixes on string replacement

CHAPTER 20 ! WRITING SECURE CODE 457

09898ch20final 7/30/08 1:41 PM Page 457

http://api.drupal.org/api/function/l/6
http://api.drupal.org/api/function/l/6

Using filter_xss() to Prevent Cross-Site Scripting Attacks
Cross-site scripting (XSS) is a common form of attack on a web site where the attacker is able
to insert his or her own code into a web page, which can then be used for all sorts of mischief.

!Note For examples of XSS attacks, see http://ha.ckers.org/xss.html.

Suppose that you allow users to enter HTML on your web site, expecting them to enter

Hi! My name is Sally, and I...

but instead they enter

<script src=http://evil.example.com/xss.js"></script>

Whoops! Again, the lesson is to never trust user input. Here is the function signature of
filter_xss():

filter_xss($string, $allowed_tags = array('a', 'em', 'strong', 'cite', 'code',
'ul', 'ol', 'li', 'dl', 'dt', 'dd'))

The filter_xss() function performs the following operations on the text string it is given:

1. It checks to make sure that the text being filtered is valid UTF-8 to avoid a bug with
Internet Explorer 6.

2. It removes odd characters such as NULL and Netscape 4 JavaScript entities.

3. It ensures that HTML entities such as & are well formed.

4. It ensures that HTML tags and tag attributes are well formed. During this process,
tags that are not on the whitelist—that is, the second parameter for filter_xss()—
are removed. The style attribute is removed, too, because that can interfere with the
layout of a page by overriding CSS or hiding content by setting a spammer’s link
color to the background color of the page. Any attributes that begin with on are
removed (e.g., onclick or onfocus) because they represent JavaScript event-handler
definitions. If you write regular expressions for fun and can name character codes for
HTML entities from memory, you’ll enjoy stepping through filter_xss() (found in
modules/filter/filter.module) and its associated functions with a debugger.

5. It ensures that no HTML tags contain disallowed protocols. Allowed protocols are http,
https, ftp, news, nntp, telnet, mailto, irc, ssh, sftp, and webcal. You can modify this
list by setting the filter_allowed_protocols variable. For example, you could restrict
the protocols to http and https by adding the following line to your settings.php file
(see the comment about variable overrides in the settings.php file):

$conf = array(
'filter_allowed_protocols' => array('http', 'https')

);

CHAPTER 20 ! WRITING SECURE CODE458

09898ch20final 7/30/08 1:41 PM Page 458

http://ha.ckers.org/xss.html

Here’s an example of the use of filter_xss() from modules/aggregator/aggregator.
pages.inc. The aggregator module deals with potentially dangerous RSS or Atom feeds. Here
the module is preparing variables for use in the template file that will display a feed item:

/**
* Process variables for aggregator-item.tpl.php.
*
* @see aggregator-item.tpl.php
*/
function template_preprocess_aggregator_item(&$variables) {
$item = $variables['item'];

$variables['feed_url'] = check_url($item->link);
$variables['feed_title'] = check_plain($item->title);
$variables['content'] = aggregator_filter_xss($item->description);
...

}

Note the call to aggregator_filter_xss(), which is a wrapper for filter_xss() and
provides an array of acceptable HTML tags. I have slightly simplified the function in the
following code:

/**
* Safely render HTML content, as allowed.
*/
function aggregator_filter_xss($value) {
$tags = variable_get("aggregator_allowed_html_tags",

'<a>
 <dd> <dl> <dt> <i> <p> <u> ');
// Turn tag list into an array so we can pass it as a parameter.
$allowed_tags = preg_split('/\s+|<|>/', $tags, -1, PREG_SPLIT_NO_EMPTY));
return filter_xss($value, $allowed_tags);

}

!Note As a security exercise, you might want to take any custom modules you have and trace user input
as it comes into the system, is stored, and goes out to ensure that the text is being sanitized somewhere
along the way.

Using filter_xss_admin()
Sometimes you want your module to produce HTML for administrative pages. Because
administrative pages should be protected by access controls, it’s assumed that users given
access to administrative screens can be trusted more than regular users. You could set up a
special filter for administrative pages and use the filter system, but that would be cumber-
some. For these reasons, the function filter_xss_admin() is provided. It is simply a wrapper

CHAPTER 20 ! WRITING SECURE CODE 459

09898ch20final 7/30/08 1:41 PM Page 459

for filter_xss() with a liberal list of allowed tags, including everything except the <script>,
<object>, and <style> tags. An example of its use is in the display of the site mission in a
theme:

if (drupal_is_front_page()) {
$mission = filter_xss_admin(theme_get_setting('mission'));

}

The site’s mission can only be set from the Administer " Site configuration " “Site
information” page, to which only the superuser and users with the “administer site configu-
ration” permission have access, so this is a situation in which the use of filter_xss_admin()
is appropriate.

Handling URLs Securely
Often modules take user-submitted URLs and display them. Some mechanism is needed to
make sure that the value the user has given is indeed a legitimate URL. Drupal provides the
check_url() function, which is really just a wrapper for filter_xss_bad_protocol(). It checks
to make sure that the protocol in the URL is among the allowed protocols on the Drupal site
(see step 5 in the earlier section “Using filter_xss() to Prevent Cross-Site Scripting Attacks”)
and runs the URL through check_plain().

If you want to determine whether a URL is in valid form, you can call valid_url(). It will
check the syntax for http, https, and ftp URLs and check for illegal characters; it returns TRUE
if the URL passes the test. This is a quick way to make sure that users aren’t submitting URLs
with the javascript protocol.

!Caution Just because a URL passes a syntax check does not mean the URL is safe!

If you’re passing on some information via a URL—for example, in a query string—you can
use drupal_urlencode() to pass along escaped characters. Calling drupal_urlencode() does
some encoding of slashes, hashes, and ampersands for compatibility with Drupal’s clean
URLs and then calls PHP’s rawurlencode() function. The drupal_urlencode() function is not
more secure than calling rawurlencode() directly, but it is handy for making encoded strings
that will work well with Apache’s mod_rewrite module.

!Tip The drupal_urlencode() function is an example of a wrapped PHP function—you could call
PHP’s rawurlencode() directly, but then you wouldn’t get the benefit of Drupal taking care of the func-
tion’s eccentricities for you. See includes/unicode.inc for similar wrapped string functions; for
example, drupal_strlen() instead of the PHP function strlen().

CHAPTER 20 ! WRITING SECURE CODE460

09898ch20final 7/30/08 1:41 PM Page 460

Making Queries Secure with db_query()
A common way of exploiting web sites is called SQL injection. Let’s examine a module written
by someone not thinking about security. This person just wants a simple way to list titles of all
nodes of a certain type:

/*
* Implementation of hook_menu().
*/
function insecure_menu() {
$items['insecure'] = array(
'title' => 'Insecure Module',
'description' => 'Example of how not to do things.',
'page callback' => 'insecure_code',
'access arguments' => array('access content'),

);
return $items;

}

/*
* Menu callback, called when user goes to http://example.com/?q=insecure
*/
function insecure_code($type = 'story') {
// SQL statement where variable is embedded directly into the statement.
$sql = "SELECT title FROM {node} WHERE type = '$type'"; // Never do this!
$result = db_query($sql);
$titles = array();
while ($data = db_fetch_object($result)) {
$titles[] = $data->title;

}
// For debugging, output the SQL statement to the screen.
$output = $sql;

$output .= theme('item_list', $titles);
return $output;

}

Going to http://example.com/?q=insecure works as expected. We get the SQL and then a list of
stories, as shown in Figure 20-2.

CHAPTER 20 ! WRITING SECURE CODE 461

09898ch20final 7/30/08 1:41 PM Page 461

http://example.com/?q=insecure
http://example.com/?q=insecure

Figure 20-2. Simple listing of story node titles

Note how the programmer cleverly gave the insecure_code() function a $type parameter
that defaults to 'story'. This programmer is taking advantage of the fact that Drupal’s menu
system forwards additional path arguments automatically as parameters to callbacks, so
http://example.com/?q=insecure/page will get us all titles of nodes of type 'page', as shown
in Figure 20-3.

Figure 20-3. Simple listing of page node titles

However, the programmer has made a potentially fatal error. By coding the variable $type
directly into the SQL and relying on PHP’s variable expansion, the web site is entirely compro-
misable. Let’s go to http://example.com/?q=insecure/page'%20OR%20type%20=%20'story (see
Figure 20-4).

CHAPTER 20 ! WRITING SECURE CODE462

09898ch20final 7/30/08 1:41 PM Page 462

http://example.com/?q=insecure/page
http://example.com/?q=insecure/page'%20OR%20type%20=%20

Figure 20-4. SQL injection caused by not using placeholders in db_query()

Whoops! We were able to enter SQL into the URL and have it executed! How did this hap-
pen? Recall that earlier I mentioned that %20 was the encoded version of a space? We simply
entered the encoded version of the following text:

page' OR type = 'story

Remember our insecure assignment of SQL to the $sql variable? Look what happens
when the encoded text we entered gets unencoded and becomes part of the statement.

Here’s the code before:

SELECT title FROM {node} WHERE type = '$type'

Substituting in $type, which is now set to page' OR type = 'story, we now have

SELECT title from {node} WHERE type = 'page' OR type = 'story'

Once a user is able to change the SQL you’re sending to your database, your site is easy
to compromise (see http://xkcd.com/327/). Here’s an improvement:

function insecure_code($type = 'story') {
// SQL now protected by using a quoted placeholder.
$sql = "SELECT title FROM {node} WHERE type = '%s'";
$result = db_query($sql, $type);
$titles = array();
while ($data = db_fetch_object($result)) {
$titles[] = $data->title;

}
// For debugging, output the SQL statement to the screen.
$output = $sql;

$output .= theme('item_list', $titles);
return $output;

}

CHAPTER 20 ! WRITING SECURE CODE 463

09898ch20final 7/30/08 1:41 PM Page 463

http://xkcd.com/327

Now when we try to manipulate the URL by going to http://example.com/?q=insecure/
page'%20OR%20type%20=%20'story, the db_query() function sanitizes the value by escaping the
embedded single quotes. The query becomes the following:

SELECT title FROM node WHERE type = 'page\' OR type = \'story'

This query will clearly fail because we have no node type named "page\' OR type =
\'story".

The situation can still be improved, however. In this case, the URL should contain only
members of a finite set; that is, the node types on our site. We know what those are, so we
should always confirm that the user-supplied value is in our list of known values. For example,
if we have only the page and story node types enabled, we should only attempt to proceed if
we have been given those types in the URL. Let’s add some code to check for that:

function insecure_code($type = 'story') {
// Check to make sure $type is in our list of known content types.
$types = node_get_types();
if (!isset($types[$type])) {
watchdog('security', 'Possible SQL injection attempt!', array(),
WATCHDOG_ALERT);

return t('Unable to process request.');
}

// SQL now protected by using a placeholder.
$sql = "SELECT title FROM {node} WHERE type = '%s'";
$result = db_query($sql, $type);
$titles = array();
while ($data = db_fetch_object($result)) {
$titles[] = $data->title;

}
// For debugging, output the SQL statement to the screen.
$output = $sql;

$output .= theme('item_list', $titles);
return $output;

}

Here we’ve added a check to make sure that $type is one of our existing node types, and
if the check fails, a handy warning will be recorded for system administrators. There are more
problems, though. The SQL does not distinguish between published and unpublished nodes,
so even titles of unpublished nodes will show up. Plus, node titles are user-submitted data, so
they need to be sanitized before output. But as the code currently stands, it just gets the titles
from the database and displays them. Let’s fix these problems.

CHAPTER 20 ! WRITING SECURE CODE464

09898ch20final 7/30/08 1:41 PM Page 464

http://example.com/?q=insecure

function insecure_code($type = 'story') {
// Check to make sure $type is in our list of known content types.
$types = node_get_types();
if (!isset($types[$type])) {
watchdog('security', 'Possible SQL injection attempt!', array(),
WATCHDOG_ALERT);

return t('Unable to process request.');
}

// SQL now protected by using a placeholder.
$sql = "SELECT title FROM {node} WHERE type = '%s' AND status = 1";
$result = db_query($sql, $type);
$titles = array();
while ($data = db_fetch_object($result)) {
$titles[] = $data->title;

}

// Pass all array members through check_plain().
$titles = array_map('check_plain', $titles);
$output = theme('item_list', $titles);
return $output;

}

Now only unpublished nodes will show up, and all the titles are run through check_
plain() before being displayed. We’ve also removed the debugging code. This module has
come a long way! But there’s still a security flaw. Can you see it? If not, read on.

Keeping Private Data Private with
db_rewrite_sql()
The preceding example of listing nodes is a common task for contributed modules (though
less so now that the views module makes it so easy to define node listings through the Web).
Question: If a node access control module is enabled on the site, where is the code in the pre-
ceding example that makes sure our user sees only the subset of nodes that is allowed? You’re
right . . . it’s completely absent. The preceding code will show all nodes of a given type, even
those protected by node access modules. It’s arrogant code that doesn’t care what other mod-
ules think! Let’s change that.

Before:

$sql = "SELECT title FROM {node} WHERE type = '%s' AND status = 1";
$result = db_query($sql, $type);

After:

$sql = "SELECT n.nid, title FROM {node} n WHERE type = '%s' AND status = 1";
$result = db_query(db_rewrite_sql($sql), $type); // Respect node access rules.

CHAPTER 20 ! WRITING SECURE CODE 465

09898ch20final 7/30/08 1:41 PM Page 465

We’ve wrapped the $sql parameter for db_query() in a call to db_rewrite_sql(),
a function that allows other modules to modify the SQL. Queries that pass through
db_rewrite_sql() need to have their primary field (n.nid) and table alias (n) stated in the
query, so we’ve added them to the SQL. A significant example of a module that rewrites
queries against the node table is the node module. It checks to see if there are entries in the
node_access table that might restrict a user’s access to nodes and inserts query fragments to
check against these permissions. In our case, the node module will modify the SQL to include
an AND in the WHERE clause that will filter out results to which the user does not have access. See
Chapter 5 to see how this is done and for more about db_rewrite_sql().

Dynamic Queries
If you have a varying number of values in your SQL that cannot be determined until runtime,
it doesn’t excuse you from using placeholders. You’ll need to create your SQL programmati-
cally using placeholder strings such as '%s' or %d, and then pass along an array of values to fill
these placeholders. If you’re calling db_escape_string() yourself, you’re doing something
wrong. Here’s an example showing the generation of placeholders, supposing that we want
to retrieve a list of published node IDs and titles from nodes matching certain node types:

// $node_types is an array containing one or more node type names
// such as page, story, blog, etc.
$node_types = array('page', 'story', 'blog');
// Generate an appropriate number of placeholders of the appropriate type.
$placeholders = db_placeholders($node_types, 'text');
// $placeholders is now a string that looks like '%s', '%s', '%s'
$sql = "SELECT n.nid, n.title from {node} n WHERE n.type IN ($placeholders)
AND status = 1";

// Let db_query() fill in the placeholders with values.
$result = db_query(db_rewrite_sql($sql), $node_types);

After db_rewrite_sql() is evaluated in the preceding code, the db_query() call looks
like this:

db_query("SELECT DISTINCT(n.nid), n.title from {node} n WHERE n.type IN
('%s','%s','%s') AND status = 1", array('page', 'story', 'blog'));

Now the node type names will be sanitized when db_query() executes. See db_query_
callback() in includes/database.inc if you are curious about how this happens.

Here’s another example. Sometimes you’re in the situation where you want to restrict a
query by adding some number of AND restrictions to the WHERE clause of a query. You need to
be careful to use placeholders in that case, too. In the following code, assume any sane value
for $uid and $type (e.g., 3 and page).

$sql = "SELECT n.nid, n.title FROM {node} n WHERE status = 1";
$where = array();
$where_values = array();

CHAPTER 20 ! WRITING SECURE CODE466

09898ch20final 7/30/08 1:41 PM Page 466

$where[] = "AND n.uid = %d";
$where_values[] = $uid;

$where[] = "AND n.type = '%s'";
$where_values[] = $type;

$sql = $sql . ' ' . implode(' ', $where) ;
// $sql is now SELECT n.nid, n.title
// FROM {node} n
// WHERE status = 1 AND n.uid = %d AND n.type = '%s'

// The values will now be securely inserted into the placeholders.
$result = db_query(db_rewrite_sql($sql), $where_values));

Permissions and Page Callbacks
Another aspect to keep in mind when writing your own modules is the access arguments key
of each menu item you define in the menu hook. In the earlier example demonstrating inse-
cure code, we used the following access arguments:

/*
* Implementation of hook_menu().
*/
function insecure_menu() {
$items['insecure'] = array(
'title' => 'Insecure Module',
'description' => 'Example of how not to do things.',
'page callback' => 'insecure_code',
'access arguments' => array('access content'),

);
return $items;

}

It’s important to question who is allowed to access this callback. The “access content”
permission is a very general permission. You probably want to define your own permis-
sions, using hook_perm(), and use those to protect your menu callbacks. Permissions are
unique strings describing the permission being granted (see the section “Access Control”
in Chapter 4 for more details).

Because your implementation of the menu hook is the gatekeeper that allows or denies
a user from reaching the code behind it (through the callback), it’s especially important to
give some thought to the permissions you use here.

CHAPTER 20 ! WRITING SECURE CODE 467

09898ch20final 7/30/08 1:41 PM Page 467

Cross-Site Request Forgeries (CSRF)
Suppose that you have logged into drupal.org and are browsing the forums there. Then you
get off on a tangent and end up browsing at another web site. Someone evil at that web site
has crafted an image tag like this:

When your web browser loads the image, it will request that path from drupal.org.
Because you are currently logged in to drupal.org, your browser will send your cookie along
with the request. Here’s a question to ponder: when drupal.org receives the request, will it
consider you a logged-in user with all the access privileges you’ve been given? You bet it will!
The evil person’s image tag has essentially made your user click a link on drupal.org.

The first defense against this type of attack is to never use GET requests to actually change
things on the server; that way, any requests generated this way will be harmless. The Drupal
form API follows the HTTP/1.1 convention that the GET method should not take any action
other than data retrieval. Drupal uses POST exclusively for actions that make changes to the
server (see http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1).

Second, the form API uses tokens and unique IDs to make sure that submitted form val-
ues from POST requests are coming from a form that Drupal sent out (for more on this, see
Chapter 10). When you are writing modules, be sure to use the form API for your forms and
you will gain this protection automatically. Any action that your module takes as a result of
form input should happen in the submit function for the form. That way, you are assured that
the form API has protected you.

Finally, you can also protect GET requests if necessary by using a token (generated by
drupal_get_token()) in the URL and verifying the token with drupal_valid_token().

File Security
The dangers faced by Drupal when handling files and file paths are the same as with other
web applications.

File Permissions
File permissions should be set in such a way that the user cannot manipulate (add, rename,
or delete) files. The web server should have read-only access to Drupal files and directories.
The exception is the file system path. Clearly, the web server must have access to that direc-
tory so it can write uploaded files.

Protected Files
The .htaccess file that ships with Drupal has the following lines:

Protect files and directories from prying eyes.
<FilesMatch "\.(engine|inc|info|install|module|profile|po
|sh|.*sql|theme|tpl(\.php)?|xtmpl)$|^(code-style\.pl
|Entries.*|Repository|Root|Tag|Template)$">
Order allow,deny

</FilesMatch>

CHAPTER 20 ! WRITING SECURE CODE468

09898ch20final 7/30/08 1:41 PM Page 468

http://drupal.org/some/path
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1

The Order directive is set to allow,deny but no Allow or Deny directives are included. This
means that the implicit behavior is to deny. In other words, reject all requests for the files
shown in Table 20-2.

Table 20-2. Files Rejected by the FilesMatch Directive’s Regular Expression in Drupal’s
.htaccess File

Files Matched Description
Ends with .engine Template engines

Ends with .inc Library files

Ends with .info Module and theme .info files

Ends with .install Module .install files

Ends with .module Module files

Ends with .profile Installation profiles

Ends with .po Portable object files (translations)

Ends with .sh Shell scripts

Ends with .*sql SQL files

Ends with .theme PHP themes

Ends with .tpl.php PHPTemplate template files

Ends with .tpl.php4 PHPTemplate template files

Ends with .tpl.php5 PHPTemplate template files

Ends with .xtmpl XTemplate files

Named code-style.pl Syntax-checking script

Begins with Entries. CVS file

Named Repository CVS file

Named Root CVS file

Named Tag CVS file

Named Template CVS file

File Uploads
If a module is enabled to allow file uploading, the files should be placed in a specific directory,
and access should be enforced by the code.

If file uploads are enabled and the private download method is chosen at Administer "
Site configuration " File system, the file system path on that same screen must be outside of
the web root. In other words, trying to enforce application-specific user permissions on files
within the web root is counterproductive.

The big danger with file uploads is that if someone were to be able to upload an exe-
cutable file, that file could be used to gain access to your server. Drupal protects against that
on two fronts. First, the following .htaccess file is written to the directory specified by the file
system path:

CHAPTER 20 ! WRITING SECURE CODE 469

09898ch20final 7/30/08 1:41 PM Page 469

SetHandler Drupal_Security_Do_Not_Remove_See_SA_2006_006
Options None
Options +FollowSymLinks

The SetHandler directive tells Apache that any execution of any files in this directory
should be handled by the handler Drupal_Security_Do_Not_Remove_See_SA_2006_006 (which
does not exist). Thus, the handler overrides any handlers defined by Apache, such as

AddHandler application/x-httpd-php .php

Drupal’s upload module also implements file renaming for files with multiple extensions.
Thus, evilfile.php.txt becomes evilfile.php_.txt upon upload. See http://drupal.org/
node/65409 and http://drupal.org/node/66763 for details.

!Note The preceding solution is Apache-specific. If you are running Drupal on a different web server, you
should be cognizant of the security issues surrounding the possibility of users uploading executable files.

Filenames and Paths
No filename or file path information from the user can be trusted! When you are writing
a module and your code expects to receive somefile.txt, realize that it may get something
else instead, like

../somefile.txt // File in a parent directory.

../settings.php // Targeted file.

somefile.txt; cp ../settings.php ../settings.txt // Hoping this runs in shell.

The first two examples try to manipulate the file path by including the two dots that indi-
cate a parent directory to the underlying operating system. The last example hopes that the
programmer will execute a shell command and has included a semicolon so that after the
shell command runs, an additional command will run that will make settings.php readable
and thus reveal the database username and password. All of the preceding examples are hop-
ing that file permissions are set incorrectly, and that the web server actually has write access
to directories other than the file system path.

Whenever you are using file paths, a call to file_check_location() is in order, like this:

if (!file_check_location($path, 'mydirectory') {
// Abort! File path is not what was expected!

}

The file_check_location() function will find out the real location of the file and com-
pare it to the directory you expect it to be in. If the file path is OK, the real path of the file is
returned; if not, 0 is returned.

CHAPTER 20 ! WRITING SECURE CODE470

09898ch20final 7/30/08 1:41 PM Page 470

http://drupal.org
http://drupal.org/node/66763

In general, you probably don’t want the Next Great File Management Module to be
your first Drupal project. Instead, study existing file-related modules that have been
around for a while.

Encoding Mail Headers
When writing any code that takes user input and builds it into an e-mail message, consider
the following two facts:

1. E-mail headers are separated by line feeds (only line feeds that aren’t followed by a
space or tab are treated as header separators).

2. Users can inject their own headers in the body of the e-mail if you don’t check that
their input is free of line feeds.

For example, say you expect the user to enter a subject for his or her message and the user
enters a string interspersed by escaped line feed (%0A) and space (%20) characters:

Have a nice day%0ABcc:spamtarget@example.com%0A%0AL0w%20c0st%20mortgage!

The result would be as follows:

Subject: Have a nice day
Bcc: spamtarget@example.com

L0w c0st mortgage!
...

For that reason, Drupal’s built-in mail function drupal_mail() in includes/mail.inc runs
all headers through mime_header_encode() to sanitize headers. Any nonprintable characters
will be encoded into ASCII printable characters according to RFC 2047, and thus neutralized.
This involves prefixing the character with =?UTF-8?B? and then printing the Base64-encoded
character plus ?=.

You’re encouraged to use drupal_mail(); if you choose not to, you’ll have to make the
mime_header_encode() calls yourself.

Files for Production Environments
Not all files included in the distribution of Drupal are necessary for production sites. For
example, making the CHANGELOG.txt file available on a production site means that anyone on
the Web can see what version of Drupal you are running (of course, the black hats have other
ways of detecting that you are running Drupal; see http://www.lullabot.com/articles/
is-site-running-drupal). Table 20-3 lists the files and/or directories that are necessary for
Drupal to function after it has been installed; the others can be removed from a production
site (keep a copy, though!). Alternatively, read access can be denied to the web server.

CHAPTER 20 ! WRITING SECURE CODE 471

09898ch20final 7/30/08 1:41 PM Page 471

mailto:spamtarget@example.com
http://www.lullabot.com/articles

Table 20-3. Files and Directories That Are Necessary for Drupal to Function

File/Directory Purpose
.htaccess Security, clean URL, and caching support on Apache

cron.php Allows regularly scheduled tasks to run

includes/ Function libraries

index.php Main entry point for Drupal requests

misc/ JavaScript and graphics

modules/ Core modules

robots.txt Prevents well-behaved robots from hammering your site

sites/ Site-specific modules, themes, and files

themes/ Core themes

xmlrpc.php XML-RPC endpoint; only necessary if your site will receive incoming XML-RPC
requests

Protecting cron.php
Drupal has regularly scheduled tasks that must be executed, such as pruning log files,
updating statistics, and so forth. This is accomplished by running the file cron.php either
from a regularly scheduled cron task on a Unix machine or from the task scheduler on Win-
dows. The file may be run either from the command line or through the web server. The
execution of this file simply does a full Drupal bootstrap and then invokes the drupal_cron_
run() function in includes/common.inc. This function uses a semaphore to prevent multiple
overlapping cron runs; however, the paranoid may want to prevent just anyone from going
to http://example.com/cron.php. You can do that by adding the following lines to the
.htaccess file in Drupal’s root directory:

<Files cron.php>
Order deny,allow
Deny from all
Allow from example.com
Allow from 1.2.3.4
Allow from 127.0.0.1

</Files>

The preceding directives tell Apache to deny access to all clients except those in the
example.com domain, the computer with IP address 1.2.3.4, and the local machine.

Some administrators simply rename the cron.php file.

SSL Support
By default, Drupal handles user logins in plain text over HTTP. However, Drupal will happily
run over HTTPS if your web server supports it. No modification to Drupal is required.

CHAPTER 20 ! WRITING SECURE CODE472

09898ch20final 7/30/08 1:41 PM Page 472

http://example.com/cron.php

Stand-Alone PHP
Occasionally, you might need to write a stand-alone .php file instead of incorporating the
code into a Drupal module. When you do, be sure to keep security implications in mind.
Suppose, when you were testing your web site, you wrote some quick and dirty code to
insert users into the database so you could test performance with many users. Perhaps you
called it testing.php and put it at the root of your Drupal site, next to index.php. Then you
bookmarked it in your browser, and every time you wanted a fresh user table, you selected
the bookmark:

<?php
/**
* This script generates users for testing purposes.
*/
// These lines are all that is needed to have full
// access to Drupal's functionality.
include_once 'includes/bootstrap.inc';
drupal_bootstrap(DRUPAL_BOOTSTRAP_FULL);

db_query('DELETE FROM {users} WHERE uid > 1'); // Whoa!
for ($i = 2; $i <= 5000; $i++) {
$name = md5($i);
$pass = md5(user_password());
$mail = $name .'@localhost';
$status = 1;
db_query("INSERT INTO {users} (name, pass, mail, status, created, access)
VALUES ('%s', '%s', '%s', %d, %d, %d)", $name, $pass, $mail, $status,
time(), time());

}
print t('Users have been created.');

That’s useful for testing, but imagine what would happen if you forgot that the script was
there and the script made it onto your production site! Anyone who found the URL to your
script (http://example.com/testing.php) could delete your users with a single request. That’s
why it’s important, even in quick one-off scripts, to include a security check, as follows:

<?php
/**
* This script generates users for testing purposes.
*/
// These lines are all that is needed to have full
// access to Drupal's functionality.
include_once 'includes/bootstrap.inc';
drupal_bootstrap(DRUPAL_BOOTSTRAP_FULL);

CHAPTER 20 ! WRITING SECURE CODE 473

09898ch20final 7/30/08 1:41 PM Page 473

mailto:.'@localhost
http://example.com/testing.php

// Security check; only superuser may execute this.
if ($user->uid != 1) {
print t('Not authorized.');
exit();

}

db_query('DELETE FROM {users} WHERE uid > 1'); // Whoa!
for ($i = 2; $i <= 5000; $i++) {
$name = md5($i);
$pass = md5(user_password());
$mail = $name .'@localhost';
$status = 1;
db_query("INSERT INTO {users} (name, pass, mail, status, created, access)
VALUES ('%s', '%s', '%s', %d, %d, %d)", $name, $pass, $mail, $status, time(),
time());

}
print t('Users have been created.');

Here are two take-home lessons:

1. Write security checking even into quickly written scripts, preferably working from a
template that includes the necessary code.

2. Remember that an important part of deployment is to remove or disable testing code.

AJAX Security
The main thing to remember about security in connection with AJAX capabilities such as
jQuery is that although you usually develop the server side of the AJAX under the assumption
that it will be called from JavaScript, there’s nothing to prevent a malicious user from making
AJAX calls directly (e.g., from command-line tools like curl or wget, or even just by typing the
URL into a web browser). Be sure to test your code from both positions.

Form API Security
One of the benefits of using the form API is that much of the security is handled for you. For
example, Drupal checks to make sure that the value the user chose from a drop-down selec-
tion field was actually a choice that Drupal presented. The form API uses a set sequence of
events, such as form building, validation, and execution. You should not use user input
before the validation phase because, well, it hasn’t been validated. For example, if you’re
using a value from $_POST, you have no guarantee that the user hasn’t manipulated that
value. Also, use the #value element to pass information along in the form instead of using
hidden fields whenever possible, as malicious users can manipulate hidden fields but have
no access to #value elements.

Any user-submitted data that is used to build a form must be properly sanitized like any
other user-submitted data, as in the following example.

CHAPTER 20 ! WRITING SECURE CODE474

09898ch20final 7/30/08 1:41 PM Page 474

mailto:.'@localhost

Unsafe:

$form['foo'] = array(
'#type' => 'textfield',
'#title' => $node->title, // XSS vulnerability!
'#description' => 'Teaser is: '. $node->teaser, // XSS vulnerability!
'#default_value' => check_plain($node->title), // Unnecessary.

);

Safe:

$form['foo'] = array(
'#type' => 'textfield',
'#title' => check_plain($node->title),
'#description' => t('Teaser is: @teaser', array('@teaser' => $node->teaser)),
'#default_value' => $node->title,

};

It is not necessary to run the default value through check_plain() because the theme
function for the form element type (in this case, theme_textfield() in includes/form.inc)
does that.

!Caution If you are writing your own theme functions or overriding Drupal’s default theme functions,
always make a point to ask yourself if any user input is being sanitized, and to duplicate that in your code.

See Chapter 10 for more about the form API.

Protecting the Superuser Account
The easiest way to obtain credentials for a Drupal web site is probably to call a naïve secre-
tary somewhere and say, “Hi, this is Joe. <Insert small talk here.> I’m with the computer
support team, and we’re having some problems with the web site. What is the username
and password you usually log in with?” Sadly, many people will simply give out such infor-
mation when asked. While technology can help, user education is the best defense against
such attacks.

This is why it is a good idea to never assign user 1 (the superuser) to anyone as a matter
of course. Instead, each person who will be maintaining a web site should be given only the
permissions needed to perform the tasks for which he or she is authorized. That way, if a
security breach happens, damage may be contained.

CHAPTER 20 ! WRITING SECURE CODE 475

09898ch20final 7/30/08 1:41 PM Page 475

Using eval()
Don’t. You might come up with a splendid way to do metaprogramming or eliminate many
lines of code by using the PHP eval() function, which takes a string of text as input and evalu-
ates it using the PHP interpreter. This is almost always a mistake. If there’s any way for the
input to eval() to be manipulated by a user, you risk exposing the power of the PHP inter-
preter to the user. How long will it be before that power is used to display the username and
password for your database?

This is also why you should only use the PHP code filter in Drupal and its associated per-
missions in the most desperate of circumstances. To sleep soundly at night, shun eval() and
the PHP code filter. Drupal does use eval() in the core Drupal installation, but it occurs rarely
and is wrapped by drupal_eval(), which prevents the code being evaluated from overwriting
variables in the code that called it. drupal_eval() is in includes/common.inc.

Summary
After reading this chapter, you should know

• That you should never, ever trust input from the user

• How you can transform user input to make it safe for display

• How to avoid XSS attacks

• How to avoid SQL injection attacks

• How to write code that respects node access modules

• How to avoid CSRF attacks

• How Drupal protects uploaded files

• How to avoid e-mail header injections

CHAPTER 20 ! WRITING SECURE CODE476

09898ch20final 7/30/08 1:41 PM Page 476

Development Best Practices

In this chapter, you’ll find all the little coding tips and best practices that’ll make you an
upstanding Drupal citizen and help keep your forehead separated from the keyboard. I’ll
begin by introducing Drupal’s coding standards, then show you how to create documentation
that will help other developers understand your code. I will help you find things quickly in
Drupal’s codebase, introduce version control, walk you through module maintenance, and
wrap up by discussing debugging and profiling your code.

Coding Standards
The Drupal community has agreed that its codebase must have a standardized look and feel
to improve readability and make diving in easier for budding developers. Developers of con-
tributed modules are encouraged to adopt these standards as well. Actually, let me be frank:
your modules will not be taken seriously unless you follow the coding standards. I’ll cover the
standards first and then introduce a few automated tools to help you check your code (and
even correct it for you!).

Line Indention
Drupal code uses two spaces for indentation—not tabs. In most editors, you can set a prefer-
ence to automatically replace tabs with spaces, so you can still use the Tab key to indent if
you’re working against the force of habit.

PHP Opening and Closing Tags
Files that contain code, such as .module or .inc files, use an opening PHP code tag as follows:

<?php
...

The shorter opening tag form, <?, is never used.
The closing ?> tag is not necessary and is not used in Drupal code. In fact, it can cause

problems if used. The exception is that the closing tag is used in template files that exit out of
PHP and go back into HTML, for example, in themes/bluemarine/block.tpl.php:

477

C H A P T E R 2 1

09898ch21final 7/30/08 1:36 PM Page 477

<?php
// $Id: block.tpl.php,v 1.3 2007/08/07 08:39:36 goba Exp $
?>
<div class="block block-<?php print $block->module; ?>" id="block-<?php
print $block->module; ?>-<?php print $block->delta; ?>">
<h2 class="title"><?php print $block->subject; ?></h2>
<div class="content"><?php print $block->content; ?></div>

</div>

Control Structures
Control structures are instructions that control the flow of execution in a program, like con-
ditional statements and loops. Conditional statements are if, else, elseif, and switch
statements. Control loops are while, do-while, for, and foreach.

Control structures should have a single space between the control keyword (if, elseif,
while, for, etc.) and the opening parenthesis to visually distinguish them from function calls
(which also use parentheses but have no space). Opening braces should be on the same line
as the keyword (not on their own line). Ending function braces should be on their own line.

Incorrect

if ($a && $b)
{
sink();

}

Correct

if ($a && $b) {
sink();

}
elseif ($a || $b) {
swim();

}
else {
fly();

}

Braces should typically be used, even when they’re not necessarily needed, to promote
readability and reduce the chance of errors.

Incorrect

while ($a < 10)
$a++;

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES478

09898ch21final 7/30/08 1:36 PM Page 478

Correct

while ($a < 10) {
$a++;

}

Switch statements should be formatted as follows (notice that a break; statement is not
necessary in the default case):

switch ($a) {
case 1:
red();
break;

case 2:
blue();
break;

case 3:
purple();
// Fall through to default case.

default:
green();

}

If the break; statement is omitted because execution is intended to fall through to the
next case, note that decision in a code comment.

Function Calls
In function calls, there should be a single space surrounding the operator (=, <, >, etc.) and no
spaces between the name of the function and the function’s opening parenthesis. There is also
no space between a function’s opening parenthesis and its first parameter. Middle function
parameters are separated with a comma and a space, and the last parameter has no space
between it and the closing parenthesis. The following examples illustrate these points:

Incorrect

$var=foo ($bar,$baz);

Correct

$var = foo($bar, $baz);

There’s one exception to the rule. In a block of related assignments, more space may be
inserted between assignment operators if it promotes readability:

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 479

09898ch21final 7/30/08 1:36 PM Page 479

$a_value = foo($b);
$another_value = bar();
$third_value = baz();

Function Declarations
There should be no space between a function’s name and its opening parenthesis. When writ-
ing a function that uses default values for some of its parameters, list those parameters last.
Also, if your function generates any data that may be useful, returning that data in case the
caller wants to use it is a good practice. Some function declaration examples follow:

Incorrect

function foo ($bar = 'baz', $qux){
$value = $qux + some_function($bar);

}

Correct

function foo($qux, $bar = 'baz') {
$value = $qux + some_function($bar);
return $value;

}

Function Names
Function names in Drupal are in lowercase and based on the name of the module or system
they are part of. This convention avoids namespace collisions. Underscores are used to sepa-
rate descriptive parts of the function name. After the module name, the function should be
named with the verb and the object of that verb: modulename_verb_object(). In the first follow-
ing example, the incorrectly named function has no module prefix, and the verb and its object
are reversed. The subsequent example, obviously, corrects these errors.

Incorrect

function some_text_munge() {
...

}

Correct

function mymodule_munge_some_text() {
...

}

Private functions follow the same conventions as other functions but are prefixed with an
underscore.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES480

09898ch21final 7/30/08 1:36 PM Page 480

Arrays
Arrays are formatted with spaces separating each element and each assignment operator. If an
array block spans more than 80 characters, each element should be moved to its own line. It’s
good practice to put each element on its own line anyway for readability and maintainability.
This allows you to easily add or remove array elements.

Incorrect

$fruit['basket'] = array('apple'=>TRUE, 'orange'=>FALSE, 'banana'=>TRUE,
'peach'=>FALSE);

Correct

$fruit['basket'] = array(
'apple' => TRUE,
'orange' => FALSE,
'banana' => TRUE,
'peach' => FALSE,

);

!Note The comma at the end of the last array element is not an error, and PHP allows this syntax. It’s
there to err on the side of caution, in case a developer bops along and decides to add or remove an element
at the end of the array list. This convention is allowed and encouraged but not required.

When creating internal Drupal arrays, such as menu items or form definitions, always list
only one element on each line:

$form['flavors'] = array(
'#type' => 'select',
'#title' => t('Flavors'),
'#description' => t('Choose a flavor.'),
'#options' => $flavors,

);

Constants
PHP constants should be in all capital letters, with underscores separating proper words:

/**
* First bootstrap phase: initialize configuration.
*/
define('DRUPAL_BOOTSTRAP_CONFIGURATION', 0);

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 481

09898ch21final 7/30/08 1:36 PM Page 481

Names of constants should be prefixed by the module that uses them to avoid namespace
collisions between constants. For example, if you are writing tiger.module, use TIGER_STRIPED
instead of STRIPED.

Global Variables
The use of global variables is strongly discouraged. If you must use global variables, they
should be named with a single underscore followed by your namespace (that is, the name
of your module or theme) followed by an underscore and a descriptive name.

Incorrect
global $records;

Correct
global $_mymodulename_access_records;

Module Names
Module names should never include an underscore. To understand why, think of the following
scenario:

1. A developer creates node_list.module that contains a function called node_list_all().

2. In the next version of Drupal, the core node module adds a function called
node_list_all()—namespace conflict!

The preceding conflict could be avoided if the developer follows the convention of nam-
ing the module with no underscores: nodelist_all() will never conflict with core code.

The easiest way of thinking about this is to recognize that anything to the left of the first
underscore is owned by the module with that name. For example, the node module in core
owns all of the node_ namespace. If you are writing functions that begin with node_ , user_ ,
filter_, or any other core namespace, you are asking for trouble. A namespace conflict in
a contributed module means extra work for you and for anyone who has written code that
depends on your module.

Filenames
Filenames should be lowercase. The exception is documentation files, which are named in
uppercase with the .txt suffix, for example:

CHANGELOG.txt
INSTALL.txt
README.txt

It is best to follow the conventions that core uses when naming files. The files from the
book module in core are shown in Table 21-1.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES482

09898ch21final 7/30/08 1:36 PM Page 482

Table 21-1. File Names Used in the book Module and Module-Related Files

Filename Description
book.info Module name, description, core compatibility, dependencies

book.install Schema definition; includes hooks that run when the module
is installed, uninstalled, enabled, or disabled

book.module Code

book.admin.inc Code included when accessing administrative pages

book.pages.inc Code for user-specific (rarely used) functions

book.css Default CSS for book-related classes and IDs

book-rtl.css CSS overrides for right-to-left languages

book-all-books-block.tpl.php Default template file

book-export-html.tpl.php Default template file

book-navigation.tpl.php Default template file

book-node-export-html.tpl.php Default template file

PHP Comments
Drupal follows most of the Doxygen comment style guidelines. All documentation blocks
must use the following syntax:

/**
* Documentation here.
*/

The leading spaces that appear before the asterisks (*) on lines after the first one are
required.

!Note Doxygen is a PHP-friendly documentation generator. It extracts PHP comments from the code and
generates human-friendly documentation. For more information, visit http://www.doxygen.org.

When documenting a function, the documentation block must immediately precede the
function it documents, with no intervening blank lines.

Drupal understands the Doxygen constructs in the following list; although I’ll cover the
most commons ones, please refer to the Doxygen site for more information on how to use
them:

• @mainpage

• @file

• @defgroup

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 483

09898ch21final 7/30/08 1:36 PM Page 483

http://www.doxygen.org

• @ingroup

• @addtogroup (as a synonym of @ingroup)

• @param

• @return

• @link

• @see

• @{

• @}

The beauty of adhering to these standards is that you can automatically generate
documentation for your modules using the API contributed module. The API module is an
implementation of a subset of the Doxygen documentation generator specification, tuned
to produce output that best benefits a Drupal codebase. You can see this module in action
by visiting http://api.drupal.org as well as learn more about the API module at http://
drupal.org/project/api.

Documentation Examples
Let’s walk through the skeleton of a module from top to bottom and highlight the different
types of documentation along the way.

The second line of a module (after the opening <?php tag) should contain a concurrent
versions system (CVS) tag to keep track of the file’s revision number:

// Id

This tag is automatically parsed and expanded when the code is checked into CVS and
updated subsequently by CVS following any CVS commit. Afterward, it will automatically look
similar to this:

// $Id: comment.module,v 1.617.2.2 2008/04/25 20:58:46 goba Exp $

You’ll learn more about how to use CVS shortly.
Before declaring functions, take a moment to document what the module does using the

following format:

/**
* @file
* One-line description/summary of what your module does goes here.
*
* A paragraph or two in broad strokes about your module and how it behaves.
*/

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES484

09898ch21final 7/30/08 1:36 PM Page 484

http://api.drupal.org
http://drupal.org/project/api
http://drupal.org/project/api

Documenting Constants
PHP constants should be in all capital letters, with underscores separating proper words.
When defining PHP constants, it’s a good idea to explain what they’re going to be used for,
as shown in the following code snippet:

/**
* Role ID for authenticated users; should match what's in the "role" table.
*/
define('DRUPAL_AUTHENTICATED_RID', 2);

Documenting Functions
Function documentation should use the following syntax:

/**
* Short description, beginning with a verb.
*
* Longer description goes here.
*
* @param $foo
* A description of what $foo is.
* @param $bar
* A description of what $bar is.
* @return
* A description of what this function will return.
*/
function name_of_function($foo, $bar) {
...
return $baz;

}

The short description should begin with an imperative verb in the present tense, such
as “Munge form data” or “Do remote address lookups” (not “Munges form data” or “Does
remote address lookups”). Let’s take a look at an example from Drupal core that is found
within system.module:

/**
* Add default buttons to a form and set its prefix.
*
* @ingroup forms
* @see system_settings_form_submit()
* @param $form
* An associative array containing the structure of the form.
* @return
* The form structure.
*/
function system_settings_form($form) {
...

}

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 485

09898ch21final 7/30/08 1:36 PM Page 485

There are a couple of new Doxygen constructs in the preceding example:

• @see tells you what other functions to reference. The preceding code is a form defini-
tion, so @see points to the submit handler for the form. When the API module parses
this to produce documentation (such as that available at http://api.drupal.org), it will
turn the function name that follows @see into a clickable link.

• @ingroup links a set of related functions together. In this example, it creates a group
of functions that provide form definitions. You can create any group name you wish.
Possible core values are: batch, database, file, format, forms, hooks, image, menu, node_
access, node_content, schemaapi, search, themeable, and validation.

!Tip You can view all functions in a given group at http://api.drupal.org. For example, form builder
functions are listed at http://api.drupal.org/api/group/forms/6, and themable functions are listed
at http://api.drupal.org/api/group/themeable/6.

Functions that implement common Drupal constructs, such as hooks or form valida-
tion/submission functions, may omit the full @param and @return syntax but should still
contain a one-line description of what the function does, as in this example:

/**
* Validate the book settings form.
*
* @see book_admin_settings()
*/
function book_admin_settings_validate($form, &$form_state) {
...
}

}

It is useful to know if a function is a menu callback (that is, mapped to a URL using
hook_menu()):

/**
* Menu callback; print a listing of all books.
*/
function book_render() {
...

}

Documenting Hook Implementations
When a function is a hook implementation, there is no need to document the hook. Simply
state which hook is being implemented, for example:

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES486

09898ch21final 7/30/08 1:36 PM Page 486

http://api.drupal.org
http://api.drupal.org
http://api.drupal.org/api/group/forms/6
http://api.drupal.org/api/group/themeable/6

/**
* Implementation of hook_block().
*/
function statistics_block($op = 'list', $delta = 0, $edit = array() {
...

}

Checking Your Coding Style Programmatically
There are two main approaches to checking that your coding style matches the Drupal coding
standards: one uses a Perl script and the other, a contributed module.

Using code-style.pl
Inside the scripts directory of your Drupal root directory, you’ll find a Perl script named
code-style.pl, which checks your Drupal coding style. Here’s how to use it.

First, change the permissions in order to make the file executable; otherwise, you’ll get a
“Permission denied” error. This can be done from the command line using chmod as follows:

$ cd scripts
$ ls -l | grep code-style
-rw-r--r-- 1 jvandyk jvandyk 4946 Feb 15 2007 code-style.pl

$ chmod u+x code-style.pl
$ ls -l | grep code-style
-rwxr--r-- 1 jvandyk jvandyk 4946 Feb 15 2007 code-style.pl

Windows users don’t need to worry about changing file permissions, but you may need
to make sure that Perl is installed to run code-style.pl. Information about Perl can be found
at http://www.perl.org.

Now you can execute code-style.pl by passing in the location of the module or other file
to evaluate. The following example illustrates how this might be written:

$./code-style.pl ../modules/node/node.module

The output of the program will usually be in the following format:

line number : 'error' -> 'correction' : content of line

For example, the following script is telling us we need spaces around the assignment
operator (=) on line 30 of foo.module, which currently contains the code $a=1;:

foo.module30: '=' -> ' = ' : $a=1;

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 487

09898ch21final 7/30/08 1:36 PM Page 487

http://www.perl.org

!Note Beware of false positives. While this script does a pretty good job, it’s not perfect, and you’ll need to
carefully evaluate each report.

Using the Coder Module
At http://drupal.org/project/coder, you’ll find a treasure that will save you a lot of time and
aggravation. It’s the coder module: a module that reviews the code in other modules.

Download the latest version, place it in sites/all/modules/contrib/, and then enable
it at Administer " Site building " Modules as you would any other module.

To have the coder module review your module, click the new “Code review” link in your
site navigation, and select the kind of review you want and the module or theme you would
like to have reviewed. Or use the handy Code Review link that this module provides on the list
of modules at Administer " Site building " Modules.

!Tip Use of the coder module should be considered mandatory if you are serious about getting up to
speed with Drupal’s coding conventions.

You can even go a step further and use the coder_format.php script that comes with the
coder module. The script actually fixes your code formatting errors. Here is how to have
coder_format.php check the annotate module we wrote in Chapter 2:

$ cd sites/all/modules
$ php contrib/coder/scripts/coder_format/coder_format.php \
custom/annotate/annotate.module

The script modifies the file annotate.module in place and saves the original as
annotate.module.coder.orig. To see what the script did, use diff:

$ diff custom/annotate/annotate.module custom/annotate/annotate.module.coder.orig

Finding Your Way Around Code with egrep
egrep is a Unix command that searches through files looking for lines that match a supplied
regular expression. No, it’s not a bird (that’s an egret). If you’re a Windows user and would like
to follow along with these examples, you can use egrep by installing a precompiled version
(see http://unxutils.sourceforge.net) or by installing the Cygwin environment (http://
cygwin.com). Otherwise, you can just use the built-in search functionality of the operating
system rather than egrep.

egrep is a handy tool when looking for the implementation of hooks within Drupal core,
finding the place where error messages are being built, and so on. Let’s look at some examples
of using egrep from within the Drupal root directory:

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES488

09898ch21final 7/30/08 1:36 PM Page 488

http://drupal.org/project/coder
http://unxutils.sourceforge.net
http://cygwin.com
http://cygwin.com

$ egrep -rl 'hook_init' .
./includes/bootstrap.inc
./includes/path.inc
./modules/aggregator/aggregator.module
./modules/book/book.module
./modules/forum/forum.module
./modules/node/node.module
./modules/poll/poll.module
./modules/system/system.module
./update.php

In the preceding case, we are recursively searching (-r) our Drupal files for instances
of hook_init starting at the current directory (.) and printing out the filenames (-l) of the
matching instances. Now look at this example:

$ egrep -rn 'hook_init' .
./includes/bootstrap.inc:1011: // Initialize $_GET['q'] prior to loading
modules and invoking hook_init().

./includes/path.inc:9: * to use them in hook_init() or hook exit() can make
them available, by

./modules/aggregator/aggregator.module:261: * Implementation of hook_init().

./modules/book/book.module:164: * Implementation of hook_init(). Adds the
book module's CSS.

./modules/forum/forum.module:160: * Implementation of hook_init().

./modules/node/node.module:1596: * Implementation of hook_init().

./modules/poll/poll.module:24: * Implementation of hook_init().

./modules/system/system.module:538: * Implementation of hook_init().

./update.php:18: * operations, such as hook_init() and hook_exit() invokes,
css/js preprocessing

Here, we are recursively searching (-r) our Drupal files for instances of the string
hook_init and printing out the actual lines and line numbers (-n) where they occur. We could
further refine our search by piping results into another search. In the following example, we
search for occurrences of the word poll in the previous example’s search result set:

$ egrep -rn 'hook_init' . | egrep 'poll'
./modules/poll/poll.module:24: * Implementation of hook_init().

Another way to refine your search is by using the -v flag for egrep, which means “invert
this match;” that is, let matches through that do not match the string. Let’s find all the occur-
rences of the word lock without matching the words block or Block:

$ egrep -rn 'lock' . | egrep -v '[B|b]lock'
./includes/common.inc:2548: // See if the semaphore is still locked.
./includes/database.mysql.inc:327:function db_lock_table($table) {
./includes/database.mysql.inc:332: * Unlock all locked tables.
...

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 489

09898ch21final 7/30/08 1:36 PM Page 489

Taking Advantage of Version Control
Version control is a must for any software project, and Drupal is no exception. Version control
tracks all changes made to every file within Drupal. It keeps a history of all revisions as well as
the author of each revision. You can literally get a line-by-line report of who made changes as
well as when and why they were made. Version control also simplifies the process of rolling
out new versions of Drupal to the public. The Drupal community uses the tried and true CVS
software to maintain its revision history.

!Tip Discussion of the pros and cons of various version control systems (Bazaar, CVS, Git, Subversion, etc.)
breaks out regularly on the Drupal development mailing list. Before starting a new thread on this topic, visit
the archives to get familiar with previous discussions.

The benefits of revision control aren’t reserved exclusively for managing the Drupal proj-
ect. You can take advantage of Drupal’s CVS to help maintain your own Drupal-based projects
and dramatically reduce your own maintenance overhead. First though, you need to change
the way you install Drupal.

Installing CVS-Aware Drupal
When you download the compressed Drupal package from the drupal.org downloads page,
that copy of the code is devoid of any of the rich revision information used to inform you of
the current state of your codebase.

Developers who are using CVS can quickly get answers to versioning questions and apply
the updates while everyone else is still downloading the new version.

!Note The only visual difference between the two ways of downloading Drupal is that the CVS checkout
contains an extra folder labeled CVS, where CVS information is kept, for every directory found within Drupal.
Drupal’s .htaccess file contains rules that automatically protect these folders if you are using Apache
(some CVS clients such as TortoiseCVS hide CVS folders by default).

You may have had folks tell you that the CVS version of Drupal isn’t safe to use and that
CVS is the bleeding-edge code that’s unstable. This is a common misconception and a confu-
sion of two ideas. These people are referring to the “HEAD” version of a project; that is, the
version of Drupal (or any project under CVS) where new features are currently being tested
in preparation for the next release. CVS, however, is used to maintain the “HEAD” version
and the stable versions of software.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES490

09898ch21final 7/30/08 1:36 PM Page 490

Using CVS-Aware Drupal
So what are some of the things you can do with this fancy CVS checkout of Drupal?

• You can apply security updates to the Drupal codebase even before the official security
announcements are released. Did I mention it’s really easy to do? Rather than down-
loading an entirely new version of Drupal, you simply run a single CVS command.

• You can maintain custom modifications to Drupal code. Hacking Drupal core is a cardi-
nal sin, but if you must do it, do it with CVS. CVS will intelligently attempt to upgrade
even your modified core files, so you no longer inadvertently overwrite your custom
changes during an upgrade process.

• You can also use CVS to discover hacks made by other developers to Drupal’s core files.
With a single command, you can generate a line-by-line list of any code on your work-
ing copy of Drupal that is different from the central Drupal server’s pristine codebase.

Installing a CVS Client
Run the following command from the command line to test if a CVS client is installed:

$ cvs

If you receive a “Command not found” error, you probably need to install a CVS client.
Windows users might want to take a look at TortoiseCVS (http://tortoisecvs.sourceforge.
net/). Mac users should take a look at the following article: http://developer.apple.com/
internet/opensource/cvsoverview.html. Linux users, you ought to know what to do.

If you see the following CVS documentation listed as the output of the cvs command,
you’re ready to go!

Usage: cvs [cvs-options] command [command-options-and-arguments]

Checking Out Drupal from CVS
I’ll cover how to use CVS from the command line. There are plenty of graphical CVS applica-
tions out there, and you should be able to figure out how to use a GUI-based one once you
understand how the command line works. Windows users can use the CVS command line by
installing the Cygwin environment (see http://drupal.org/node/150036). It is almost always
easier to get help with CVS from the community if you are using a command-line CVS client.

In CVS lingo, you will be doing a checkout of a working copy of Drupal from the central
CVS repository. That might be a little wordy, but it’s important to use the correct terms. Here’s
the command that grabs Drupal 6.2 from the CVS server:

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout -d
~/www/drupal6 -r DRUPAL-6-2 drupal

Let’s break that down. cvs executes the CVS client; that is, it runs a program named cvs on
your computer:

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout -d
~/www/drupal6 -r DRUPAL-6-2 drupal

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 491

09898ch21final 7/30/08 1:36 PM Page 491

http://tortoisecvs.sourceforge.net
http://tortoisecvs.sourceforge.net
http://developer.apple.com
http://drupal.org/node/150036
mailto:anonymous@cvs.drupal.org:/cvs/drupal
mailto:anonymous@cvs.drupal.org:/cvs/drupal

The -d option for the cvs command stands for “directory” and is used for specifying the
location of the CVS repository:

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout -d
~/www/drupal6 -r DRUPAL-6-2 drupal

A repository, in CVS speak, is the location of the file tree of CVS-maintained files. Now,
the -d option can be as simple as cvs -d /usr/local/myrepository, if the repository is on the
same machine. However, the Drupal repository is located on a remote server, so we’ll need to
specify more connection parameters. Let’s go deeper into this command.

Each parameter for the -d option is separated by a colon. pserver stands for “password-
authenticated server” and is the connection method Drupal uses for connecting to the reposi-
tory. However, CVS can connect via other protocols, such as SSH.

Next, the username and password are specified. For the Drupal CVS repository they are
both the same: anonymous. Following the at symbol (@) is the hostname to connect to: cvs.
drupal.org. And, finally, we need to specify the path to the repository on the remote host:
/cvs/drupal.

!Note After you authenticate once to a CVS server, you shouldn’t need to authenticate again, because
a file named .cvspass is created in your home directory and stores the login information. Subsequent
CVS commands applied to this repository shouldn’t need the -d global option parameter.

Now that the connection parameters are established we can send along the actual com-
mand for cvs to execute, in this case the checkout command to grab a working copy of the
Drupal repository:

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout -d
~/www/drupal6 -r DRUPAL-6-2 drupal

Don’t confuse the following -d with the global option -d that’s passed to the cvs part of
the command:

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout -d
~/www/drupal6 -r DRUPAL-6-2 drupal

This -d is used to put a working copy of the repository in a directory called drupal6 in the
www directory of your home directory on your computer. This is an optional parameter, and if
it’s not used, the repository will be copied to a folder with the same name of the repository
itself. So, in this case, it would create a folder named drupal to hold your working copy of the
repository, since the name of the repository is drupal.

The -r parameter stands for “revision.” Typically, this will be a tag or a branch. I’ll talk
about what tags and branches are in a moment. In the preceding command, we’re asking for
the revision named DRUPAL-6-2, which is the tag corresponding to the Drupal 6.2 release. You
can substitute the correct tag for whatever version of Drupal is current.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES492

09898ch21final 7/30/08 1:36 PM Page 492

mailto:anonymous@cvs.drupal.org:/cvs/drupal
mailto:anonymous@cvs.drupal.org:/cvs/drupal
mailto:anonymous@cvs.drupal.org:/cvs/drupal

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout -d
~/www/drupal6 -r DRUPAL-6-2 drupal

A list of all tags and branches for core is available at http://drupal.org/node/93997.
And finally, drupal is the name of the repository to check out.

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout -d
~/www/drupal6 -r DRUPAL-6-2 drupal

Branches and Tags
Tagging and branching are standard practices for many revision control systems. We will
examine how these concepts are used within Drupal core and for contributed modules.
Spend the time necessary to understand these concepts, as doing so will save you much
time and grief.

Branches in Drupal Core
When a new version of Drupal is released, the maintainers create a branch within CVS, which
is essentially a clone of the current HEAD codebase. This allows bleeding-edge development to
continue on the original trunk of code while also allowing the community to stabilize a new
release. This is how Drupal 6 was created, for example. The actual canonical branch names are
DRUPAL-4-6-0, DRUPAL-4-7-0, DRUPAL-5, and DRUPAL-6 (notice that the naming convention
changed in Drupal 5; the tertiary numbers have been removed).

Let’s see how that works. In the following series of figures, note that time is on the vertical
axis. As development of Drupal moves along, and bug fixes and new features are committed to
the codebase, the leading edge (or cutting edge) of development is called HEAD, as shown in
Figure 21-1.

Figure 21-1. Drupal development timeline

When the code is complete enough to warrant a branch, the core committers create a
stable branch on the tree for a given release. At this point, both copies are identical. Then
new features and bug fixes continue to be added to the HEAD of the tree, and bug fixes are
added to the stable branch, as shown in Figure 21-2. Stable branches, as a rule, receive only
bug fixes; new features are reserved for HEAD. They are called “stable” branches, because they
are guaranteed not to change suddenly.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 493

09898ch21final 7/30/08 1:36 PM Page 493

mailto:anonymous@cvs.drupal.org:/cvs/drupal
http://drupal.org/node/93997
mailto:anonymous@cvs.drupal.org:/cvs/drupal

Figure 21-2. A branch has been created.

When enough bug fixes have been committed to the stable branch that the core commit-
ters decide there should be another official release of Drupal, a release is created. But the new
release is created with tags, not branches, so let’s take a look at tags.

Tags in Drupal Core
Tags are snapshots in time of a particular branch. In the Drupal world, tags are used to mark
beta, bug-fix, and security releases. This is how we get minor versions such as Drupal 6.1 and
6.2. Canonical tag names are DRUPAL-4-7-1, DRUPAL-4-7-2, DRUPAL-5-7, DRUPAL-6-0, DRUPAL-6-1,
and DRUPAL-6-2 (again, notice that the naming convention changed in Drupal 5). For a com-
plete list of tag names used by Drupal core, see http://drupal.org/node/93997.

When Drupal 6 was being developed, the core committers wanted to make a beta release
so that people could test the code more easily. So they decided to create a tag called DRUPAL-6-
0-BETA-1, shown in Figure 21-3.

Figure 21-3. A DRUPAL-6-0-BETA-1 tag has been created.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES494

09898ch21final 7/30/08 1:36 PM Page 494

http://drupal.org/node/93997

The tag DRUPAL-6-0-BETA-1 refers to the code in a particular state; that is, a snapshot of
exactly how the code was at one point in time. You could still download the beta 1 release of
Drupal right now using CVS if you really wanted to.

As more bugs are fixed, one or more release candidates are tagged with tags like DRUPAL-6-
0-RC-1 and DRUPAL-6-0-RC-2. A branch called DRUPAL-6 is created to split off development of
Drupal 6 from development of the codebase that will become Drupal 7. Finally, the big day
comes, and the DRUPAL-6-0 tag is created. Articles are written and the blogosphere goes into
a frenzy. But back on the DRUPAL-6 branch, hordes of Drupal developers continue to fix bugs,
which leads to the tags DRUPAL-6-1, DRUPAL-6-2, and so forth.

The -dev Suffix
Meanwhile, development has continued on HEAD. But rather than refer to it as HEAD, the Drupal
community prefers to think of it as the next version of Drupal, because that’s really what’s
being developed. As you can see in Figure 21-4, 7.x-dev is where development takes place for
Drupal 7.

Figure 21-4. -dev snapshots refer to the leading edge of development.

When the time comes to push for a Drupal 7 release, the core committers will add a stable
branch for Drupal 7 and that’s where the tagging will happen. Note, therefore, that 7.x-dev is
not a tag! That means it does not refer to code in a given state. Rather, it refers to continuing
development along a branch. Every day, a packaging script on drupal.org takes a snapshot of
the branch and makes it available as a “Development snapshot,” shown in Figure 21-5. But
this is done simply for convenience; it is not a feature of CVS.

Figure 21-5. Drupal makes the development snapshot of the next version available at
http://drupal.org/download.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 495

09898ch21final 7/30/08 1:36 PM Page 495

http://drupal.org/download

Likewise, bug fixes continue on the stable branch. Look at the DRUPAL-6 branch in Fig-
ure 21-4. From the figure, you can see that a bug has been fixed after the DRUPAL-6-2 tag was
created, but that no new tag has been created yet. A new tag is not created after every bug fix;
a tag is created only when enough bug fixes have been released that the core committers
determine a new release is warranted (the exception is security fixes, which usually result in
an immediate release). When it’s time, core committers create the new release by creating the
DRUPAL-6-3 tag.

So, back to Figure 21-4, the code on the DRUPAL-6 branch that is past the DRUPAL-6-2
release but contains a postrelease bug fix is called 6.x-dev. That means it is the development
version of Drupal 6.3; this code will become Drupal 6.3 when the core committers create the
DRUPAL-6-3 tag. After that, the code at the end of the branch will be 6.x-dev, because that code
will become Drupal 6.4.

!Tip When developers refer to the code at the end of the branch, they don’t always want to stop and
check which actual version will be next (will it be 6.1? 6.2? 6.3?). In that case, they use an “x” in place of,
for example, the “1” in “6.1” or the “2” in “6.2” and just call it 6.x-dev—that is, “x” refers to the code that
will become the next version of Drupal 6, whatever version that may happen to be.

You should now understand the difference between a tag and a branch and how tags are
related to releases for core. The information is summarized in Table 21-2.

Table 21-2. The Relationship Among Tags, Branches, Releases, and Tarballs Available at
http://drupal.org/download

Tag Appears on Branch Release Tarball
DRUPAL-5-7 DRUPAL-5 Drupal 5.7 drupal-5.7.tar.gz

DRUPAL-6-0 DRUPAL-6 Drupal 6.0 drupal-6.0.tar.gz

DRUPAL-6-1 DRUPAL-6 Drupal 6.1 drupal-6.1.tar.gz

DRUPAL-6-2 DRUPAL-6 Drupal 6.2 drupal-6.2.tar.gz

HEAD None 7.x-dev drupal-7.x-dev.tar.gz

Checking Out Drupal Using a Tag or Branch Name
I’ve already shown you how to get a version of code from a tag on the DRUPAL-6 branch in the
“Checking Out Drupal from CVS” section. Here are some examples that use that code to
retrieve various tags and branches and place them in a new folder named drupal in the
current directory.

Check out a copy of the DRUPAL-6 branch exactly as it was during its first beta release:

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout
-r DRUPAL-6-0-BETA-1 drupal

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES496

09898ch21final 7/30/08 1:36 PM Page 496

http://drupal.org/download
mailto:anonymous@cvs.drupal.org:/cvs/drupal

Check out a copy of Drupal 6.2:

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout
-r DRUPAL-6-2 drupal

Check out a copy of 6.x-dev (that is, the latest code on the DRUPAL-6 branch including any
bug fixes since the last release):

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout
-r DRUPAL-6 drupal

Check out a copy of the latest version of HEAD (that is, 7.x-dev). Note that no branch needs
to be specified in this case:

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout
drupal

Updating Code with CVS
If you want to apply the latest Drupal code updates to your site or even upgrade to the next
shiny new version, you can do it all with the cvs update command. To first test what changes
a cvs update command would make, run the following command:

cvs -n update -dP

This shows you what will be changed without making the changes. To perform the actual
update, use this command:

cvs update -dP

This brings your working copy of Drupal in sync with the latest changes of the branch
you’re following. CVS knows the branch you’re following by looking at the CVS metadata
stored within those CVS folders that was placed there when you did your initial checkout, so
you don’t have to specify it each time. The -d option creates any directories that exist in the
repository if they’re missing in your working copy. The -P option prunes empty directories as
they aren’t needed.

!Note Always back up your data before running any CVS command that will modify your files. Another
best practice for moving these changes to production is to do a CVS update on the staging site and resolve
any potential file conflicts before moving those changes into production.

Upgrading to a different version of Drupal is just a variation of the CVS update command.
Let’s assume you’re at Drupal 5.7 and wish to upgrade to 6.2. Again, make sure that you are at
the Drupal root directory before running the following commands.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 497

09898ch21final 7/30/08 1:36 PM Page 497

mailto:anonymous@cvs.drupal.org:/cvs/drupal
mailto:anonymous@cvs.drupal.org:/cvs/drupal
mailto:anonymous@cvs.drupal.org:/cvs/drupal

Update to the last official release on the existing branch, which we will assume for the
sake of this example is Drupal 5.7. You do not really need to specify DRUPAL-5-7 in the follow-
ing command (since cvs will know your current branch), but it is helpful to be verbose to
make sure you’re making the changes you intended:

cvs update -dP -r DRUPAL-5-7

!Caution If you are upgrading to a new Drupal version, you should disable all noncore modules and
themes before running the cvs update command, which updates core. See http://drupal.org/
upgrade for detailed instructions.

Next, upgrade the core’s code to Drupal 6. Let’s assume that Drupal 6.2 is the latest ver-
sion. Thus, the following command gets code from the DRUPAL-6 branch of the CVS tree that
has been tagged DRUPAL-6-2:

cvs update -dP -r DRUPAL-6-2

Now you still need to go through the rest of the standard upgrade process such as updat-
ing contributed modules and themes and updating your database by visiting update.php, but
now you don’t have to download the new version of core and overwrite your core files.

Tracking Drupal Code Changes
Want to check if anyone on your development team has modified core files? Want to generate
a report of any changes made to core code? The cvs diff command generates a human-
readable, line-by-line output of code differences, that is, updates and modifications.

!Note On the Unix command line, the diff command (not the cvs diff command) compares two files
and shows you the changes. You would use it by typing diff file1 file2. Instead of comparing two local
files, the cvs diff command compares a local file with a file in a CVS repository.

Here’s example output of cvs diff run using cvs diff -up:

Index: includes/mail.inc
===
RCS file: /cvs/drupal/drupal/includes/mail.inc,v
retrieving revision 1.8.2.2
diff -u -p -r1.8.2.2 mail.inc
--- includes/mail.inc 2 Apr 2008 08:41:30 -0000 1.8.2.2
+++ includes/mail.inc 15 May 2008 23:56:40 -0000
@@ -272,8 +272,8 @@ function drupal_html_to_text($string, $a

$string = _filter_htmlcorrector(filter_xss($string, $allowed_tags));

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES498

09898ch21final 7/30/08 1:36 PM Page 498

http://drupal.org

// Apply inline styles.
- $string = preg_replace('!</?(em|i)>!i', '/', $string);
- $string = preg_replace('!</?(strong|b)>!i', '*', $string);
+ $string = preg_replace('!</?(em|i)((?> +)[^>]*)?>!i', '/', $string);
+ $string = preg_replace('!</?(strong|b)((?> +)[^>]*)?>!i', '*', $string);

// Replace inline <a> tags with the text of link and a footnote.
// 'See the Drupal site' becomes

The lines that begin with a single addition symbol (+) were added and the lines that begin with
the single subtraction symbol (-) were removed. It looks like someone modified the regular
expressions in the drupal_html_to_text() function.

Drupal uses unified diffs, indicated by the -u option. The -p option is also used; this prints
the name of the function after the summary of changes. This is useful for quickly determining
in which function the code appears when reading the output, as not all Drupal developers
have memorized the line numbers in which functions appear. The following line, taken from
the previous cvs diff output, reveals the function that was affected:

@@ -272,8 +272,8 @@ function drupal_html_to_text($string, $a

Resolving CVS Conflicts
If you’ve made changes to the Drupal core code, you risk creating conflicts when doing CVS
updates. Files that have line conflicts will be marked with a “C” after running the cvs update
command, and your site will no longer be operational as a result of these conflicts (the text
inserted by CVS to mark the conflict is not valid PHP). CVS attempted to merge the new and
old versions of the files but failed to do so, and now human intervention is needed to inspect
the file by hand. Here’s what you’ll see somewhere in the file containing CVS conflicts:

<<<<<<< (filename)
your custom changes here
=======
the new changes from the repository
>>>>>>> (latest revision number in the repository)

You’ll need to remove the lines you don’t wish to keep and clean up the code by removing
the conflict indication characters.

Cleanly Modifying Core Code
You should strive to never touch core code. But at some time, you may have to. If you need to
hack, make sure you hack in a way that allows you to track your changes with precision. Let’s
take a simple example; we’ll edit sites/default/default.settings.php. On line 143, you’ll see
the following code:

ini_set('session.cookie_lifetime', 2000000);

This value controls how long cookies last (in seconds). Let’s assume that our sessions
table in the database is filling up way too quickly, so we need to reduce the lifetime of these

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 499

09898ch21final 7/30/08 1:36 PM Page 499

http://drupal.org

sessions. We could just go and change that value, but if that line changes on a subsequent
CVS update, we’ll get a conflict and need to manually resolve the problem.

A cleaner solution is to comment around the line of code we wish to change and dupli-
cate the line a little further down in the file:

/* Original value - Changed to reduce cookie lifetime
ini_set('session.cookie_lifetime', 2000000);
*/
ini_set('session.cookie_lifetime', 1000000); // We added this.

The idea here is that CVS will not run into a conflict, because the original line of code
has not changed.

Creating and Applying Patches
If you get the itch to fix a bug, test someone else’s potential bug fix, or hack core code for one
reason or another, you’re going to run into the need to create or apply a patch. A patch is a
human- and computer-readable text file that shows the line-by-line modifications made
against the Drupal code repository. Patches are generated by the diff (or cvs diff) program,
and you saw an example of one previously in the “Tracking Drupal Code Changes” section.

Creating a Patch
Here’s an example of a patch that was made to clean up the documentation for the t() func-
tion in includes/common.inc:

Index: includes/common.inc
===
RCS file: /cvs/drupal/drupal/includes/common.inc,v
retrieving revision 1.591
diff -u -r1.591 common.inc
--- includes/common.inc 28 Mar 2007 07:03:33 -0000 1.591
+++ includes/common.inc 28 Mar 2007 18:43:18 -0000
@@ -639,7 +639,7 @@
*
* Special variables called "placeholders" are used to signal dynamic
* information in a string, which should not be translated. Placeholders

- * can also be used for text that that may change from time to time
+ * can also be used for text that may change from time to time
* (such as link paths) to be changed without requiring updates to translations.
*
* For example:

After making changes to the includes/common.inc file, the developer ran the following
command from the Drupal root:

cvs diff -up > common.inc_50.patch

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES500

09898ch21final 7/30/08 1:36 PM Page 500

This command takes the output of cvs diff and puts it in a new file called common.inc_
50.patch. Then the developer went to drupal.org and filed the bug here: http://drupal.org/
node/100232.

Applying a Patch
Patches are the files created from output of the cvs diff or diff command. After you create or
download a patch, navigate to your Drupal root and run the following command:

patch -p0 < path/to/patchfile/patchfile.patch

If the patch was created at the root of a Drupal installation, and you are applying it
from the root of a Drupal installation, the paths will be the same so the -p0 (that’s a zero)
flag is used to tell the patch program to use the path found in the patch file (that is, to strip
out zero segments from the path prefix).

If you run into problems when applying a patch, look for assistance at http://
drupal.org/node/60116.

Sometimes, you may want to apply a patch to your production site for speed improve-
ments or to add missing functionality. A best practice when doing this is to create a patches
folder to store a copy of each patch after it is applied. If you haven’t been doing this, you can
always re-create the patch by running cvs diff -up on the file. You should also create a text
file in that same folder to document the reasons each patch was applied. And you can use a
naming convention to make it clear where a reference is for contextual information, for
example:

modulename-description-of-problem-NODEID-COMMENTNUM.patch

Suppose you are using the workflow and token modules, but they are not playing well
together. Someone has submitted a patch that fixes this, but the module maintainer has not
yet incorporated the patch into a new release, yet you need it now because your site is going
live tomorrow. You would name the patch:

workflow-conflict-with-token-api-12345-67.patch

That way, when it comes time to upgrade the site, whoever is responsible for upgrading
can figure out the following:

• What parts of this installation are modified?

• Why were those modifications made?

• Has this patch already been applied upstream?

• If not, has someone come along and posted a better solution?

Maintaining a Module
In this section, we’ll walk through an example of a developer creating and maintaining a mod-
ule on drupal.org. We will cover the most common tasks.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 501

09898ch21final 7/30/08 1:36 PM Page 501

http://drupal.org
http://drupal.org/node/60116
http://drupal.org/node/60116

Getting a Drupal CVS Account
Drupal has two CVS repositories: a Drupal core repository to which only a select few devel-
opers have commit access and a contributions repository that holds all the contributed
modules, translations, and themes found on drupal.org, as well as some documentation
and sandbox folders for developers to store code snippets. If you have a module, theme, or
translation that you would like to contribute, you can apply for a CVS account to gain write
access to the Drupal CVS contributions repository to share your code and contribute back
to the community.

CVS accounts are not handed out like candy. You’ll need to show that you really need one.
You will be asked your specific motivation for getting an account. If you want to contribute a
module, you will need to provide a copy of the module for review and demonstrate that it is
substantially different than existing modules. (Spend some time using the search form on
drupal.org to make sure your module truly is new and different. You can restrict searches to
just contributions by checking the Project check box in the Advanced search form.) Also, make
sure that you are OK with GNU General Public License (GPL) licensing, since all code in the
contributions repository must be GPL licensed.

For details on how to apply, see http://drupal.org/node/59. Excellent documentation for
committing and branching your own contributed modules can be found on the Drupal site at
http://drupal.org/handbook/cvs/quickstart; plus we’ll walk through some of the most com-
mon tasks next.

There are many other ways to contribute to Drupal as well, such as writing documenta-
tion and participating in the forums; see http://drupal.org/node/22286.

Checking Out the Contributions Repository
As I mentioned, drupal.org has two repositories, one for core code and one for contributed
code including modules and themes. Only a handful of people have access to the former, but
hordes of developers have access to the latter. You can check out the contributions repository
as either an anonymous or a logged-in user. If you are checking out code from the contribu-
tions repository for a site (e.g., you’re just using CVS to get a copy of a module so you can run
it), check it out as an anonymous user. Otherwise, the next person to maintain that Drupal site
you created will be frustrated when they want to update that module from CVS and are
prompted to log in with your password!

You could check out the entire repository:

cvs -z6 -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal-contrib
checkout contributions

However, this is discouraged because it puts a heavy load on the server infrastructure.
A more targeted approach is better. Suppose you want to create a module and make it avail-
able to the Drupal community. That means you just need the modules subdirectory of the
contributions repository. If you are going to be committing code to the repository, you’ll
need to log in (and you’ll need your CVS account and password; see “Getting a Drupal CVS
Account”). Here’s how to log in, assuming that your CVS username is sproinx:

cvs -d:pserver:sproinx@cvs.drupal.org:/cvs/drupal-contrib login

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES502

09898ch21final 7/30/08 1:36 PM Page 502

http://drupal.org/node/59
http://drupal.org/handbook/cvs/quickstart
http://drupal.org/node/22286
mailto:anonymous@cvs.drupal.org:/cvs/drupal-contrib
mailto:sproinx@cvs.drupal.org:/cvs/drupal-contrib

You will be prompted for the password you provided when you applied for your CVS
account. This password may not be the same as your drupal.org password.

!Tip You can change the password to your CVS account by logging into drupal.org, clicking
“My account” " Edit, and clicking the CVS tab.

Next, you check out the modules subdirectory of the contributions repository (the reposi-
tory is named drupal-contrib). You could check out the modules subdirectory with all of the
modules it contains, though this is rarely done unless you want a copy of all the thousands of
modules available to peruse during a long plane flight:

cvs -z6 -d:pserver:sproinx@cvs.drupal.org:/cvs/drupal-contrib checkout
contributions/modules

This will place a copy of the modules subdirectory on your local computer. It should look
something like this:

contributions/
CVS/
modules/
a_sync/
aapi/
about_this_node/
abuse/
...

Or you could do what most developers do and just check out the modules subdirectory
without any of the modules it contains:

cvs -d:pserver:sproinx@cvs.drupal.org:/cvs/drupal-contrib checkout
-l contributions/modules

!Note At the time of this writing, the modules subdirectory contained about 300MB of data. That’s a rea-
son to use the -z6 flag in the CVS command to check out the subdirectory (-z6 compresses the data before
sending it across the network) or just use the -l flag to omit checking out all those modules.

Notice that in the preceding CVS commands, the argument -d:pserver:sproinx@cvs.
drupal.org:/cvs/drupal-contrib is repeated. Since typing this each time is not very handy,
savvy developers put this into the CVSROOT environmental variable:

export CVSROOT=:pserver:sproinx@cvs.drupal.org:/cvs/drupal-contrib

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 503

09898ch21final 7/30/08 1:36 PM Page 503

mailto:sproinx@cvs.drupal.org:/cvs/drupal-contrib
mailto:sproinx@cvs.drupal.org:/cvs/drupal-contrib
mailto:sproinx@cvs.drupal.org:/cvs/drupal-contrib

From now on, the CVS commands will look a lot shorter. The preceding commands look
like this after CVSROOT has been set:

cvs login
cvs -z6 checkout contributions/modules
cvs checkout -l contributions/modules

From now on, I’ll assume that the CVSROOT environmental variable has been set.

Adding Your Module to the Repository
Now that you’ve got a copy of the modules subdirectory of the contributions repository, you
might think that it’s time to place your module among the thousands of others. But let’s not
be hasty! First, spend some time investigating the repository to see whether someone else has
already written a module that solves your problem. Here are some resources to do that:

• http://drupal.org/project/Modules allows you to browse modules by category, name,
or date and filter by major release compatibility (Drupal 6, Drupal 5, etc.).

• http://drupal.org/node/23789 outlines basic approaches for joining forces with others.

• http://drupalmodules.com offers easy searching of contributed modules as well as
reviews and rankings.

If you are satisfied that your module is worth writing, it’s time to develop it. Let’s make a
module.

Here’s the .info file:

// Id
name = Foo
core = 6.x

And here’s the module itself:

<?php
// Id

/**
* @file
* The greatest module ever made.
*/

So now the module’s directory contains the preceding two files and looks like this:

foo/
foo.info
foo.module

Go ahead and copy the new module into your newly checked out contributions reposi-
tory:

cp -R foo /path/to/local/copy/of/contributions/modules

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES504

09898ch21final 7/30/08 1:36 PM Page 504

http://drupal.org/project/Modules
http://drupal.org/node/23789
http://drupalmodules.com

Next, it’s time to tell CVS about the new directory:

cd /path/to/local/copy/of/contributions
cvs add modules/foo

and the files within the directory

cvs add modules/foo/*

CVS will remind you that though the files have been scheduled for addition, you still have
to commit them:

cvs add: use `cvs commit' to add these files permanently

If your module contains subdirectories, you will have to add those as well, because cvs
add does not work recursively:

cvs add modules/foo/subdir1
cvs add modules/foo/subdir1/*

The Initial Commit
Now comes the big moment. It’s time to commit your files to the repository! This is a time to
get nervous. Check /path/to/local/copy/of/contributions/modules/foo to make sure that all
of the files are there and that they actually contain the code you want to commit. Next, it’s
time to type the fateful command. Think up a succinct sentence that describes what your
module does and then go ahead:

cvs commit -m "Initial commit of foo module. This module sends badgers to those
who use it."

The -m flag means that what follows in quotes is a message to record along with the code
commit. Provide useful information in your message. If you want to type several lines of text, it
may be helpful to omit the -m flag if your installation of CVS automatically opens a text editor
instead. On my OS X machine, this opens the vim editor, which gives me a screen like this:

CVS: --
CVS: Enter Log. Lines beginning with `CVS:' are removed automatically
CVS:
CVS: Committing in .
CVS:
CVS: Added Files:
CVS: foo.info
CVS: foo.module
CVS: --
~
~

If you’ve never used vim before, this can be frightening. Use the down arrow key to navi-
gate to the last line that begins with CVS: and press the “o” key (as in, “oh boy!”). Then type

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 505

09898ch21final 7/30/08 1:36 PM Page 505

your longer commit message, and when you’re done, press Esc and then type :wq to exit. You
can substitute your favorite editor by setting the CVSEDITOR environment variable; for example,
for emacs, set the variable like this:

export CVSEDITOR=emacs

or like this for Textmate:

export CVSEDITOR="mate -w"

Checking Out Your Module
Now that your module is in the repository like all the others, you can check it out from CVS
and put it into your local development copy of Drupal (you may have to create the modules
and contrib directories first).

cd /path/to/drupal
cd /sites/all/modules/contrib
cvs checkout -d foo contributions/modules/foo

If you receive an error like the following, you have not set your CVSROOT environment vari-
able (see “Checking Out the Contributions Repository”).

cvs checkout: No CVSROOT specified! Please use the `-d' option
cvs [checkout aborted]: or set the CVSROOT environment variable.

!Tip If you are maintaining a Drupal web site with modules that are checked out from CVS, investigate
the CVS deploy module at http://drupal.org/project/cvs_deploy. It integrates the modules’ CVS
information with Drupal’s built-in update status module, which reports when a module needs updating.

Creating a Project on drupal.org
Since you are sharing your module with the community, it makes sense to have a place where
people can interact with you about your module in a structured way. That way, you won’t be
inundated with e-mail, and there will be a standard way of tracking requested features, bug
fixes, and so on. After logging into drupal.org, go to http://drupal.org/node/add/project-
project or use the site navigation menu to go to “Create content” " Project, and fill in the
form, paying particular attention to the “Full description” field where you describe your mod-
ule (or theme). Once you have completed the form your project will be available at http://
drupal.org/project/yourprojectname.

!Caution Always create a project before you do any tagging or branching.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES506

09898ch21final 7/30/08 1:36 PM Page 506

http://drupal.org/project/cvs_deploy
http://drupal.org/node/add/project-projector
http://drupal.org/node/add/project-projector
http://drupal.org/node/add/project-projector
http://drupal.org/project/yourprojectname
http://drupal.org/project/yourprojectname

Committing a Bug Fix
If your checkout worked, you now have the following in sites/all/modules/contrib:

foo/
CVS/
foo.info
foo.module

But oh, no! We’ve only just shared our code, and already someone has created an issue in
our issue queue at http://drupal.org/project/yourprojectname/issues. User flyingpizza on
drupal.org is pointing out in a post at http://drupal.org/node/1234567 that we forgot to add
a description line in our .info file! Let’s add it now:

// $Id: foo.info,v 1.1 2008/05/22 14:15:21 jvandyk Exp $
name = Foo
description = Sends badgers to those who use it.
core = 6.x

Notice that the first line of the file has been changed by CVS from // Id to the actual
identification information for the file. If you still see // Id there instead, you are not work-
ing with a version that has been checked out from CVS.

Before we commit this change, let’s preview our changes by running the cvs diff
command:

cvs diff -up

The output follows:

===
RCS file: /cvs/drupal-contrib/contributions/modules/foo/foo.info,v
retrieving revision 1.1
diff -u -u -p -r1.1 foo.info
--- foo.info 22 May 2008 14:15:21 -0000 1.1
+++ foo.info 22 May 2008 14:21:54 -0000
@@ -1,3 +1,4 @@
// $Id: foo.info,v 1.1 2008/05/22 14:15:21 jvandyk Exp $
name = Foo
+description = Sends badgers to those who use it.
core = 6.x

Notice that the output shows the new line we added with a + character in front of it. Now
let’s go ahead and commit the change:

cvs commit -m "#1234567 by flyingpizza: Added missing description line."

The #1234567 in the commit message will be automatically changed to a hyperlink to
http://drupal.org/node/1234567 on commit logs viewable on drupal.org (e.g., at http://
drupal.org/cvs).

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 507

09898ch21final 7/30/08 1:36 PM Page 507

http://drupal.org/project/yourprojectname/issues
http://drupal.org/node/1234567
http://drupal.org/node/1234567
http://drupal.org/cvs
http://drupal.org/cvs

!Tip Commit messages should be succinct but descriptive and should always give proper attribution to
those who contributed. Include the node number of the issue and the name of the user who supplied a patch
or was responsible for bringing this to your attention. That way, you can always cross-reference the discus-
sion at node 1234567 on drupal.org from the CVS commit message. If you are in doubt about whether to
include someone’s username in the commit message, err on the side of generosity. It feels good to be given
credit for the work you’ve done by pointing out or correcting a bug. Spread the love!

Excellent. Our development so far can be visualized in Figure 21-6.

Figure 21-6. Development of the foo module

Viewing the History of a File
You can use the cvs log command to view the history of a file. Let’s see the two commits that
have happened to the foo.info file:

cvs log foo.info

revision 1.2
date: 2008-05-22 09:28:25 -0500; author: jvandyk; state: Exp; lines: +2 -1;
commitid: LYpsSr1ZkEut7Y3t;

"#1234567 by flyingpizza: Added missing description line.

revision 1.1
date: 2008-05-22 09:15:21 -0500; author: jvandyk; state: Exp;
commitid: wcK48PdiM0yZ2Y3t;

Initial commit of foo.module. This module sends badgers to those who use it.
===

Creating a Branch
Now we’ll see how to create a branch for those poor sots who are still using Drupal 5.

!Caution Only create a branch for your module after you have created a project on drupal.org for your
module.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES508

09898ch21final 7/30/08 1:36 PM Page 508

First, you want to make sure you are using the latest version of HEAD:

cvs update -dP

Another way of checking is to issue the CVS status command. Let’s check the status of our
foo.info file:

cvs status foo.info

===
File: foo.info Status: Up-to-date

Working revision: 1.2 2008-05-22 09:28:25 -0500
Repository revision: 1.2 / cvs/drupal-contrib/

contributions/modules/foo/foo.info,v
Commit Identifier: LYpsSr1ZkEut7Y3t
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

Notice that the status is listed as Up-to-date. That means that your local file is identical to
the file in the repository. If you had changes in your local file that were not yet committed to
the repository, or maybe some debugging code you forgot to remove, the status would read
Locally Modified instead. Also, the value of the Sticky Tag field is (none), which confirms
that you are using HEAD.

Creating a DRUPAL-5–Compatible Branch
Let’s go ahead and create the branch:

cvs tag -b DRUPAL-5

Don’t be confused by the use of the word tag. We’re creating a branch, not a tag, as indi-
cated by the -b option (for the purists out there: yes, a branch is a special kind of tag, but let’s
keep things simple here, OK?). After giving the command, the module development history
with our brand new DRUPAL-5 branch looks like Figure 21-7.

Figure 21-7. Module development history after branching for Drupal 5

Notice that the code is exactly the same in both branches at the moment, because we
have not made any changes.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 509

09898ch21final 7/30/08 1:36 PM Page 509

A creeping realization comes over you. Your module is dependent on the badger module
being installed! Yet you haven’t specified that in the .info file. Furthermore, Drupal 5 has a dif-
ferent syntax for describing dependencies than Drupal 6 and later. So let’s add the Drupal 5
version to the DRUPAL-5 branch. But how do you determine what your local workspace con-
tains? Are those files on your hard drive from the DRUPAL-5 branch or from HEAD? Let’s specify
that we want files from the DRUPAL-5 branch:

cvs update -dP -r DRUPAL-5

This says, “Give me the files from DRUPAL-5 branch, creating any new directories that are
needed and pruning any empty directories that are no longer needed.” Now let’s change that
.info file:

// $Id: foo.info,v 1.2 2008/05/22 14:28:25 jvandyk Exp $
name = Foo
description = Sends badgers to those who use it.
dependencies = badger

Let’s view the changes:

cvs diff -up foo.info

===
RCS file: / cvs/drupal-contrib/contributions/modules/foo/foo.info,v
retrieving revision 1.2
diff -u -u -p -r1.2 foo.info
--- foo.info 22 May 2008 14:28:25 -0000 1.2
+++ foo.info 22 May 2008 16:40:53 -0000
@@ -1,4 +1,4 @@
// $Id: foo.info,v 1.2 2008/05/22 14:28:25 jvandyk Exp $
name = Foo
description = Sends badgers to those who use it.
-core = 6.x
+dependencies = badger

Note that we removed the core = 6.x (since that’s a Drupal 6 feature and we’re putting
this on the DRUPAL-5 branch), let’s view the status:

cvs status foo.info

===
File: foo.info Status: Locally Modified

Working revision: 1.2 2008-05-22 09:28:25 -0500
Repository revision: 1.2 / cvs/drupal-contrib/

contributions/modules/foo/foo.info,v

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES510

09898ch21final 7/30/08 1:36 PM Page 510

Commit Identifier: LYpsSr1ZkEut7Y3t
Sticky Tag: DRUPAL-5 (branch: 1.2.2)
Sticky Date: (none)
Sticky Options: (none)

Note the status is Locally Modified and the Sticky Tag field indicates that we are work-
ing with the DRUPAL-5 branch.

Finally, let’s commit the change:

cvs commit -m "Drupal-5-compatible dependency on badger module."

Figure 21-8 shows what our development history looks like now.

Figure 21-8. Module development history after committing to the DRUPAL-5 branch

Tagging and Creating a Release
Now the module is ready to go for Drupal 5. Let’s go ahead and create a release. We’ll do that
by creating a tag.

!Note A tag is a label given to files that are in a specific state. When a user downloads the code that has
been tagged, he or she will get the files in exactly the same state they were in when they were tagged. That
is why tagging is useful to create a release.

Remember that a tag denotes a release. Since this is the first release of our code on the
DRUPAL-5 branch, we know that the tag needs to be DRUPAL-5--1-0. Figure 21-9 shows what that
tag actually means.

Figure 21-9. Relationship between the tag name and resulting module version

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 511

09898ch21final 7/30/08 1:36 PM Page 511

Before tagging, it’s always wise to use cvs status to make sure that you’re working with
the set of files that you think you are. Then go ahead and create the tag:

cvs tag DRUPAL-5--1-0

Review the development history of your module, shown in Figure 21-10.

Figure 21-10. Development history showing the tag on the DRUPAL-5 branch

Creating a DRUPAL-6–Compatible Branch
You’ve created a branch for Drupal 5 and a tag on that branch. Now let’s focus on Drupal 6 and
add that dependency on the badger module. But first, there is a decision to be made. Should
we branch immediately? Or should we simply use HEAD instead? We can create tags anywhere
we like, so the question is, how useful is a DRUPAL-6 branch? Let’s examine two different
approaches.

Using HEAD for Releases
One approach for the new release is to edit the foo.info file on HEAD to add the dependency
information. First, we need to get the files from HEAD into our local workspace, since we were
working with files from the DRUPAL-5 branch. You would think that the following is what you
need:

cvs update -dP -r HEAD

However, this will generate a sticky tag in your local workspace, and if you try to do a
commit with the sticky tag set to HEAD, you will receive an error similar to this:

cvs commit: sticky tag `HEAD' for file `foo.info' is not a branch
cvs [commit aborted]: correct above errors first!

The solution is to use the following command, which resets sticky tags:

cvs update -A

Now, let’s add the dependency information with the square bracket format that Drupal 6
uses:

// $Id: foo.info,v 1.2 2008/05/22 14:28:25 jvandyk Exp $
name = Foo
description = Sends badgers to those who use it.
dependencies[] = badger
core = 6.x

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES512

09898ch21final 7/30/08 1:36 PM Page 512

You can use cvs diff and cvs status to inspect the changes. Then commit the change:

cvs commit -m "Drupal-6-compatible dependency on badger module."

Figure 21-11 shows our latest change.

Figure 21-11. Development history showing commit on HEAD

As long as we are not doing any development for Drupal 7, we can keep things simple by
just treating HEAD as the place where new development currently happens. That means one
less branch to worry about. Fewer branches mean fewer places to commit bug fixes. Let’s go
ahead and make our first tag for Drupal 6. Since it’s the first release that is compatible with the
6.x series of Drupal core, we call it DRUPAL-6--1-0:

cvs tag DRUPAL-6--1-0

This tag is created on HEAD, as shown in Figure 21-12.

Figure 21-12. A tag applied to the trunk of the CVS tree

Suppose you continued updating the module and made several more commits and
releases. Your development history would soon look like the one shown in Figure 21-13.

Figure 21-13. Development using HEAD for Drupal 6 releases

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 513

09898ch21final 7/30/08 1:37 PM Page 513

Creating a DRUPAL-6 Branch
When Drupal 7 comes out, you want to keep developing the module for Drupal 6. By
now, your activity on the DRUPAL-5 branch has slowed to a crawl. But how are you going to
develop for both Drupal 7 and Drupal 6 if all of your commits are happening on HEAD? It’s
time to create a branch for Drupal 6 and continue Drupal 6–specific development there.
First, you want to make sure you are working with the latest version of HEAD. Then, create
the branch for Drupal 6.

cvs update -A
cvs tag -b DRUPAL-6--1

Now your development history looks like Figure 21-14.

Figure 21-14. Creating a branch for Drupal 6.

Wait a minute! Why are we using DRUPAL-6--1 for the DRUPAL-6 branch instead of DRUPAL-
6? The answer is simple: starting with Drupal 6, branch names are more specific about what
they describe (see http://drupal.org/node/147493 for details). The tags that you will create
along the DRUPAL-6 branch will be for the 6.x-1.x series of releases. That means releases that
are compatible with any version of Drupal 6 and are in the first series of releases you do. Fig-
ure 21-15 shows tags that correspond to the 6.x-1.2 and 6.x-1.3 releases of your module;
Figure 21-16 shows the releases that correspond with the tags.

Figure 21-15. The 6.x-1.x release series with tag names shown

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES514

09898ch21final 7/30/08 1:37 PM Page 514

http://drupal.org/node/147493

Figure 21-16. The 6.x-1.x release series with release version numbers shown

TAGS AND VERSION NUMBERS

There are two hyphens next to each other in branch names like DRUPAL-6--1 and tag names like DRUPAL-
6--1-3. It is easy to think about this when you consider that the hyphen immediately after the 6 is a
wildcard for a release of Drupal. That is, the DRUPAL-6--1-3 tag, which corresponds with the 6.x-1.3
release of your module, is compatible with any Drupal 6 release (Drupal 6.1, Drupal 6.2, Drupal 6.3, etc.).
Think of the hyphen that follows the major version number in the tag name as translating to the x in the
release number, as shown in the following illustration:

Now that you have established a branch for Drupal 6, you can continue to use HEAD for
Drupal 7 development—until Drupal 8 comes out, at which time, you’ll create a branch for
Drupal 7. Figure 21-17 shows how Drupal 7 development would look. Notice that this is
exactly the same approach that we used previously when we started Drupal 6 development
after creating the DRUPAL-5 branch.

Figure 21-17. Drupal 6 development on its own branch with Drupal 7 development on HEAD

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 515

09898ch21final 7/30/08 1:37 PM Page 515

Advanced Branching
In the preceding examples, we have been assuming that only one major version of a module
exists per major Drupal release, but that may not always be true. For example, suppose you’ve
released version 6.x-1.3 of the foo module. Then inspiration strikes. You realize that a differ-
ent approach will make the module faster with half as many lines of code. Yet, doing this will
change the API so that modules that work with the foo module will all break. The solution is to
release version 2.0 of your module with the new API. Since the module will still be compatible
with Drupal 6, the tag you would use would be DRUPAL-6--2-0, and the corresponding release
number would be 6.x-2.0.

You could just commit the code to the DRUPAL-6--1 branch and tell everyone that version
6.x-1.3 was the final release of the 1.x series of your module. But what happens if the security
team finds a security hole in your module and you’re forced to release a 6.x-1.4 version? No,
using the DRUPAL-6--1 branch for the rewrite of your module is not a good idea.

The solution? Create a new branch on which you can release version 2.0 of your module.
The branch will be called DRUPAL-6--2, and you can make it branch off of the existing
DRUPAL-6--1 branch. First, make sure you have the latest versions of files from the
DRUPAL-6--1 branch. Then make the new branch:

cvs update -dP -r DRUPAL-6--1
cvs tag -b DRUPAL-6--2

Your development history now looks like Figure 21-18.

Figure 21-18. Creating a branch off of an existing stable branch

An alternative approach, if you are not yet doing any development for Drupal 7, would be
to use HEAD for the development of your module’s 2.0 release and eventually branch from HEAD
(just like you did for the DRUPAL-6--1 branch) for your 2.0 series of releases. This approach is
shown in Figure 21-19.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES516

09898ch21final 7/30/08 1:37 PM Page 516

Figure 21-19. Creating a branch off of HEAD for a second stable branch of a module supporting
one major release of Drupal (Drupal 6)

The approach you take is up to you. Generally, avoiding creating a new branch until you
have to is most convenient. In Figure 21-19, the deciding factor as to when the DRUPAL-6--2
branch should be created is when development starts for Drupal 7. Without the DRUPAL-6--2
branch in place for development of the 2.0 series of the module to veer off onto, there would
be no place on the CVS tree to do Drupal 7 development.

Creating a Release Node
In order for other people who are not as CVS savvy as you to download your module, you
should create a release node on drupal.org. A release node provides information about a
given release tag, and the packaging scripts on drupal.org will automatically build a tarball
for you using the files indicated by that release tag. For example, you might create a release
node for the DRUPAL-6--1-3 tag of your module. The packaging script would take the files
from the DRUPAL-6--1 branch of your module exactly as they were when you created the
DRUPAL-6--1-3 tag and create a tarball and a nice link so that visitors to drupal.org can
download the tarball. The tarball would be called something like foo-6.x-1.3.tar.gz.

To create a release node, you go to the page of the project you created on http://
drupal.org (see “Creating a Project on drupal.org”) and click the “Add release” link. You then
select the CVS tag that this release will represent and indicate whether the changes in this
release are security updates, bug fixes, or new features.

In the body of the release node, the new capabilities of this particular release should be
listed. Think of them as release notes. You should provide a list of issues addressed, preferably
with links to the issues on drupal.org. Figure 21-20 shows a typical release node. A handy
script at http://cvs.drupal.org/viewvc.py/drupal/contributions/tricks/cvs-release-notes
can help you automatically generate the list of issues fixed.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 517

09898ch21final 7/30/08 1:37 PM Page 517

http://drupal.org
http://drupal.org
http://cvs.drupal.org/viewvc.py/drupal/contributions/tricks/cvs-release-notes

Figure 21-20. Release node for version 6.x-1.1 of the nice menus module

Once a release node is created and the packaging script has run, the release node is added
to the project page, where anyone can download the tarball or read the release notes you have
entered, as shown in Figure 21-21.

Figure 21-21. Tarballs for releases are downloadable on the project page.

Mixing SVN with CVS for Project Management
While the Drupal codebase is under CVS, the rest of your project may not be under any revi-
sion control at all or may be under a different revision control system.

A common practice is to use a second, nonconflicting revision control system such as
Subversion (SVN) and store the entire project (including Drupal and its CVS metadata!) in
its own repository. The idea is that you do a CVS update to Drupal (pulling changes from
cvs.drupal.org) and then turn around and do an SVN commit of those changes (which
pushes them into your SVN repository). You can use this SVN repository to store any cus-
tom modules, themes, images, or even the database schema for your project.

!Note More about Subversion can be found here: http://subversion.tigris.org.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES518

09898ch21final 7/30/08 1:37 PM Page 518

http://subversion.tigris.org

Testing and Developing Code
Software tests are a way to isolate different parts of a program to determine if they are behaving
as expected. Testing is a major goal for the next version of Drupal. In fact, testing is required for
major changes in core as of Drupal 7. The benefits of testing include the following:

• Knowing instantly if code changes (e.g., through refactoring) have broken the software

• Automating the process of checking for errors in code. The automated test bed at
http://testing.drupal.org is a project that aims to check incoming patches for core

• Ensuring that new code works as expected

For more information on testing, see http://drupal.org/simpletest. You can also
become involved in the testing group at http://groups.drupal.org/unit-testing.

The devel Module
The devel module is a smorgasbord of developer utilities for debugging and inspecting bits
and pieces of your code.

You can grab the module from http://drupal.org/project/devel (or do a CVS checkout
and gain cool points). After it is installed, make sure the devel block is enabled. Here’s a list of
some of the more ambiguous links in the devel block and what each one does:

• Empty cache: This executes the drupal_flush_all_caches() function in includes/
common.inc. This is the same thing that happens when you click the “Clear cached data”
button at Administer " Site configuration " Performance. That is, CSS and JavaScript
caches are flushed; the newly compressed CSS and JavaScript files are given new names
to enforce download of the new files by clients; the theme registry is rebuilt; the menus
are rebuilt; the node_type table is updated; and the database cache tables, which store
page, menu, node, block, filter, and variable caches, are cleared. Specifically, the tables
that are flushed are cache, cache_block, cache_filter, cache_menu, and cache_page. Any
custom cache tables from modules that have implemented hook_flush_caches()
(which returns an array of custom cache table names to clear) are flushed, too.

• Enable Theme developer: This link enables the theme developer module, which allows
you to identify which template or theme function created a page element by pointing
to it with your mouse (see Chapter 8).

• Function reference: This link supplies a list of user functions that have been defined
during this request using PHP’s get_defined_functions(). Click a function name to
view its documentation.

• Hook_elements(): This link displays the results of calling hook_elements() in an easy-
to-read format, which is useful when working with the form API.

• Rebuild menus: This one calls menu_rebuild(), which clears and then builds the
menu_router table and updates the menu_links table (see Chapter 4).

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 519

09898ch21final 7/30/08 1:37 PM Page 519

http://testing.drupal.org
http://drupal.org/simpletest
http://groups.drupal.org/unit-testing
http://drupal.org/project/devel

• Reinstall modules: This link reinstalls a module by running hook_uninstall() and
hook_install(). The schema version number will be set to the most recent update
number. Make sure to first manually clear out any existing tables for modules that do
not implement hook_uninstall().

• Session viewer: Use this link to display the contents of your $_SESSION variable.

• Variable editor: This link lists and allows you to edit the variables and their values cur-
rently stored in the variables table and the $conf array of your settings.php file. These
variables are usually accessed with variable_get() and variable_set().

Displaying Queries
Head on over to http://example.com/?q=admin/settings/devel (or click “Devel settings” in the
Development block if you have it enabled), and check the boxes next to “Collect query info”
and “Display query log.”

Once you save those settings, you’ll see, at the bottom of each page, a list of all the queries
that were used to generate the page you’re on! What’s more, the list tells you the function gen-
erating the query, the time it took to generate it, and how many times it was called.

You can use this information in many insightful ways. For example, if the same query is
being called 40 times per page, you need to check for a bad control structure loop in your
code. If that is fine, consider implementing a static variable to hold the database result for the
duration of the request. Here’s an example of what that design pattern might look like (taken
from modules/taxonomy/taxonomy.module):

function taxonomy_get_term($tid) {
// Define a static variable to hold data during this page request.
static $terms = array();

// Look in the static variable and only hit the database if the data
// for this term ID has not already been retrieved.
if (!isset($terms[$tid])) {
$terms[$tid] = db_fetch_object(db_query('SELECT * FROM {term_data} WHERE tid =
%d', $tid));

}

return $terms[$tid];
}

We create a static array to hold the result sets, so that if the query has already run, we’ve
got the value and can return it rather than ask the database again.

Dealing with Time-Consuming Queries
Here’s an example of how the devel module can help you speed up your site by identifying
slow queries. Say you’ve written a custom node module called task, and you’re making use
of hook_load() to append extra information about task to the node object. The table
schema follows:

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES520

09898ch21final 7/30/08 1:37 PM Page 520

http://example.com/?q=admin/settings/devel

CREATE TABLE task (
nid int,
vid int,
percent_done int,
PRIMARY KEY (nid,vid),
KEY nid (nid)

);

You notice that after running devel.module and looking at the query log that queries to
the preceding table are bringing your site to a crawl! Note that queries that take more than
5 milliseconds are considered slow by default (you can change the value by going to
Administer " Site configuration " Devel settings).

milliseconds function query
27.16 task_load SELECT * FROM task WHERE vid = 3

So why is this query taking so long? If this were a more complex query with multiple table
joins, we’d look into better ways of normalizing the data, but this is a very simple query. The
first thing to do is use the SQL EXPLAIN syntax to see how the database is interpreting the
query. When you precede a SELECT statement with the keyword EXPLAIN, the database will
return information on the query execution plan:

EXPLAIN SELECT * FROM task WHERE vid = 3

MySQL gives the following report:

Id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE task system NULL NULL NULL NULL 1

The most important column in this case is the key column, which is NULL. This tells us
that MySQL didn’t use any primary keys, unique keys, or indexed keys to retrieve the result
set; it had to look through every single row. So the best way to increase the speed of this
query is to add a unique key to the vid column.

ALTER TABLE task ADD UNIQUE (vid);

You can find more information on MySQL’s EXPLAIN reports here: http://dev.mysql.com/
doc/refman/5.0/en/explain.html.

Other Uses for the devel Module
The devel module has other handy functions tucked away to increase your development
acumen.

For example, you can switch the user that Drupal perceives is viewing the page in real
time. This is useful for technical support and debugging other roles. To switch to another user,
navigate to the URL http://example.com/?q=devel/switch/$uid, where $uid is the ID of the
user you want to switch to. Alternatively, enable the “Switch user” block, which provides a set
of links to do the same.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 521

09898ch21final 7/30/08 1:37 PM Page 521

http://dev.mysql.com
http://example.com/?q=devel/switch/$uid

The devel module provides an additional block called Execute PHP that can be handy for
entering and executing short snippets (and provides yet another reason for making sure the
devel module is disabled on your production site!).

You can print out debug messages that are hidden from other users with the dpm(), dvm(),
dpr(), and dvr() functions:

• dpm() prints a simple variable (e.g., a string or an integer) to the message area of the
page. Think of it as meaning “debug print message.”

• dvm() prints a var_dump() to the message area of the page. Use this for complex vari-
ables such as arrays or objects. Think of it as meaning “debug variable message.”

• dpr() prints a complex variable (e.g., an array or object) at the top of a page using a
special recursive function (dprint_r()) that gives nicely formatted output.

• dvr() prints a nicely formatted var_dump() to the top of the page.

The output of all of these functions is hidden from users who do not have “access devel
information” permission, which comes in handy for real-time debugging.

An example usage follows:

dpr(node_load(5)); // Display the data structure of node 5.
dvr($user); // Display the $user variable.

The Module Builder Module
There is a great module located at http://drupal.org/project/module_builder that makes it
easy for you to build out the skeleton of your own modules. It asks you which hooks you want
to create and creates them, along with example code. Then you can download the text and
start building!

Application Profiling and Debugging
The following PHP debuggers and Integrated Development Environments (IDEs) offer some
great tools for getting a sense of where Drupal’s bottlenecks are; they also come in handy for
discovering inefficient algorithms within your own modules:

• Zend Studio IDE: http://www.zend.com/

• Komodo IDE: http://www.activestate.com/Products/komodo_ide/

• Eclipse IDE: http://www.eclipse.org/

• Xdebug PHP Extension: http://www.xdebug.org/

In the following figures, we’ve used screenshots of Zend Studio (which arguably has the
prettiest graphics), but the other IDEs can produce similar output. Figure 21-22 shows the
graphical output from a Drupal request that was run through an application profiler. The
results show the relative times spent in functions from each file. In this case, it looks like
Drupal spent about half the time in includes/bootstrap.inc.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES522

09898ch21final 7/30/08 1:37 PM Page 522

http://drupal.org/project/module_builder
http://www.zend.com
http://www.activestate.com/Products/komodo_ide
http://www.eclipse.org
http://www.xdebug.org

Figure 21-22. Time division pie chart of a Drupal request in the Zend IDE

In Figures 21-23 and 21-24, we drill down to see which functions consume the most rela-
tive processor time during a request. Such a feature is handy to determine where to focus your
optimization efforts.

Figure 21-23. Call trace of a Drupal request within the Zend IDE

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 523

09898ch21final 7/30/08 1:37 PM Page 523

Figure 21-24. Function statistics of a Drupal request within the Zend IDE

Real-time debugging is a feature of PHP and not Drupal, but it’s worth covering, since you
can easily be identified as a Drupal ninja if a real-time debugger is running on your laptop.

Using a PHP debugger lets you pause the code execution of PHP in real time (i.e., set a
breakpoint) and inspect what is happening step by step. Getting familiar with a PHP debugger
is one of the best investments in your craft as a developer. Stepping through code execution
frame by frame, like a movie in slow motion, is a great way to debug and become intimately
familiar with a beast as complex as Drupal at the same time.

A rite of passage that budding Drupal developers go through is to grab a cup of tea, fire up
the debugger, and spend a couple hours going through a standard Drupal request step by step,
gaining invaluable first-hand knowledge of how Drupal works.

Summary
After reading this chapter, you should be able to

• Code according to Drupal coding conventions.

• Document your code so that your comments can be reused by the API module.

• Comfortably search through Drupal’s codebase using egrep.

• Download Drupal and keep it updated using version control.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES524

09898ch21final 7/30/08 1:37 PM Page 524

• Cleanly hack the Drupal core.

• Generate patches showing code changes using unified diff format.

• Apply patches that others have made.

• Maintain a contributed module using tagging and branching.

• Use devel.module to enhance your coding productivity.

• Identify Drupal coding ninjas by their best practices.

CHAPTER 21 ! DEVELOPMENT BEST PRACTICES 525

09898ch21final 7/30/08 1:37 PM Page 525

09898ch21final 7/30/08 1:37 PM Page 526

Optimizing Drupal

Drupal’s core architecture is lean and written for flexibility. However, the flexibility comes at
a price. As the number of modules increases, the complexity of serving a request increases.
That means the server has to work harder, and strategies must be implemented to keep
Drupal’s legendary snappiness while a site increases in popularity. Properly configured,
Drupal can easily survive a Slashdotting. In this chapter, we’ll talk about both performance
and scalability. Performance is how quickly your site responds to a request. Scalability has to
do with how many simultaneous requests your system can handle and is usually measured in
requests per second.

Finding the Bottleneck
If your web site is not performing as well as expected, the first step is to analyze where the
problem lies. Possibilities include the web server, the operating system, the database, and the
network.

Initial Investigation
Knowing how to evaluate the performance and scalability of a system allows you to quickly
isolate and respond to system bottlenecks with confidence, even amid a crisis. You can dis-
cover where bottlenecks lie with a few simple tools and by asking questions along the way.
Here’s one way to approach a badly performing server. We begin with the knowledge that
performance is going to be bound by one of the following variables: CPU, RAM, I/O, or
bandwidth. So begin by asking yourself the following questions:

Is the CPU maxed out? If examining CPU usage with top on Unix or the Task Manager on
Windows shows CPU(s) at 100 percent, your mission is to find out what’s causing all that
processing. Looking at the process list will let you know whether it’s the web server or the
database eating up processor cycles. Both of these problems are solvable.

Has the server run out of RAM? This can be checked easily with top on Unix or the Task
Manager on Windows. If the server has plenty of free memory, go on to the next question.
If the server is out of RAM, you must figure out why.

527

C H A P T E R 2 2

09898ch22final 7/30/08 1:32 PM Page 527

Are the disks maxed out? If examining the disk subsystem with a tool like vmstat on Unix
or the Performance Monitor on Windows shows that disk activity cannot keep up with the
demands of the system while plenty of free RAM remains, you’ve got an I/O problem. Pos-
sibilities include excessively verbose logging, an improperly configured database that is
creating many temporary tables on disk, background script execution, improper use of a
RAID level for a write-heavy application, and so on.

Is the network link saturated? If the network pipe is filled up, there are only two solutions.
One is to get a bigger pipe. The other is to send less information while making sure the
information that is being sent is properly compressed.

!Tip Investigating your page serving performance from outside your server is also useful. A tool like YSlow
(http://developer.yahoo.com/yslow/help/) can be helpful when pinpointing why your pages are not
downloading as quickly as you’d like when you haven’t yet hit a wall with CPU, RAM, or I/O. A helpful article
on YSlow and Drupal can be found at http://wimleers.com/article/improving-drupals-page-
loading-performance.

Web Server Running Out of CPU
If your CPU is maxed out and the process list shows that the resources are being consumed by
the web server and not the database (which is covered later), you should look into reducing
the web server overhead incurred to serve a request. Often the execution of PHP code is the
culprit.

PHP Optimizations

Because PHP code execution is a big part of serving a request in Drupal, it’s important to
know what can be done to speed up this process. Significant performance gains can be
made by caching PHP operation codes (opcodes) after compilation and by profiling the
application layer to identify inefficient algorithms.

Operation Code Caching
There are two ways to reduce the CPU resources used to execute PHP code. Obviously, one is
to reduce the amount of code by disabling unnecessary Drupal modules and writing efficient
code. The other is to use an opcode cache. PHP parses and compiles all code into an interme-
diate form consisting of a sequence of opcodes on every request. Adding an opcode cache lets
PHP reuse its previously compiled code, so the parsing and compilation are skipped. Com-
mon opcode caches are Alternative PHP Cache (http://pecl.php.net/package/APC),
eAccelerator (http://eaccelerator.net), XCache (http://xcache.lighttpd.net/), and Zend
Platform (http://zend.com). Zend is a commercial product while the others are freely avail-
able. The interface for APC is shown in Figure 22-1.

Because Drupal is a database-intensive program, an opcode cache should not be
regarded as a single solution but as part of an integrated strategy. Still, it can give significant
performance gains for minimal effort.

CHAPTER 22 ! OPTIMIZING DRUPAL528

09898ch22final 7/30/08 1:32 PM Page 528

http://developer.yahoo.com/yslow/help
http://wimleers.com/article/improving-drupals-page-loading-performance
http://wimleers.com/article/improving-drupals-page-loading-performance
http://wimleers.com/article/improving-drupals-page-loading-performance
http://pecl.php.net/package/APC
http://eaccelerator.net
http://xcache.lighttpd.net
http://zend.com

Figure 22-1. Alternative PHP Cache (APC) comes with an interface that displays memory alloca-
tion and the files currently within the cache.

Application Profiling
Often custom code and modules that have performed reasonably well for small-scale
sites can become a bottleneck when moved into production. CPU-intensive code loops,
memory-hungry algorithms, and large database retrievals can be identified by profiling
your code to determine where PHP is spending most of its time and thus where you ought
to spend most of your time debugging. See Chapter 21 for more information on PHP
debuggers and profilers.

If, even after adding an opcode cache and optimizing your code, your web server cannot
handle the load, it is time to get a beefier box with more or faster CPUs or to move to a differ-
ent architecture with multiple web server frontends.

Web Server Running Out of RAM
The RAM footprint of the web server process serving the request includes all of the modules
loaded by the web server (such as Apache’s mod_mime, mod_rewrite, etc.) as well as the memory
used by the PHP interpreter. The more web server and Drupal modules that are enabled, the
more RAM used per request.

CHAPTER 22 ! OPTIMIZING DRUPAL 529

09898ch22final 7/30/08 1:32 PM Page 529

Because RAM is a finite resource, you should determine how much is being used on each
request and how many requests your web server is configured to handle. To see how much real
RAM is being used on average for each request, use a program like top to see your list of pro-
cesses. In Apache, the maximum number of simultaneous requests that will be served is set
using the MaxClients directive. A common mistake is thinking the solution to a saturated web
server is to increase the value of MaxClients. This only complicates the problem, since you’ll
be hit by too many requests at once. That means RAM will be exhausted, and your server will
start disk swapping and become unresponsive. Let’s assume, for example, that your web
server has 2GB of RAM and each Apache request is using roughly 20MB (you can check the
actual value by using top on Unix or Task Manager on Windows). You can calculate a good
value for MaxClients by using the following formula; keep in mind the fact that you will need
to reserve memory for your operating system and other processes:

2GB RAM / 20MB per process = 100 MaxClients

If your server consistently runs out of RAM even after disabling unneeded web server
modules and profiling any custom modules or code, your next step is to make sure the data-
base and the operating system are not the causes of the bottleneck. If they are, then add more
RAM. If the database and operating system are not causing the bottlenecks, you simply have
more requests than you can serve; the solution is to add more web server boxes.

!Tip Since memory usage of Apache processes tends to increase to the level of the most memory-hungry
page served by that child process, memory can be regained by setting the MaxRequestsPerChild value to
a low number, such as 300 (the actual number will depend on your situation). Apache will work a little harder
to generate new children, but the new children will use less RAM than the older ones they replace, so you
can serve more requests in less RAM. The default setting for MaxRequestsPerChild is 0, meaning the
processes will never expire.

Other Web Server Optimizations
There are a few other things that you can do to make your web server run more efficiently.

Apache Optimizations
Apache is the most common web server used with Drupal, and it can be tweaked to provide
better performance. The following sections will suggest some approaches to try.

mod_expires

This Apache module will let Drupal send out Expires HTTP headers, caching all static files
in the user’s browser for two weeks or until a newer version of a file exists. This goes for all
images, CSS and JavaScript files, and other static files. The end result is reduced bandwidth
and less traffic for the web server to negotiate. Drupal is preconfigured to work with
mod_expires and will use it if it is available. The settings for mod_expires are found in
Drupal’s .htaccess file.

CHAPTER 22 ! OPTIMIZING DRUPAL530

09898ch22final 7/30/08 1:32 PM Page 530

Requires mod_expires to be enabled.
<IfModule mod_expires.c>
Enable expirations.
ExpiresActive On

Cache all files for 2 weeks after access (A).
ExpiresDefault A1209600

Do not cache dynamically generated pages.
ExpiresByType text/html A1

</IfModule>

We can’t let mod_expires cache HTML content, because the HTML content Drupal pro-
duces is not always static. This is the reason Drupal has its own internal caching system for its
HTML output (i.e., page caching).

Moving Directives from .htaccess to httpd.conf

Drupal ships with two .htaccess files: one is at the Drupal root, and the other is automatically
generated after you create your directory to store uploaded files and visit Administer " “File
system” to tell Drupal where the directory is. Any .htaccess files are searched for, read, and
parsed on every request. In contrast, httpd.conf is only read when Apache is started. Apache
directives can live in either file. If you have control of your own server, you should move the
contents of the .htaccess files to the main Apache configuration file (httpd.conf) and disable
.htaccess lookups within your web server root by setting AllowOverride to None:

<Directory />
AllowOverride None
...

</Directory>

This prevents Apache from traversing up the directory tree of every request looking for
the .htaccess file to execute. Apache will then have to do less work for each request, giving it
more time to serve more requests.

Other Web Servers
Another option is to use a web server other than Apache. Benchmarks have shown that, for
example, the lighttpd web server generally serves more requests per second for Drupal.
See http://buytaert.net/drupal-webserver-configurations-compared for more detailed
comparisons.

Database Bottlenecks
Drupal does a lot of work in the database, especially for authenticated users and custom mod-
ules. It is common for the database to be the cause of the bottleneck. Here are some basic
strategies for optimizing Drupal’s use of the database.

CHAPTER 22 ! OPTIMIZING DRUPAL 531

09898ch22final 7/30/08 1:32 PM Page 531

http://buytaert.net/drupal-webserver-configurations-compared

Enabling MySQL’s Query Cache
MySQL is the most common database used with Drupal. MySQL has the ability to cache
frequent queries in RAM so that the next time a given query is issued, MySQL will return it
instantly from the cache. However, in most MySQL installations, this feature is disabled by
default. To enable it, add the following lines to your MySQL option file; the file is named
my.cnf and specifies the variables and behavior for your MySQL server (see http://dev.
mysql.com/doc/refman/5.1/en/option-files.html). In this case, we’re setting the query cache
to 64MB:

The MySQL server
[mysqld]
query_cache_size=64M

The current query cache size can be viewed as output of MySQL’s SHOW VARIABLES
command:

mysql>SHOW VARIABLES LIKE 'query_cache%';

...
| query_cache_size | 67108864
| query_cache_type | ON
...

Experimenting with the size of the query cache is usually necessary. Too small a cache
means cached queries will be invalidated too often. Too large a cache means a cache search
may take a relatively long time; also, the RAM used for the cache may be better used for other
things, like more web server processes, memcache, or the operating system’s file cache.

!Tip In Drupal, visit Administer " Reports " “Status report,” and click the MySQL version number to
get a quick overview of the values of some of the more important MySQL variables. You can also check if
the query cache is enabled from that page.

Identifying Expensive Queries
If you need to get a sense of what is happening when a given page is generated, devel.module
is invaluable. It has an option to display all the queries that are required to generate the page
along with the execution time of each query. See Chapter 21 for details on how to use devel.
module to identify and optimize database queries using the EXPLAIN syntax.

Another way to find out which queries are taking too long is to enable slow query logging
in MySQL. This is done in the MySQL option file (my.cnf) as follows:

The MySQL server
[mysqld]
log-slow-queries

CHAPTER 22 ! OPTIMIZING DRUPAL532

09898ch22final 7/30/08 1:32 PM Page 532

http://dev

This will log all queries that take longer than 10 seconds to a log file at example.com-slow.
log in MySQL’s data directory. You can change the number of seconds and the log location as
shown in this code, where we set the slow query threshold to 5 seconds and the filename to
example-slow.log:

The MySQL server
[mysqld]
long_query_time = 5
log-slow-queries = /var/log/mysql/example-slow.log

Identifying Expensive Pages
To find out which pages are the most resource intensive, enable the statistics module that
is included with Drupal. Although the statistics module increases the load on your server
(since it records access statistics for your site into your database), it can be useful to see
which pages are the most frequently viewed and thus the most ripe for query optimiza-
tion. It also tracks total page generation time over a period, which you can specify in
Administer " Reports " “Access log settings.” This is useful for identifying out-of-control
web crawlers that are eating up system resources, which you can then ban on the spot by
visiting Administer " Reports " “Top visitors” and clicking “ban.” Be careful though—it’s
just as easy to ban a good crawler that drives traffic to your site as a bad one. Make sure
you investigate the origin of the crawler before banning it.

Identifying Expensive Code
Consider the following resource-hogging code:

// Very expensive, silly way to get node titles. First we get the node IDs
// of all published nodes.
$sql = "SELECT n.nid FROM {node} n WHERE n.status = 1";

// We wrap our node query in db_rewrite_sql() so that node access is respected.
$result = db_rewrite_sql(db_query($sql));

// Now we do a node_load() on each individual node.
while ($data = db_fetch_object($result)) {
$node = node_load($data->nid);
// And save the titles.
$titles[$node->nid] = check_plain($node->title);

}

Fully loading a node is an expensive operation: hooks run, modules perform database
queries to add or modify the node, and memory is used to cache the node in node_load()’s
internal cache. If you are not depending on modification to the node by a module, it’s much
faster to do your own query of the node table directly. Certainly this is a contrived example,
but the same pattern can often be found, that is, often data is retrieved via multiple queries
that could be combined into a single query, or needless node loading is performed.

CHAPTER 22 ! OPTIMIZING DRUPAL 533

09898ch22final 7/30/08 1:32 PM Page 533

!Tip Drupal has an internal caching mechanism (using a static variable) when a node is loaded more than
once per request. For example, if node_load(1) was called, node number 1 is fully loaded and cached.
When another call to node_load(1) is made during the same web request, Drupal will return the cached
results for the previously loaded node having the same node ID.

Optimizing Tables
SQL slowness can result from poor implementation of SQL tables in contributed modules. For
example, columns without indices may result in slow queries. A quick way to see how queries
are executed by MySQL is to take one of the queries you’ve captured in your slow query log,
prepend the word EXPLAIN to it, and issue the query to MySQL. The result will be a table show-
ing which indices were used. Consult a good book on MySQL for details.

Caching Queries Manually
If you have very expensive queries that must be performed, perhaps the results can be manu-
ally cached by your module. See Chapter 15 for details on Drupal’s cache API.

Changing the Table Type from MyISAM to InnoDB
Two common choices for MySQL storage engines, often called table types, are MyISAM and
InnoDB. Drupal uses MyISAM by default.

MyISAM uses table-level locking, while InnoDB uses row-level locking. Locking is impor-
tant to preserve database integrity; it prevents two database processes from trying to update
the same data at the same time. In practice, the difference in locking strategies means that
access to an entire table is blocked during writes for MyISAM. Therefore, on a busy Drupal site
when many comments are being added, all comment reads are blocked while a new comment
is inserted. On InnoDB, this is less of a problem, since only the row(s) being written get locked,
allowing other server threads to continue to operate on the remaining rows. However, with
MyISAM, table reads are faster, and data maintenance and recovery tools are more mature.
See http://dev.mysql.com/tech-resources/articles/storage-engine/part_1.html or http://
dev.mysql.com/doc/refman/5.1/en/storage-engines.html for more information on MySQL’s
table storage architectures.

To test whether table-locking issues are the cause of slow performance, you can analyze
lock contention by checking the Table_locks_immediate and Table_locks_waited status vari-
ables within MySQL.

mysql> SHOW STATUS LIKE 'Table%';

+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited | 15324 |
+-----------------------+---------+

CHAPTER 22 ! OPTIMIZING DRUPAL534

09898ch22final 7/30/08 1:32 PM Page 534

http://dev.mysql.com/tech-resources/articles/storage-engine/part_1.html
http://dev.mysql.com/doc/refman/5.1/en/storage-engines.html
http://dev.mysql.com/doc/refman/5.1/en/storage-engines.html

Table_locks_immediate is the number of times that a table lock was acquired immedi-
ately, and Table_locks_waited is the number of times a table lock could not be acquired
immediately and a wait was needed. If the Table_locks_waited value is high, and you are
having performance problems, you may want to split up large tables; for example, you might
create a dedicated cache table for a custom module or consider ways to reduce the sizes or
the frequency of the table lock commands. One way to reduce table sizes for some tables,
such as the cache_*, watchdog, and accesslog tables, is by reducing the lifetime of the data.
This can be done within the Drupal administrative interface. Also, making sure cron is being
run as often as once an hour will keep these tables pruned.

Because Drupal can be used in many different ways, it is impossible to give an across-
the-board recommendation as to which tables should use which engine. However, in general,
good candidates for conversion to InnoDB are the cache, watchdog, sessions, and accesslog
tables. Fortunately, the conversion to InnoDB is very simple:

ALTER TABLE accesslog TYPE='InnoDB';

Of course, this conversion should be done when the site is offline and your data has been
backed up, and you should be informed about the different characteristics of InnoDB tables.

!Note Drupal 6 does not use the LOCK TABLES command in core code, though the database API offers
the db_lock_table() and db_unlock_tables() functions for contributed modules that need them.

For MySQL performance tuning, check out the performance tuning script at http://
www.day32.com/MySQL/, which provides suggestions for tuning MySQL server variables.

Memcached
Often the system takes a performance hit when data must be moved to or from a slower
device such as a hard disk drive. What if you could bypass this operation entirely for data
that you could afford to lose (like session data)? Enter memcached, a system that reads and
writes to memory. Memcached is more complicated to set up than other solutions proposed
in this chapter, but it is worth talking about when scalability enhancements are needed in
your system.

Drupal has a built-in database cache to cache pages, menus, and other Drupal data,
and the MySQL database is capable of caching common queries, but what if your database
is straining under the load? You could buy another database server, or you could take the
load off of the database altogether by storing some things directly in memory instead of in
the database. The memcached library (see http://www.danga.com/memcached/) and the PECL
Memcache PHP extension (see http://pecl.php.net/package/memcache) are just the tools to
do this for you.

The memcached system saves arbitrary data in random access memory and serves the
data as fast as possible. This type of delivery will perform better than anything that depends
on hard disk access. Memcached stores objects and references them with a unique key for
each object. It is up to the programmer to determine what objects to put into memcached.

CHAPTER 22 ! OPTIMIZING DRUPAL 535

09898ch22final 7/30/08 1:32 PM Page 535

http://www.day32.com/MySQL
http://www.day32.com/MySQL
http://www.danga.com/memcached
http://pecl.php.net/package/memcache

Memcached knows nothing about the type or nature of what is put into it; to its eyes, it is all
a pile of bits with keys for retrieval.

The simplicity of the system is its advantage. When writing code for Drupal to leverage
memcached, developers can decide to cache whatever is seen as the biggest cause of bottle-
necks. This might be the results of database queries that get run very often, such as path
lookups, or even complex constructions such as fully built nodes and taxonomy vocabular-
ies, both of which require many database queries and generous PHP processing to produce.

A memcache module for Drupal and a Drupal-specific API for working with the PECL
Memcache interface can be found at http://drupal.org/project/memcache.

Drupal-Specific Optimizations
While most optimizations to Drupal are done within other layers of the software stack, there
are a few buttons and levers within Drupal itself that yield significant performance gains.

Page Caching
Sometimes, it’s the easy things that are overlooked, which is why they’re worth mentioning
again. Drupal has a built-in way to reduce the load on the database by storing and sending
compressed cached pages requested by anonymous users. By enabling the cache, you are
effectively reducing pages to a single database query rather than the many queries that might
have been executed otherwise. Drupal caching is disabled by default and can be configured
at Administer " Site configuration " Performance. For more information, see Chapter 15.

Bandwidth Optimization
There is another performance optimization on the Administer " Site configuration "
Performance page to reduce the number of requests made to the server. By enabling the
“Optimize CSS files” feature, Drupal takes the CSS files created by modules, compresses
them, and rolls them into a single file inside a css directory in your “File system path.” The
“Optimize JavaScript files” feature concatenates multiple JavaScript files into one and places
that file inside a js directory in your “File system path.” This reduces the number of HTTP
requests per page and the overall size of the downloaded page.

When storing a page in the page cache, Drupal will check if page compression is enabled.
This feature is enabled by default and can be disabled at Administer " Site configuration "
Performance. When enabled, Drupal checks for the presence of the zlib extension for PHP
and uses gzencode($data, 9, FORCE_GZIP) to compress the page before storing it in the cache.
When the page is retrieved from the cache, Drupal determines if the browser supports gzip
encoding, and if it does, it simply hands over the cached, compressed page. Otherwise, the
cached data is unzipped using gzinflate() before being sent. See drupal_page_cache_
header() in includes/bootstrap.inc for details.

CHAPTER 22 ! OPTIMIZING DRUPAL536

09898ch22final 7/30/08 1:32 PM Page 536

http://drupal.org/project/memcache

Pruning the Sessions Table
Drupal stores user sessions in its database rather than in files (see Chapter 16). This makes
Drupal easier to set up across multiple machines, but it also adds overhead to the database for
managing each user’s session information. If a site is getting tens of thousands of visitors a
day, it’s easy to see how quickly this table can become very large.

PHP gives you control over how often it should prune old session entries. Drupal has
exposed this configuration in its settings.php file.

ini_set('session.gc_maxlifetime', 200000); // 55 hours (in seconds)

The default setting for the garbage collection system to run is a little over two days.
This means that if a user doesn’t log in for two days, their session will be removed. If your
sessions table is growing unwieldy, you’ll want to increase the frequency of PHP’s session
garbage collection.

ini_set('session.gc_maxlifetime', 86400); // 24 hours (in seconds)
ini_set('session.cache_expire', 1440); // 24 hours (in minutes)

When adjusting session.gc_maxlifetime, it also makes sense to use the same value for
session.cache_expire, which controls the time to live for cached session pages. Note that
the session.cache_expire value is in minutes.

Managing the Traffic of Authenticated Users
Since Drupal can serve cached pages to anonymous users, and anonymous users don’t nor-
mally require the interactive components of Drupal, you may want to reduce the length of
time users stay logged in or, crazier yet, log them out after they close their browser windows.
This is done by adjusting the cookie lifetime within the settings.php file. In the following line,
we change the value to 24 hours:

ini_set('session.cookie_lifetime', 86400); // 24 hours (in seconds)

And here we log users out when they close the browser:

ini_set('session.cookie_lifetime', 0); // When they close the browser.

The default value in settings.php (2,000,000 seconds) allows a user to stay logged in for
just over three weeks (provided session garbage collection hasn’t removed their session row
from the sessions database).

Pruning Error Reporting Logs
Drupal offers module developers the watchdog() function, which writes information to a log.
Built-in support is available for logging to the database and to syslog.

Severity Levels
The severity levels to be used by PHP code that calls watchdog() are compliant with RFC 3164
and are shown in Table 22-1.

CHAPTER 22 ! OPTIMIZING DRUPAL 537

09898ch22final 7/30/08 1:32 PM Page 537

Table 22-1. Constants and Severity Levels for Drupal’s Watchdog System

Drupal Constant Integer Severity Level
WATCHDOG_EMERG 0 Emergency: system is unusable

WATCHDOG_ALERT 1 Alert: action must be taken immediately

WATCHDOG_CRITICAL 2 Critical: critical conditions

WATCHDOG_ERROR 3 Error: error conditions

WATCHDOG_WARNING 4 Warning: warning conditions

WATCHDOG_NOTICE 5 Notice: normal but significant condition

WATCHDOG_INFO 6 Informational: informational messages

WATCHDOG_DEBUG 7 Debug: debug-level messages

Logging to the Database
Drupal ships with the Database logging module enabled by default. Entries can be viewed
at Administer " Reports " Recent log entries. The watchdog table in the database, which con-
tains the entries, can bloat fairly quickly if it isn’t regularly pruned. If you find that the size of
the watchdog table is slowing your site down, you can keep it lean and mean by adjusting the
settings found at Administer " Site configuration " Logging and alerts " Database logging.
Note that changes to this setting will take effect when cron runs the next time. Not running
cron regularly will allow the watchdog table to grow endlessly, causing significant overhead.

Logging to Syslog
The syslog module, which ships with Drupal core but is disabled by default, writes calls to
watchdog() to the operating system log using PHP’s syslog() function. This approach elimi-
nates the database inserts required by the Database logging module.

Running cron
Even though it’s step seven of Drupal’s installation instructions, setting up cron is often over-
looked, and this oversight can bring a site to its knees. By not running cron on a Drupal site,
the database fills up with log messages, stale cache entries, and other statistical data that is
otherwise regularly wiped from the system. It’s a good practice to configure cron early on as
part of the normal install process. See step seven of Drupal’s INSTALL.txt file for more infor-
mation on setting up cron.

CHAPTER 22 ! OPTIMIZING DRUPAL538

09898ch22final 7/30/08 1:32 PM Page 538

!Tip If you are in a critical situation where cron has never been run on a high-traffic site or it simply
hasn’t been run often enough, you can perform some of what cron does manually. You can empty the cache
tables (TRUNCATE TABLE 'cache', TRUNCATE TABLE 'cache_filter', and TRUNCATE TABLE 'cache_
page') at any time, and they will be rebuilt automatically. Also, in a pinch, you can empty the watchdog and
sessions tables to try to regain control of a runaway Drupal site. The implications of removing watchdog
entries are that you’ll lose any error messages that might indicate problems with the site. If you are con-
cerned about holding on to this data, you can do a database dump of the watchdog table before truncating
it. Truncating the sessions table will log out currently logged in users.

Automatic Throttling
Drupal includes a module called throttle.module as part of the core distribution. This module
measures site load by sampling the number of current users and by turning off functionality if
the sampling indicates that the threshold set by the administrator has been reached. It’s a
good idea to turn on this module when you configure a site, so you’ll be ready when a page on
the site makes the headlines and the masses pummel your server. The throttle module is not a
panacea, however. It takes a good deal of overhead to actually perform the throttling. Other
solutions, such as using memcached, should also be investigated.

Enabling the Throttle Module
When you enable the throttle module, you’ll notice that an extra series of check boxes
appears on the module administration page. That is, in addition to selecting whether a
module is enabled, you can also select whether it will be throttled. Being throttled means
that when module_list() returns a list of which modules are enabled and the throttle is on
because of high traffic, that module will not be included; throttled modules are effectively
disabled.

Obviously, you’ll need to carefully choose which modules you wish to throttle. Good can-
didates are modules that do something nonessential but take up CPU time or perform many
database queries. Core modules cannot be throttled (because they’re necessary for Drupal to
run correctly) but may understand throttling and offer their own options for reducing process-
ing time when the site is being throttled. For example, the block module cannot be throttled,
but individual blocks can be throttled, as shown in Figure 22-2.

CHAPTER 22 ! OPTIMIZING DRUPAL 539

09898ch22final 7/30/08 1:32 PM Page 539

Figure 22-2. When under a heavy load, this site will not display the search form in the header
or the “Who’s new” and “Who’s online” blocks in the right sidebar, but it will always display the
Navigation and “User login” blocks in the left sidebar and the “Powered by Drupal” block in
the footer.

Configuring the Throttle Module
In order for the throttle mechanism to kick in, you’ll have to give it a threshold and a sampling
frequency. When the throttle module is enabled, the thresholds can be set at Administer " Site
configuration " Throttle.

Setting Thresholds

Two thresholds can be entered: the number of anonymous users at which throttling will begin
and the number of authenticated users at which throttling will begin. Since anonymous users
take fewer resources than authenticated users, the threshold for anonymous users should be
higher. The actual values will depend on your individual site.

The number of users must be measured against a given time period. This time period is
set in the “Who’s online” block settings and stored as the Drupal variable user_block_
seconds_online. If it has not been set, it defaults to 900 seconds (15 minutes), as shown in
Figure 22-3.

CHAPTER 22 ! OPTIMIZING DRUPAL540

09898ch22final 7/30/08 1:32 PM Page 540

Figure 22-3. The time period after a user’s last visit during which a user is still considered
“online” is determined by the User activity field in the “Who’s online” block settings.

Setting Sampling Frequency

To determine the load on the site to see if the throttle mechanism should be on or off, the
throttle module must query the database. This puts additional load on the database server.
The frequency of these checks (actually the probability that a check will occur on a given
request) is set using the “Auto-throttle probability limiter” setting. For example, choosing
the value 20 percent would sample on about 1 out of every 5 requests.

Making Modules and Themes Throttle-Aware
The throttle mechanism is either on or off. When writing your own modules and themes,
you can respond to the throttle status, for example:

// Get throttle status.
// We use module_invoke() instead of calling throttle_status() directly
// so this will still work when throttle.module is disabled.
$throttle = module_invoke('throttle', 'status');

if (!$throttle) {
// Throttle is off.
// Do nonessential CPU-intensive task here.

}

!Tip If you have large media files that are nonessential but being served as part of your theme, you could
use throttling to temporarily stop serving these files, decreasing the amount of bandwidth used when your
web site is being hammered.

CHAPTER 22 ! OPTIMIZING DRUPAL 541

09898ch22final 7/30/08 1:32 PM Page 541

Architectures
The architectures available for Drupal are those of other LAMP-stack software, and the tech-
niques used to scale are applicable to Drupal as well. Thus, we’ll concentrate on the
Drupal-specific tips and gotchas for different architectures.

Single Server
This is the simplest architecture. The web server and the database run on the same server.
The server may be a shared host or a dedicated host. Although many small Drupal sites run
happily on shared hosting, serious web hosting that expects to scale should take place on a
dedicated host.

With single-server architecture, configuration is simple, as everything is still done on
one server. Likewise, communication between the web server and the database is fast,
because there is no latency incurred by moving data over a network. Clearly, it’s advanta-
geous to have a multicore processor, so the web server and database don’t need to jockey
as much for processor time.

Separate Database Server
If the database is your bottleneck, a separate and powerful database server may be what you
need. Some performance will be lost because of the overhead of sending requests through a
network, but scalability will improve.

!Note Any time you are working with multiple servers, you’ll want to be sure that they are connected via a
fast local network.

Separate Database Server and a Web Server Cluster
Multiple web servers provide failover and can handle more traffic. The minimum number of
computers needed for a cluster is two web servers. Additionally, you need a way to switch traf-
fic between the machines. Should one of the machines stop responding, the rest of the cluster
should be able to handle the load.

Load Balancing
Load balancers distribute web traffic among web servers. There are other kinds of load bal-
ancers for distributing other resources such as a hard disks and databases, but here, I’m just
talking about distributing HTTP requests. In the case of multiple web servers, load balancers
allow web services to continue in the face of one web server’s downtime or maintenance.

There are two broad categories of load balancers. Software load balancers are cheaper or
even free but tend to have more ongoing maintenance and administrative costs than

CHAPTER 22 ! OPTIMIZING DRUPAL542

09898ch22final 7/30/08 1:32 PM Page 542

hardware load balancers. Linux Virtual Server (http://www.linuxvirtualserver.org/) is one of
the most popular Linux load balancers. Hardware load balancers are expensive, since they
contain more advanced server switching algorithms, and tend to be more reliable than
software-based solutions.

In addition to load balancing, multiple web servers introduce several complications, pri-
marily file uploading and keeping the codebase consistent across servers.

File Uploads and Synchronization
When Drupal is run on a single web server, uploaded files are typically stored in Drupal’s files
directory. The location is configurable at Administer " Site configuration " File system. With
multiple web servers, the following scenario must be avoided:

1. A user uploads a file on web server A; the database is updated to reflect this.

2. A user views a page on web server B that references the new file. File not found!

Clearly, the answer is to make the file appear on web server B also. There are several
approaches.

Using rsync

The rsync program is a utility that synchronizes two directories by copying only the files that
have changed. For more information, see http://samba.anu.edu.au/rsync/. The disadvantage
of this approach is the delay that synchronization incurs, as well as having duplicate copies
(and thus storage costs) of all uploaded files.

!Tip If you have many files and are doing regularly scheduled rsync synchronizations, it might make
sense to do a conditional synchronization by checking the file and upload tables and skipping the syn-
chronization if they are unchanged.

Using a Shared, Mounted File System

Rather than synchronize multiple web servers, you can deploy a shared, mounted file system,
which stores files in a single location on a file server. The web servers can then mount the file
server using a protocol like Network File System (NFS). The advantages of this approach are
that cheap additional web servers can be easily added, and resources can be concentrated in
a heavy-duty file server with a redundant storage system like RAID 5. The main disadvantage
to this system is that there is a single point of failure; if your server or file system mounts go
down, the site is affected unless you also create a cluster of file servers.

If there are many large media files to be served, it may be best to serve these from a
separate server using a lightweight web server such as lighttpd to avoid having a lot of
long-running processes on your web servers contending with requests handled by Drupal.
An easy way to do this is to use a rewrite rule on your web server to redirect all incoming

CHAPTER 22 ! OPTIMIZING DRUPAL 543

09898ch22final 7/30/08 1:32 PM Page 543

http://www.linuxvirtualserver.org
http://samba.anu.edu.au/rsync

requests for a certain file type to the static server. Here’s an example rewrite rule for Apache
that rewrites all requests for JPEG files:

RewriteCond %{REQUEST_URI} ^/(.*\.jpg)$ [NC]
RewriteRule .* http://static.example.com/%1 [R]

The disadvantage of this approach is that the web servers are still performing the extra
work of redirecting traffic to the file server. An improved solution is to rewrite all file URLs
within Drupal, so the web servers are no longer involved in static file requests. However, there
is not a simple way to effect this change within Drupal core at this time.

Beyond a Single File System

If the amount of storage is going to exceed a single file system, chances are you’ll be doing
some custom coding to implement storage abstraction. One option would be to use an out-
sourced storage system like Amazon’s S3 service.

Multiple Database Servers
Multiple database servers introduce additional complexity, because the data being inserted
and updated must be replicated or partitioned across servers.

Database Replication
In MySQL database replication, a single master database receives all writes. These writes are
then replicated to one or more slaves. Reads can be done on any master or slave. Slaves can
also be masters in a multitier architecture.

The current difficulty with running Drupal in a replicated database environment is that
Drupal does not distinguish between reads and writes. However, because all database queries
go through the database abstraction layer, it is not hard to add this by scanning the query for
the keywords ALTER, CREATE, DELETE, FLUSH, INSERT, LOCK, UPDATE, and so forth, and routing the
query to the appropriate database. There are some examples of this approach that can be
located by searching for “replication” on http://drupal.org, and an interesting blog post is
at http://buytaert.net/database-replication-lag.

Database Partitioning
Since Drupal can handle multiple database connections, another strategy for scaling your
database architecture is to put some tables in one database on one machine, and other tables
in a different database on another machine. For example, moving all cache tables to a separate
database on a separate machine and aliasing all queries on these tables using Drupal’s table
prefixing mechanism can help your site scale.

CHAPTER 22 ! OPTIMIZING DRUPAL544

09898ch22final 7/30/08 1:32 PM Page 544

http://drupal.org
http://buytaert.net/database-replication-lag

Summary
In this chapter, you learned the following:

• How to troubleshoot performance bottlenecks

• How to optimize a web server

• How to optimize a database

• Drupal-specific optimizations

• Possible multiserver architectures

CHAPTER 22 ! OPTIMIZING DRUPAL 545

09898ch22final 7/30/08 1:32 PM Page 545

09898ch22final 7/30/08 1:32 PM Page 546

Installation Profiles

When you install Drupal, certain modules are enabled and certain settings are selected, but
these defaults may not be what you need. Drupal’s installer uses a default installation profile
that determines all of these settings. By creating your own installation profile, you can cus-
tomize the initial installation of Drupal to install your sites with all of the modules and settings
you’d like. Maybe you work for a university and you’d like to create an installation profile that
enables a custom module that ties in with your university’s single sign-on infrastructure, cre-
ates a new role for the site administrator, and sends e-mail to you when installation is com-
plete. Drupal’s installer system allows you to customize what happens at installation by writing
an installation profile. You’ll learn how in this chapter.

Where Profiles Are Stored
Your Drupal site already contains an installation profile. It’s the default installation profile
that ships with Drupal, and you’ll find it at profiles/default/default.profile. We want to
create a new profile called university, so we’ll create a new file at profiles/university/
university.profile. For now, we’ll just add a single function to the file:

<?php
// Id

/**
* Return a description of the profile for the initial installation screen.
*
* @return
* An array with keys 'name' and 'description' describing this profile,
* and optional 'language' to override the language selection for
* language-specific profiles, e.g., 'language' => 'fr'.
*/
function university_profile_details() {
return array(
'name' => 'Drupal (Customized for Iowa State University)',
'description' => 'Select this profile to enable settings typical for a
departmental website.',

);
}

547

C H A P T E R 2 3

09898ch23final 7/30/08 1:27 PM Page 547

Note that we made the filename the same as the profile directory name plus a .profile
suffix, and that all functions in the university.profile file will begin with the university_
prefix.

Because the installation profile choice screen is presented before locale selection hap-
pens, there is not much point in translating the name and description strings. However, it
should be noted that in the remainder of the installation profile, the st() function should be
used where you’d normally use the t() function, because when the installer runs this code,
Drupal has not yet completed a full bootstrap, so t() is not available. If someone wanted to
make a French translation for our installation profile, the translation would go in
profiles/university/translations/fr.po (see Chapter 18).

How Installation Profiles Work
When Drupal’s installer begins, it scans the profiles directory for possible profiles. If it
finds more than one, it will give the user the choice of which one to use. For example, after
creating our university.profile file and adding the university_profile_details() func-
tion, going to http://example.com/install.php will result in a screen similar to the one
shown in Figure 23-1. (Of course, the installation profile will not actually work yet—we’ve
got more to do.)

!Tip If Drupal finds only one profile, it will automatically choose that profile. Thus, if you want your own
profile to run without presenting the screen in Figure 23-1, delete profiles/default/default.profile.

Figure 23-1. Drupal presents a choice of which installation profile to use.

Drupal’s installer will come back to the installation profile later on, too. It will return once
to find out any custom tasks the installation profile wants to perform (so it can add them to

CHAPTER 23 ! INSTALLATION PROFILES548

09898ch23final 7/30/08 1:27 PM Page 548

http://example.com/install.php

the list of steps on the left-hand side of the page). It will also ask which modules the profile
wants enabled and will enable them automatically. Finally, at the end of the installation
process, the installer will hand off execution to the installation profile to actually perform
custom tasks. It is during this latter stage that further Drupal customization occurs. An
overview of the process is shown in Figure 23-2.

Figure 23-2. How the installer interacts with the installation profile

CHAPTER 23 ! INSTALLATION PROFILES 549

09898ch23final 7/30/08 1:28 PM Page 549

Indicating Which Modules to Enable
We’ll tell Drupal which modules our installation profile wants enabled by adding the
university_profile_modules() function (again, we know what the name of this function
should be by concatenating the name of our profile with _profile_modules). The func-
tion should return an array of module names that the profile wants enabled. Take care to
order the array so that modules with dependencies are listed after the modules on which
they are dependent.

/**
* Return an array of the modules to be enabled when this profile is installed.
*
* The following required core modules are always enabled:
* 'block', 'filter', 'node', 'system', 'user'.
*
* @return
* An array of modules to be enabled.
*/
function university_profile_modules() {
return array(
// Enable optional core modules.
'dblog', 'color', 'help', 'taxonomy', 'throttle', 'search', 'statistics',

// Enable single signon by enabling a contributed module.
'pubcookie',

);
}

Before enabling the modules, the installer asks each module whether or not the system
that Drupal is being installed on has all of the necessary requirements for the module. It does
this by calling hook_requirements('install') for each module. If requirements are not met,
the installer fails and reports on what’s missing.

!Note The requirements hook is an optional hook that allows modules to test that the environment is okay
before proceeding with installation. For example, a module may require that a minimum version of PHP be
installed. The requirements hook must be placed in the module’s .install file. For more on this hook, see
http://api.drupal.org/api/function/hook_requirements/6.

The installer ensures that the modules are present before enabling them. It looks in sev-
eral locations, which are shown in Table 23-1. Since we’re enabling the pubcookie module (a
module not included with Drupal core), we need to ensure that it’s available in one of these
locations before running our installation profile.

CHAPTER 23 ! INSTALLATION PROFILES550

09898ch23final 7/30/08 1:28 PM Page 550

http://api.drupal.org/api/function/hook_requirements/6

Table 23-1. Directories Where Drupal Modules May Be Placed

Directory Modules Stored There
modules Modules included with Drupal core

sites/all/modules Third-party modules (for all sites)

profiles/profilename/modules Modules included with the installation profile

sites/*/modules Modules included within the same sites directory as your
settings.php file

The installer also looks for modules stored wherever your site’s settings.php file is
located. If settings.php is found at sites/default, then Drupal looks for sites/default/
modules. Similarly, if settings.php is located at sites/example.com, then Drupal looks for
sites/example.com/modules.

Defining Additional Installation Tasks
Notice the list of tasks in the left sidebar of Figure 23-1 (“Choose profile,” “Choose language,”
“Verify requirements,” etc.). Let’s add a few tasks to that list by defining them in our installa-
tion profile. We’ll write a function that begins with the name of our profile and ends with
_profile_task_list:

/**
* Return a list of tasks that this profile supports.
*
* @return
* A keyed array of tasks the profile will perform during
* the final stage. The keys of the array will be used internally,
* while the values will be displayed to the user in the installer
* task list.
*/
function university_profile_task_list() {
return array(
'dept-info' => st('Departmental Info'),
'support-message' => st('Support'),

);
}

The tasks we define now show up when the profile is selected, as shown in Figure 23-3.

CHAPTER 23 ! INSTALLATION PROFILES 551

09898ch23final 7/30/08 1:28 PM Page 551

Figure 23-3. Tasks defined by the profile (Departmental Info and Support) show up in the left
sidebar.

The installer runs through a series of tasks, including built-in tasks as well as tasks that
your installation profile may define. The built-in tasks are listed in Table 23-2. Make sure that
the keys you define for your array of tasks do not conflict with the task identifiers of the built-
in tasks.

Table 23-2. Names and Descriptions of Tasks Run by the Installer Listed in the Order in Which
They Are Executed

Task Identifier Description
profile-select Choose profile*

locale-select Choose language

requirements Verify requirements

database Set up database

profile-install Prepare batch of modules for installation and enabling

profile-install-batch Install profile (modules are installed and enabled)

locale-initial-import Prepare batch of interface translations for import

CHAPTER 23 ! INSTALLATION PROFILES552

09898ch23final 7/30/08 1:28 PM Page 552

Task Identifier Description
locale-initial-batch Set up translations by importing .po files

configure Configure site (user fills out form)

profile Hand over control to installation profile’s _profile_tasks() function

profile-finished Prepare batch of remaining interface translations for import

locale-remaining-batch Set up remaining translations

finished Tell user that installation has completed

done Rebuild menus, register actions, and display initial page

* If only the default profile is available, the “Choose profile” task is not shown in the user interface and the
“Install profile” task is renamed “Install site.”

The tasks you define indicate steps in the installation process; the purpose of defining the
tasks here is so that Drupal can include them in the user interface. There is nothing to prevent
you from having more tasks than are listed in university_profile_task_list() if you want to
make your installation profile more modular but don’t want to include names for the tasks in
the user interface.

Running Additional Installation Tasks
The tasks you specify in university_profile_task_list() will be run during the profile
phase of installation. During that phase, the installer will repeatedly call university_
profile_tasks() and pass in a $task variable containing the task name and a URL for pos-
sible use in form functions. The first time the installer calls, $task will contain the string
profile.

After each task, Drupal will ask the browser to do an HTTP redirect using install_goto()
in includes/install.inc, then do a full bootstrap before going on to the next task. When all
of your tasks have been completed, set $task to profile-finished, and the installer will stop
calling university_profile_tasks() and move on.

Here is a skeleton of what university_profile_tasks() will look like:

function university_profile_tasks(&$task, $url) {
if ($task == 'profile') {
// The value of $task is 'profile' the first time we are called.
// Set up all the things a default installation profile has.
require_once 'profiles/default/default.profile';
default_profile_tasks($task, $url);
// Then do our custom setup here.

// Set $task to the next task.
$task = 'dept-info';
// Display a form requesting some info.
return drupal_get_form('university_department_info', $url);

}

CHAPTER 23 ! INSTALLATION PROFILES 553

09898ch23final 7/30/08 1:28 PM Page 553

if ($task == 'dept-info') {
// Send email indicating that a site was set up.

// Set $task to key of next task.
$task = 'support-message';
// Build some output.

return $output;
}

if ($task == 'support-message') {
// Return control to the installer.
$task = 'profile-finished';

}
}

Since we want almost the same kind of setup as a regular Drupal site, we load Drupal’s
default profile and just call default_profile_tasks(), rather than duplicating all of that code
in our installation profile. Another approach would be to copy the code out of the default pro-
file and paste it into the first task.

!Tip A simple installation profile need not implement multiple tasks. It can just ignore the parameters
that are passed to it and run code when it is called. When the installer sees that the $task variable has not
changed, it will move on to the post-installation profile steps. Drupal’s default installation profile is such a
profile, which is why we can call default_profile_tasks() without worrying that it will change the
value of $task.

Notice the structure of the preceding code. It consists of a series of if statements, one per
task. At the end of each task, the $task variable, which was passed by reference, is changed,
and any output is returned and will result in an additional screen for the user to interact with.

Since the database is up and running prior to custom installation tasks being run, the
installer keeps track of the name of the current task in a persistent Drupal variable by calling
variable_set('install_task', $task) at the end of each task. If you want to pass information
from one of your tasks to another, you can use the same technique. Just remember to delete
the variables you used by calling variable_del() at the end of your last task.

Let’s examine a full-fledged version of the university installation profile’s university_
profile_tasks() function:

CHAPTER 23 ! INSTALLATION PROFILES554

09898ch23final 7/30/08 1:28 PM Page 554

/**
* Perform final installation tasks for this installation profile.
*/
function university_profile_tasks(&$task, $url) {
if ($task == 'profile') {
// $task is set to 'profile' the first time this function is called.
// Set up all the things a default installation profile has.
require_once 'profiles/default/default.profile';

// Need constants defined by modules/comment/comment.module
// to be in scope.
require_once 'modules/comment/comment.module';

default_profile_tasks($task, $url);
// If the administrator enables the comment module, we want
// to have comments disabled for pages.
variable_set('comment_page', COMMENT_NODE_DISABLED);

// Define a News Item node type.
$node_type = array(
'type' => 'news',
'name' => st('News Item'),
'module' => 'node',
'description' => st('A news item for the front page.'),
'custom' => TRUE,
'modified' => TRUE,
'locked' => FALSE,
'has_title' => TRUE,
'title_label' => st('Title'),
'has_body' => TRUE,
'orig_type' => 'news',
'is_new' => TRUE,

);
node_type_save((object)$node_type);

// News items should be published and promoted to front page by default.
// News items should create new revisions by default.
variable_set('node_options_news', array('status', 'revision', 'promote'));

// If the administrator enables the comment module, we want
// to have comments enabled for news items.
variable_set('comment_news', COMMENT_NODE_READ_WRITE);

CHAPTER 23 ! INSTALLATION PROFILES 555

09898ch23final 7/30/08 1:28 PM Page 555

// Create a News Categories vocabulary so news can be classified.
$vocabulary = array(
'name' => st('News Categories'),
'description' => st('Select the appropriate audience for your news item.'),
'help' => st('You may select multiple audiences.'),
'nodes' => array('news' => st('News Item')),
'hierarchy' => 0,
'relations' => 0,
'tags' => 0,
'multiple' => 1,
'required' => 0,

);
taxonomy_save_vocabulary($vocabulary);

// Define some terms to categorize news items.
$terms = array(
st('Departmental News'),
st('Faculty News'),
st('Staff News'),
st('Student News'),

);

// Submit the "Add term" form programmatically for each term.
$form_id = 'taxonomy_form_term';
// The taxonomy_form_term form is not in taxonomy.module, so need
// to bring it into scope by loading taxonomy.admin.inc.
require_once 'modules/taxonomy/taxonomy.admin.inc';
foreach ($terms as $name) {
$form_state['values']['name'] = $name;
$form_state['clicked_button']['#value'] = st('Save');
drupal_execute($form_id, $form_state, (object)$vocabulary);

}

// Add a role.
db_query("INSERT INTO {role} (name) VALUES ('%s')", 'site administrator');

// Configure the pubcookie module.
variable_set('pubcookie_login_dir', 'login');
variable_set('pubcookie_id_is_email', 1);
// ...other settings go here

// Set $task to next task so the installer UI will be correct.
$task = 'dept-info';
drupal_set_title(st('Departmental Information'));
return drupal_get_form('university_department_info', $url);

}

CHAPTER 23 ! INSTALLATION PROFILES556

09898ch23final 7/30/08 1:28 PM Page 556

if ($task == 'dept-info') {
// Report by email that a new Drupal site has been installed.
$to = 'administrator@example.com';
$from = ini_get('sendmail_from');
$subject = st('New Drupal site created!');
$body = st('A new Drupal site was created: @site', array(
'@site' => base_path()));

drupal_mail('university-profile', $to, $subject, $body, $from);

// Set $task to next task so the installer UI will be correct.
$task = 'support-message';
drupal_set_title(st('Support'));
$output = '<p>'. st('For support, please contact the Drupal Support Desk
at 123-4567.') .'</p>';

// Build a 'Continue' link that goes to the next task.
$output .= '<p>'. l(st('Continue'), $url) .'</p>';
return $output;

}

if ($task == 'support-message') {
// Change to our custom theme.
$themes = system_theme_data();
$theme = 'university';
if (isset($themes[$theme])) {
system_initialize_theme_blocks($theme);
db_query("UPDATE {system} SET status = 1 WHERE type = 'theme' AND
name = '%s'", $theme);

variable_set('theme_default', $theme);
menu_rebuild();
drupal_rebuild_theme_registry();

}

// Return control to the installer.
$task = 'profile-finished';

}
}

Our first custom installation task displayed an interactive form to the user. Let’s define
that form now. We can use the standard form API, but we take care to set $form['#redirect']
to FALSE and set the form’s action to the URL that is provided by the installer. The form is han-
dled by a submit handler just like normal. Here is the form definition and the submit handler.
The form is shown in Figure 23-4.

CHAPTER 23 ! INSTALLATION PROFILES 557

09898ch23final 7/30/08 1:28 PM Page 557

mailto:administrator@example.com

/**
* Define form used by our dept-info installer task.
*
* @param $form_state
* Keyed array containing the state of the form.
* @param $url
* URL of current installer page, provided by installer.
*/
function university_department_info($form_state, $url) {
$form['#action'] = $url;
$form['#redirect'] = FALSE;
$form['department_code'] = array(
'#type' => 'select',
'#title' => st('Departmental code'),
'#description' => st('Please select the correct code for your department.'),
'#options' => array('BIOL', 'CHEM', 'COMP', 'DRUP', 'ENGL', 'HIST', 'MATH',
'LANG', 'PHYS', 'PHIL'),

);
$form['submit'] = array(
'#type' => 'submit',
'#value' => st('Save and Continue'),

);
return $form;

}

/**
* Handle form submission for university_department_info form.
*/
function university_department_info_submit($form, &$form_state) {
// Set a persistent variable.
variable_set('department_code', $form_state['values']['department_code']);

}

!Note We use st() instead of t() throughout the installation profile to allow the entire installation profile
translation to be stored in an installation profile translation file. This is a .po file located in the optional
translations directory of the installation profile. See Chapter 18 for more about .po files.

CHAPTER 23 ! INSTALLATION PROFILES558

09898ch23final 7/30/08 1:28 PM Page 558

Figure 23-4. The screen for our custom task

Setting Drupal Variables
Drupal variables may be set by simply calling variable_set():

variable_set('pubcookie_login_dir', 'login');

Creating Initial Node Types
If you need to create node types using Drupal’s built-in content type support, a call to
node_type_save() with a node type definition object is all it takes. In the previous example
profile, we ended up with two node types: page for normal web pages (created by the default
profile when we called default_profile_tasks()) and news for news items. We then used
variable_set() to set node option defaults so that news items will appear on the front page
when posted, whereas pages will not.

If you have enabled modules that provide node types, the node types will already be avail-
able to Drupal through the node_info() hook in those modules.

Saving Information to the Database
An installation profile may wish to tweak some database settings. Since the database connec-
tion is available, db_query() can be used to modify the database. In our example profile, we
added a role to the Drupal site. In your profile, you may want to go beyond this by inserting
permissions into the permissions table, for example.

CHAPTER 23 ! INSTALLATION PROFILES 559

09898ch23final 7/30/08 1:28 PM Page 559

An easy way to get the proper queries is to do a plain vanilla Drupal installation, then
configure it exactly the way you want it to be when your installation profile finishes. This
could even include a few nodes to act as placeholders, complete with URL aliases. The univer-
sity department using this installation profile may want to have an About page, a Courses
Taught page, and so forth. After this configuration has taken place, you can use your database
tools to do an SQL dump of the site’s database. You can then pick the insertion commands you
wish to use from among the INSERT SQL commands in the dump and include them in your
installation profile.

Submitting Forms Programmatically
Because Drupal supports programmatic form submission, you can use drupal_execute() to
submit forms as if you were interacting with the web site. In the previous example, we used
this approach to add taxonomy terms to the site. See Chapter 10 for more information about
drupal_execute().

Setting a Theme During Installation
Drupal stores the value of the default theme in the persistent variable called theme_default.
Thus, you can choose the initial theme for the site that will show up after installation by set-
ting this variable. In the preceding example profile, we selected a custom theme named
university.

// Change to our custom theme.
$themes = system_theme_data();
$theme = 'university';
if (isset($themes[$theme])) {
system_initialize_theme_blocks($theme);
db_query("UPDATE {system} SET status = 1 WHERE type = 'theme' AND
name = '%s'", $theme);

variable_set('theme_default', $theme);
menu_rebuild();
drupal_rebuild_theme_registry();

}

But there is some housekeeping that needs to be done. Calling system_theme_data()
and checking whether $themes['university'] is defined ensures that Drupal has discovered
our custom theme. Blocks in the new theme need to be set up, the theme itself needs to be
enabled, and then the menu and theme registry need to be rebuilt.

The approach here is to find the function that takes care of the process you are interested
in (in this case, enabling and setting a default theme), and then either calling the function or
duplicating the functionality in your installation profile task. In the preceding example, the
code was extracted from system_themes_form_submit() in modules/system/system.admin.inc.

Using the Batch API
Sometimes you need to run a series of tasks that may take a long time—long enough that PHP
may time out. Fortunately, Drupal provides an API that makes this easy. You just specify what

CHAPTER 23 ! INSTALLATION PROFILES560

09898ch23final 7/30/08 1:28 PM Page 560

has to be done, then hand it off to the batch processor. This is usually done after a form sub-
mission, though that is not necessary. We will examine the use of the batch API in the installer
and then see how it can be used from a form submission.

Using the Batch API to Enable Modules

The basic idea behind the batch API is that you define a set of operations and some informa-
tion about which progress messages to display and how you’d like the operations to be run,
then hand that to the batch engine. The engine will chug away through the operations, mak-
ing HTTP refreshes and updating progress indicators as necessary. Then, when all operations
are completed, it will call the final function that you indicated.

Here is a simplified version of how the installer uses the batch API to enable modules:

$operations = array();
foreach ($modules as $module) {
$operations[] = array(
'_install_module_batch', // Name of callback.
array($module, $files[$module]->info['name']), // Array of parameters.

);
}
$batch = array(
'operations' => $operations,
'finished' => '_install_profile_batch_finished', // Call this when done.
'title' => st('Installing @drupal', array(
'@drupal' => drupal_install_profile_name())
),

'error_message' => st('The installation has encountered an error.'),
);
batch_set($batch);
batch_process($url, $url);

First, it creates an array of operations. Each operation consists of the name of a PHP func-
tion to be called and an array of parameters to pass along. The PHP function is referred to as a
callback because it will be called back later, when processing happens.

Then, a batch set is defined. This includes the array of operations, the name of the call-
back to call when processing is finished, a title to use during processing, and an error message
to use if things go horribly awry. The batch set is verified using batch_set(), and then process-
ing begins by calling batch_process().

!Tip In this case, all of the operations are calling the same function, just with different parameters. But the
operations could be any function that you want to call.

Following is the code of the _install_module_batch() function from install.php that is
run on each operation:

CHAPTER 23 ! INSTALLATION PROFILES 561

09898ch23final 7/30/08 1:28 PM Page 561

/**
* Batch callback for batch installation of modules.
*/
function _install_module_batch($module, $module_name, &$context) {
_drupal_install_module($module);
// We enable the installed module right away, so that the module will be
// loaded by drupal_bootstrap() in subsequent batch requests, and other
// modules possibly depending on it can safely perform their installation
// steps.
module_enable(array($module));
$context['results'][] = $module;
$context['message'] = 'Installed '. $module_name .' module.';

}

Defining a Batch Set

As mentioned, a group of operations is called a batch set. The batch API can handle multiple
batch sets without mixing them up. Batch sets are processed sequentially, with a new progress
indicator for each batch set.

Let’s dive into an example. Rather than make the example part of the installation profile,
we will write it as a separate module. That way, you can test, debug, and play with it without
having to wipe the database and reinstall Drupal every time. Keep in mind that you can use
the same approach within your installation profile by kicking off batch processing in response
to a form that you present to the user during one of your custom profile tasks.

For our scenario, let’s take the common example of someone moving from a custom con-
tent management system to Drupal. There is an existing database table of users that would
look like this if we were to dump out the SQL:

CREATE TABLE old_users (
user_id int(32) NOT NULL,
username varchar(32) NOT NULL,
email varchar(32) NOT NULL,
pass varchar(32) NOT NULL

);
INSERT INTO old_users VALUES (3, 'mary', 'mary@example.com', 'foo');
INSERT INTO old_users VALUES (4, 'joe', 'joe@example.com', 'bar');
INSERT INTO old_users VALUES (6, 'fred', 'fred@example.com', 'zou');
INSERT INTO old_users VALUES (7, 'betty', 'betty@example.com', 'baz');
INSERT INTO old_users VALUES (8, 'friedrich', 'freidrich@example.com', 'fre');
INSERT INTO old_users VALUES (9, 'martin', 'martin@example.com', 'aoi');
INSERT INTO old_users VALUES (10, 'fozzie', 'fozzie@example.com', 'lii');
INSERT INTO old_users VALUES (11, 'steve', 'steve@example.com', 'doi');

Let’s set up a batch that will import these users as Drupal users when the administrator
clicks a form like the one shown in Figure 23-5.

CHAPTER 23 ! INSTALLATION PROFILES562

09898ch23final 7/30/08 1:28 PM Page 562

mailto:mary@example.com
mailto:joe@example.com
mailto:fred@example.com
mailto:betty@example.com
mailto:freidrich@example.com
mailto:martin@example.com
mailto:fozzie@example.com
mailto:steve@example.com

Figure 23-5. Form for selection of how many users should be imported during one cycle

Here is the .info file for our module, which you should put at sites/all/modules/
custom/importusers/importusers.info:

; Id
name = Import Users
description = Imports users from a database using the batch API.
package = Pro Drupal Development
core = 6.x

We’ll start out by implementing the menu hook, creating our form definition, and writing
the handler for form submission. The initial code for sites/all/modules/custom/importusers/
importusers.module follows:

<?php
// Id

/**
* @file
* Example of using the batch API.
*/

/**
* Implementation of hook_menu().
*/
function importusers_menu() {
$items['importusers'] = array(
'title' => 'Import users',
'page callback' => 'drupal_get_form',
'page arguments' => array('importusers_form'),
'access arguments' => array('administer users'),

);
return $items;

}

CHAPTER 23 ! INSTALLATION PROFILES 563

09898ch23final 7/30/08 1:28 PM Page 563

/**
* Menu callback: define form to begin user importation.
*/
function importusers_form() {
$form['size'] = array(
'#type' => 'select',
'#title' => t('Import how many users per pass?'),
'#description' => t('Choose a value and click the Begin button.'),
'#options' => drupal_map_assoc(array(1, 5, 10, 25, 50)),

);
$form['submit'] = array(
'#type' => 'submit',
'#value' => t('Begin'),

);
return $form;

}

/**
* Handle form submission by beginning batch operation.
*/
function importusers_form_submit($form_id, &$form_state) {
$size = $form_state['values']['size'];
$batch = array(
'operations' => array(
array('importusers_import', array($size)),
array('importusers_optimize', array()),
),

'finished' => 'importusers_finished',
'title' => t('Importing Users'),
'init_message' => t('The user import process is beginning.'),
'progress_message' => t('Imported @current of @total.'),
'error_message' => t('The importation process encountered an error.'),

);
batch_set($batch);
// batch_process() not needed here because this is a form submit handler;
// the form API will detect the batch and call batch_process() automatically.

}

The menu hook and form definition functions should be old hat by now (if not, see
Chapters 4 and 10, respectively). Where it gets interesting is in the importusers_form_submit()
function, where we define our batch set. A batch set can have the following keys in its associa-
tive array. Only the operations key is required.

CHAPTER 23 ! INSTALLATION PROFILES564

09898ch23final 7/30/08 1:28 PM Page 564

• operations: This is an array of arrays. Each array contains two members: the name of
a callback function and an array of parameter values that will be passed to the callback
when the operation is performed.

• finished: This is the name of a callback function that will be called when all opera-
tions are complete. This function will receive information about what happened
during processing, so it can be analyzed, summarized via drupal_set_message(), or
otherwise used.

• title: This is the title that should be shown on the page that displays progress informa-
tion to the user. If no title is set, t('Processing') will be used.

• init_message: When the processing of the batch set is being initialized, this message is
shown. If no init_message is set, t('Initializing') will be used.

• progress_message: This is displayed during the processing of the batch set. The follow-
ing placeholders may be used in the progress message: @current, @remaining, @total,
and @percent. These values are changed as the batch set is processed. If no progress_
message is set, t('Remaining @remaining of @total.') will be used.

• error_message: This is displayed to the user if an error occurs during processing. If no
error message is set, t('An error has occurred.') will be used.

• file: If the callback functions for operations and finished are not in scope during a
normal Drupal request, the path of the file containing these functions must be given.
The path is relative to the base_path() of the Drupal installation and can be conve-
niently built using drupal_get_path(). It is unnecessary to define file if the functions
are already in scope.

The preceding batch set is quite simple and consists of only two operations. First, the
batch engine will call importusers_import($size) repeatedly until that function indicates
that all users are imported. Remember, the $size parameter is the number of users to import
on each call. $size matters because it determines how much work is done within each
request cycle, before the batch API has the client initiate another HTTP request. For example,
if you had 100 users to import, setting $size to 1 would result in 100 HTTP requests, while
setting it to 50 would result in 2 requests. How much work you try to do in each request will
be determined by how powerful your server is, how busy the server will be, and how much
work needs to be done.

A Batch Operation Callback

After users are imported, a call will be made to importusers_optimize(). Finally, when that
operation is completed, the callback we specified in the finished key (importusers_
finished()) will be called. Here is the importusers_import() function:

CHAPTER 23 ! INSTALLATION PROFILES 565

09898ch23final 7/30/08 1:28 PM Page 565

/**
* Batch callback operation: Import users.
*
* @param $size
* Number of users to import in each operation.
* @param $context
* Batch context containing state information.
*/
function importusers_import($size, &$context) {
// Initialize sandbox the first time through.
if (!isset($context['sandbox']['progress'])) {
$context['sandbox']['progress'] = 0;
$context['sandbox']['current_user_id'] = 0;
$context['sandbox']['max'] = db_result(
db_query('SELECT COUNT(DISTINCT user_id) FROM {old_users}'));

}

// Retrieve some users from the old_users table.
$result = db_query_range("SELECT user_id, username AS name, email AS mail,
pass FROM {old_users} WHERE user_id > %d ORDER BY user_id",
$context['sandbox']['current_user_id'], 0, $size);

// Transform them into Drupal users.
while ($account = db_fetch_array($result)) {
$new_user = user_save(array(), $account);

// Update progress information.
$context['sandbox']['progress']++;
$context['sandbox']['current_user_id'] = $account['user_id'];
$context['message'] = t('Importing user %username', array('%username' =>
$new_user->name));

// Store usernames in case the the 'finished' callback wants them.
$context['results'][] = $new_user->name;

}

// Let the batch engine know how close we are to completion.
if ($context['sandbox']['progress'] == $context['sandbox']['max']) {
// Done!
$context['finished'] = 1;

}
else {
$context['finished'] = $context['sandbox']['progress'] /
$context['sandbox']['max'];

}
}

CHAPTER 23 ! INSTALLATION PROFILES566

09898ch23final 7/30/08 1:28 PM Page 566

/**
* Batch callback operation: Optimize users.
* For now, this function does nothing.
*
* @param $context
* Batch context containing state information.
*/
function importusers_optimize(&$context) {
// Code would go here.
// Inform the batch engine that we are done.
$context['finished'] = 1;

}

Notice that in addition to passing the parameter you indicated in the batch set operation
array, importusers_import() is receiving another parameter called $context. This array, which
is passed by reference, contains information from the batch engine on the state of the current
batch set. The contents of $context are listed following:

• sandbox: This area is open to use by callback functions. You can store anything you need
in here and it will persist. In our example, we store some information about the number
of users to import, the user currently being imported, and so forth. Use this instead of
$_SESSION for storing information during batch processing. If you use $_SESSION and
the user opens a new browser window, bad things could happen.

• results: This is an array of results for use by the finished callback. For example, this
might be used if the user wants to see a list of the usernames that were imported.

• message: This is a message to display on the progress page.

• finished: This is a floating point number between 0 and 1 indicating how much data
has been processed. Set this to 1 when all the data has been processed to indicate to the
batch processing engine that it may go on to the next operation.

Here is the callback that will be called when all of the batch operations have run:

/**
* Called when all batch operations are complete.
*/
function importusers_finished($success, $results, $operations) {
if ($success) {
drupal_set_message(t('User importation complete.'));

}
else {
// A fatal error occurred during batch processing.
$error_operation = reset($operations);
$operation = array_shift($error_operation);
$arguments = array_shift($error_operation);
$arguments_as_string = implode(', ', $arguments);

CHAPTER 23 ! INSTALLATION PROFILES 567

09898ch23final 7/30/08 1:28 PM Page 567

watchdog('importusers', "Error when calling operation '%s'('%s')",
array($operation, $arguments_as_string));

drupal_set_message(t('An error occurred and has been recorded
in the system log.'), 'error');

}
}

Error Handling

Let’s change the second operation, importusers_optimize(), to demonstrate what happens
when things go bad.

/**
* Batch callback operation. Demonstrate error handling.
*/
function importusers_optimize() {
// Cause fatal error by calling nonexistent function.
go_bananas();

}

The batch processing engine will actually catch the error and helpfully redirect the user
to an error page. The error page is under the control of the finished callback shown in the
preceding section.

Redirection

A final redirection will take place after batch processing is completed and the finished func-
tion has run. The destination of the redirection will be the $destination that was set when
batch processing was begun. If that was not set, the value of $form_state['redirect'] from
the form submit handler will be used. Failing that, $batch['redirect'] will be used, and
finally, if all else fails, the redirect will be to the URL of the page the user was on when batch
processing was initiated.

Progressive and Nonprogressive Batch Sets

A progressive batch set is a normal batch set that uses a progress indicator to provide feed-
back to the user. However, you wouldn’t want that if you were submitting a form program-
matically via drupal_execute(). So the form API recognizes programmatic execution and
changes the batch set to nonprogressive in that case. A nonprogressive batch set executes
all operations in a single request. The setup of progressive and nonprogressive batch sets is
shown in Figure 23-6.

CHAPTER 23 ! INSTALLATION PROFILES568

09898ch23final 7/30/08 1:28 PM Page 568

Figure 23-6. Beginning the processing of progressive and nonprogressive batch sets

The Batch Request Cycle

While operations are being performed, the batch engine takes care of refreshing the progress
indicator page to avoid a PHP timeout. The cycle is shown graphically in Figure 23-7 and can
be investigated by reading includes/batch.inc.

CHAPTER 23 ! INSTALLATION PROFILES 569

09898ch23final 7/30/08 1:28 PM Page 569

Figure 23-7. Overview of the batch request cycle

Resources
Writing installation profiles can be tricky. In our example, we needed to get the comment
module into scope so that some of its constants could be used to set preferences, even
though we did not include the comment module in university_profile_modules(). Like-
wise, we had to define a $form_state['clicked_button'] entry when programmatically
submitting the form that enters taxonomy terms because the submit handler for that form
expected it. Expect to spend some time working out details like that in your own installa-
tion profiles.

While such things may take extra time, you can gain it back by using an installation
profile generator. See http://drupal.org/node/180078 for more information. If you are
interested in advancing the current state of installation profiles (no pun intended), join
the Distribution Profiles group at http://groups.drupal.org/distributions.

CHAPTER 23 ! INSTALLATION PROFILES570

09898ch23final 7/30/08 1:28 PM Page 570

http://drupal.org/node/180078
http://groups.drupal.org/distributions

Summary
In this chapter, you learned the following:

• What an installation profile is

• Where installation profiles are stored

• How to set up a basic installation profile

• How to specify which modules should be installed

• How to specify profile tasks that should run during installation

• How to manipulate Drupal during the stage of installation when profile tasks run

• How the batch API is used in the installer

• How to create your own batch set

CHAPTER 23 ! INSTALLATION PROFILES 571

09898ch23final 7/30/08 1:28 PM Page 571

09898ch23final 7/30/08 1:28 PM Page 572

Database Table Reference

This appendix describes the database tables and fields that make up Drupal core. The
descriptions are taken from the hook_schema() implementations in the core modules’
.install files, with minor changes for clarity. The information is reproduced here for your
convenience.

Primary keys are indicated by bold italic type; indices are indicated by bold type. Multi-
column indices are not shown unless the index is the primary index for the table. You can find
current table definitions in your Drupal installation within the schema hook of a module’s
.install file or using the contributed schema module, found at http://drupal.org/project/
schema. Definitions for nonmodule core tables are in the modules/system/system.install file.
If a table is used primarily by a specific module, that module is listed in parentheses after the
table name. References to other tables show table names in curly brackets.

access (user module)
This table stores site access rules.

Name Type Null Default Description
aid serial No Primary key: unique access ID

mask varchar(255) No '' Text mask used for filtering access

type varchar(255) No '' Type of access rule: name, mail, or host

status int:tiny No 0 Whether rule is to allow (1) or deny (0) access

accesslog (statistics module)
This table stores site access information for statistics.

Name Type Null Default Description
aid serial No Primary key: unique accesslog ID

sid varchar(64) No '' Browser session ID of user who visited the page

title varchar(255) Yes Title of the page visited

Continued

573

A P P E N D I X A

09898appAfinal 7/30/08 3:12 PM Page 573

http://drupal.org/project

Name Type Null Default Description
path varchar(255) Yes Internal path to the page visited (relative to

Drupal root)

url varchar(255) Yes Referrer URI

hostname varchar(128) Yes Hostname of the user who visited the page

uid int, unsigned Yes 0 User {users}.uid who visited the page

timer int, unsigned No 0 Time in milliseconds that the page took to
load

timestamp int, unsigned No 0 Timestamp of when the page was visited

actions (trigger module)
This table stores action information.

Name Type Null Default Description
aid varchar(255) No '0' Primary key: unique actions ID

type varchar(32) No '' The object that the action acts on (node,
user, comment, system, or custom types)

callback varchar(255) No '' The callback function that executes when
the action runs

parameters text:big No Parameters to be passed to the callback
function

description varchar(255) No '0' Description of the action

actions_aid (trigger module)
This table stores action IDs for nondefault actions and serves as a sequences table for config-
urable actions.

Name Type Null Default Description
aid serial No Primary key: unique actions ID

APPENDIX A ! DATABASE TABLE REFERENCE574

09898appAfinal 7/30/08 3:12 PM Page 574

aggregator_category (aggregator module)
This table stores categories for aggregator feeds and feed items.

Name Type Null Default Description
cid serial No Primary key: unique aggregator category ID

title varchar(255) No '' Title of the category

description text:big No Description of the category

block int:tiny No 0 The number of recent items to show within
the category block

aggregator_category_feed (aggregator module)
This bridge table maps feeds to categories.

Name Type Null Default Description
fid int No 0 The feed’s {aggregator_feed}.fid

cid int No 0 The {aggregator_category}.cid to which the feed is
being assigned

aggregator_category_item (aggregator module)
This bridge table maps feed items to categories.

Name Type Null Default Description
iid int No 0 The feed item’s {aggregator_item}.iid

cid int No 0 The {aggregator_category}.cid to which the feed item
is being assigned

aggregator_feed (aggregator module)
This table stores feeds to be parsed by the aggregator.

Name Type Null Default Description
fid serial No Primary key: unique feed ID

title varchar(255) No '' Title of the feed

url varchar(255) No '' URL to the feed

refresh int No 0 How often to check for new feed items, in
seconds

Continued

APPENDIX A ! DATABASE TABLE REFERENCE 575

09898appAfinal 7/30/08 3:12 PM Page 575

Name Type Null Default Description
checked int No 0 Last time feed was checked for new items, as

a Unix timestamp

link varchar(255) No '' The parent web site of the feed; comes from
the <link> element in the feed

description text:big No The parent web site’s description; comes
from the <description> element in the feed

image text:big No An image representing the feed

etag varchar(255) No '' Entity tag HTTP response header; used for
validating the cache

modified int No 0 When the feed was last modified, as a Unix
timestamp

block int:tiny No 0 Number of items to display in the feed’s block

aggregator_item (aggregator module)
This table stores the individual items imported from feeds.

Name Type Null Default Description
iid serial No Primary key: unique ID for feed item

fid int No 0 The {aggregator_feed}.fid to which this
item belongs

title varchar(255) No '' Title of the feed item

link varchar(255) No '' Link to the feed item

author varchar(255) No '' Author of the feed item

description text:big No Body of the feed item

timestamp int Yes Post date of the feed item, as a Unix
timestamp

guid varchar(255) Yes Unique identifier for the feed item

authmap (user module)
This table stores distributed authentication mapping.

Name Type Null Default Description
aid serial No Primary key: unique authmap ID

uid int No 0 User’s {users}.uid

authname varchar(128) No '' Unique authentication name

module varchar(128) No '' Module that is controlling the authentication

APPENDIX A ! DATABASE TABLE REFERENCE576

09898appAfinal 7/30/08 3:12 PM Page 576

batch (batch.inc)
This table stores details about batches (processes that run in multiple HTTP requests).

Name Type Null Default Description
bid serial No Primary key: unique batch ID.

token varchar(64) No A string token generated against the current
user’s session ID and the batch ID; used to
ensure that only the user who submitted the
batch can effectively access it.

timestamp int No A Unix timestamp indicating when this batch
was submitted for processing. Stale batches are
purged at cron time.

batch text:big Yes A serialized array containing the processing
data for the batch.

blocks (block module)
This table stores block settings, such as region and visibility settings.

Name Type Null Default Description
bid serial No Primary key: unique block ID.

module varchar(64) No '' The module from which the block originates;
for example, 'user' for the Who’s Online block
and 'block' for any custom blocks.

delta varchar(32) No '0' Unique ID for block within a module.

theme varchar(64) No '' The theme under which the block settings
apply.

status int:tiny No 0 Block enabled status (1 means enabled and 0,
disabled).

weight int:tiny No 0 Block weight within region.

region varchar(64) No '' Theme region within which the block is set.

custom int:tiny No 0 Flag to indicate how users may control
visibility of the block (0 indicates that users
cannot control it; 1 that the block is on by
default but can be hidden; and 2 that the block
is hidden by default but can be shown).

throttle int:tiny No 0 Flag to indicate whether or not to remove block
when web site traffic is high (1 means throttle;
0 means do not throttle).

visibility int:tiny No 0 Flag to indicate how to show blocks on pages (0
means to show on all pages except listed pages,
1 to show only on listed pages, and 2 to use
custom PHP code to determine visibility).

Continued

APPENDIX A ! DATABASE TABLE REFERENCE 577

09898appAfinal 7/30/08 3:12 PM Page 577

Name Type Null Default Description
pages text No Contents of the "Pages" block; contains either a

list of paths on which to include or exclude the
block or PHP code, depending on the
"visibility" setting.

title varchar(64) No '' Custom title for the block (an empty string will
use block default title; <none> will remove the
title; text will cause block to use specified title).

cache int:tiny No 1 Binary flag to indicate block cache mode (-1
means do not cache; 1 means cache per role; 2,
cache per user; 4, cache per page; 8, block cache
is global). See Chapter 9 for an explanation of
block cache modes.

blocks_roles (block module)
This table stores access permissions for blocks based on user roles.

Name Type Null Default Description
module varchar(64) No The block’s origin module, from

{blocks}.module

delta varchar(32) No The block’s unique delta within module, from
{blocks}.delta

rid int, unsigned No The user’s role ID from {users_roles}.rid

book (book module)
This table stores book outline information and connects each node in the outline to a unique
link in the menu_links table.

Name Type Null Default Description
mlid int, unsigned No 0 The book page’s {menu_links}.mlid.

nid int, unsigned No 0 The book page’s {node}.nid.

bid int, unsigned No 0 The book ID is the {book}.nid of the top-level
page.

APPENDIX A ! DATABASE TABLE REFERENCE578

09898appAfinal 7/30/08 3:12 PM Page 578

boxes (block module)
This table stores the contents of custom-made blocks.

Name Type Null Default Description
bid serial No The block’s {blocks}.bid.

body text:big Yes The block contents.

info varchar(128) No '' The block description.

format int:small No 0 The block body’s {filter_formats}.format; for
example, 1 means Filtered HTML.

cache
The generic cache table is used to cache things not separated out into their own cache tables.
Contributed modules may also use this to store cached items.

Name Type Null Default Description
cid varchar(255) No '' Primary key: unique cache ID

data blob:big Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache
entry should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache
entry was created

headers text Yes Any custom HTTP headers to be added to
cached data

serialized int:small No 0 A flag to indicate whether content is serial-
ized (1) or not (0)

cache_block (block module)
This is the cache table for the block module to store already built blocks, identified by module,
delta, and various contexts that may change the block, such as the theme, locale, and caching
mode defined for the block.

Name Type Null Default Description
cid varchar(255) No '' Primary key: unique cache ID

data blob:big Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache
entry should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache
entry was created

Continued

APPENDIX A ! DATABASE TABLE REFERENCE 579

09898appAfinal 7/30/08 3:12 PM Page 579

Name Type Null Default Description
headers text Yes Any custom HTTP headers to be added to

cached data

serialized int:small No 0 A flag to indicate whether content is serialized
(1) or not (0)

cache_filter (filter module)
The cache table for the filter module stores already filtered pieces of text, identified by input
format and MD5 hash of the text.

Name Type Null Default Description
cid varchar(255) No '' Primary key: unique cache ID

data blob:big Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache
entry should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache
entry was created

headers text Yes Any custom HTTP headers to be added to
cached data

serialized int:small No 0 A flag to indicate whether content is serial-
ized (1) or not (0)

cache_form
The cache table for the form system stores recently built forms and their storage data for use
in subsequent page requests.

Name Type Null Default Description
cid varchar(255) No '' Primary key: unique cache ID

data blob:big Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache
entry should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache
entry was created

headers text Yes Any custom HTTP headers to be added to
cached data

serialized int:small No 0 A flag to indicate whether content is serialized
(1) or not (0)

APPENDIX A ! DATABASE TABLE REFERENCE580

09898appAfinal 7/30/08 3:12 PM Page 580

cache_menu
The cache table for the menu system stores router information as well as generated link trees
for various menu/page/user combinations.

Name Type Null Default Description
cid varchar(255) No '' Primary key: unique cache ID

data blob:big Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache
entry should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache
entry was created

headers text Yes Any custom HTTP headers to be added to
cached data

serialized int:small No 0 A flag to indicate whether content is serialized
(1) or not (0)

cache_page
This cache table is used to store compressed pages for anonymous users, if page caching is
enabled.

Name Type Null Default Description
cid varchar(255) No '' Primary key: unique cache ID

data blob:big Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache
entry should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache
entry was created

headers text Yes Any custom HTTP headers to be added to
cached data

serialized int:small No 0 A flag to indicate whether content is serialized
(1) or not (0)

APPENDIX A ! DATABASE TABLE REFERENCE 581

09898appAfinal 7/30/08 3:12 PM Page 581

cache_update
The cache table for the update module stores information, fetched from the central server,
about available releases.

Name Type Null Default Description
cid varchar(255) No '' Primary key: unique cache ID

data blob:big Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache
entry should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache
entry was created

headers text Yes Any custom HTTP headers to be added to
cached data

serialized int:small No 0 A flag to indicate whether content is serialized
(1) or not (0)

comments (comment module)
This table stores comments and associated data.

Name Type Null Default Description
cid serial No Primary key: unique comment ID.

pid int No 0 The {comments}.cid to which this
comment is a reply. If set to 0, this
comment is not a reply to an existing
comment.

nid int No 0 The {node}.nid to which this comment
is a reply.

uid int No 0 The {users}.uid who authored the
comment. If set to 0, this comment was
created by an anonymous user.

subject varchar(64) No '' The comment title.

comment text:big No The comment body.

hostname varchar(128) No '' The author’s hostname.

timestamp int No 0 The time, as a Unix timestamp, that the
comment was created or last edited by
its author.

status int:tiny, unsigned No 0 The published status of a comment (0
mean published, and 1, not published).

format int:small No 0 The {filter_formats}.format of the
comment body.

thread varchar(255) No The vancode representation of the
comment’s place in a thread.

Continued

APPENDIX A ! DATABASE TABLE REFERENCE582

09898appAfinal 7/30/08 3:12 PM Page 582

Name Type Null Default Description
name varchar(60) Yes The comment author’s name. Uses

{users}.name if the user is logged in; otherwise,
uses the value typed into the comment form.

mail varchar(64) Yes The comment author’s e-mail address from the
comment form if user is anonymous and the
“Anonymous users may/must leave their
contact information” setting is turned on.

homepage varchar(255) Yes The comment author’s home page address from
the comment form if user is anonymous and
the “Anonymous users may/must leave their
contact information” setting is turned on.

contact (contact module)
Contact form category settings are located in this table.

Name Type Null Default Description
cid serial No Primary key: unique category ID

category varchar(255) No '' Category name

recipients text:big No Comma-separated list of recipient e-mail
addresses

reply text:big No Text of the automatic reply message

weight int:tiny No 0 The category’s weight

selected int:tiny No 0 Flag to indicate whether or not category is
selected by default (1 for yes and 0 for no)

files (upload module)
This table stores information about uploaded files.

Name Type Null Default Description
fid serial No Primary key: unique files ID

uid int, unsigned No 0 The {users}.uid of the user who is associated
with the file

filename varchar(255) No '' Name of the file

filepath varchar(255) No '' Path of the file relative to Drupal root

filemime varchar(255) No '' The file MIME type

filesize int, unsigned No 0 The size of the file in bytes

status int No 0 A flag indicating whether file is temporary (1)
or permanent (0)

timestamp int, unsigned No 0 Unix timestamp for when the file was added

APPENDIX A ! DATABASE TABLE REFERENCE 583

09898appAfinal 7/30/08 3:12 PM Page 583

filter_formats (filter module)
This table stores input formats, which are custom groupings of filters such as Filtered HTML.

Name Type Null Default Description
format serial No Primary key: unique ID for format

name varchar(255) No '' Name of the input format (e.g., Filtered HTML)

roles varchar(255) No '' A comma-separated string of roles, references
{role}.rid

cache int:tiny No 0 Flag to indicate whether format is cachable (1
for cachable and 0 for not cachable)

filters (filter module)
This table maps filters (e.g., HTML corrector) to input formats (e.g., Filtered HTML).

Name Type Null Default Description
fid serial No Primary key: automatically incrementing filter

ID

format int No 0 Foreign key: the {filter_formats}.format to
which this filter is assigned

module varchar(64) No '' The origin module of the filter

delta int:tiny No 0 ID to identify which filter within the module is
being referenced

weight int:tiny No 0 Weight of filter within format

flood (contact module)
This table controls the threshold of events, such as the number of contact attempts.

Name Type Null Default Description
fid serial No Primary key: unique flood event ID

event varchar(64) No '' Name of event (e.g., contact)

hostname varchar(128) No '' Hostname of the visitor

timestamp int No 0 Timestamp of the event

APPENDIX A ! DATABASE TABLE REFERENCE584

09898appAfinal 7/30/08 3:12 PM Page 584

forum (forum module)
This table stores the relationship of nodes to forum terms.

Name Type Null Default Description
nid int, unsigned No 0 The {node}.nid of the node

vid int, unsigned No 0 Primary key: the {node}.vid of the node

tid int, unsigned No 0 The {term_data}.tid of the forum term
assigned to the node

history (node module)
This table stores a record of which users have read which nodes.

Name Type Null Default Description
uid int No 0 The {users}.uid that read the {node}.nid

nid int No 0 The {node}.nid that was read

timestamp int No 0 The Unix timestamp at which the read occurred

languages (locale module)
The languages table stores a list of all available languages in the system.

Name Type Null Default Description
language varchar(12) No '' Language code, for example, 'de' or 'en-US'

name varchar(64) No '' Language name in English

native varchar(64) No '' Native language name

direction int No 0 Direction of language (0 for left-to-right, 1 for
right-to-left)

enabled int No 0 Enabled flag (1 for enabled, 0 for disabled)

plurals int No 0 Number of plural indexes in this language

formula varchar(128) No '' Plural formula in PHP code to evaluate to get
plural indexes

domain varchar(128) No '' Domain to use for this language

prefix varchar(128) No '' Path prefix to use for this language

weight int No 0 Weight, used in lists of languages

javascript varchar(32) No '' Location of the JavaScript translation file

APPENDIX A ! DATABASE TABLE REFERENCE 585

09898appAfinal 7/30/08 3:12 PM Page 585

locales_source (locale module)
This table stores a list of the English source strings.

Name Type Null Default Description
lid serial No Unique identifier of this string.

location varchar(255) No '' Drupal path in case of online discovered
translations or file path in case of imported
strings.

textgroup varchar(255) No 'default' A module-defined group of translations. See
hook_locale().

source text No The original string in English.

version varchar(20) No 'none' Version of Drupal where the string was last
used (for locales optimization).

locales_target (locale module)
This table stores translated versions of strings.

Name Type Null Default Description
lid int No 0 Source string ID, references

{locales_source}.lid

translation text No Translation string value in this language

language varchar(12) No '' Language code, references
{languages}.language

plid int No 0 Parent lid (lid of the previous string in the
plural chain) in case of plural strings, references
{locales_source}.lid

plural int No 0 Plural index number in case of plural strings

menu_custom (menu module)
This table holds definitions for top-level custom menus (for example, primary links).

Name Type Null Default Description
menu_name varchar(32) No '' Primary key: unique key for menu. This is used

as a block delta so the length is 32 to match
{blocks}.delta.

title varchar(255) No '' Menu title, displayed at top of block.

description text Yes Menu description.

APPENDIX A ! DATABASE TABLE REFERENCE586

09898appAfinal 7/30/08 3:12 PM Page 586

menu_links (menu module)
The menu_links table contains the individual links within a menu.

Name Type Null Default Description
menu_name varchar(32) No '' The menu name. All links with the same

menu name (such as 'navigation') are part of
the same menu.

mlid serial No The menu link ID is the integer primary key.

plid int, unsigned No 0 The parent link ID is the mlid of the link above
in the hierarchy, or 0 if the link is at the top
level in its menu.

link_path varchar(255) No '' The Drupal path or external path this link
points to.

router_path varchar(255) No '' For links corresponding to a Drupal path (0
means external), this connects the link to a
{menu_router}.path for joins.

link_title varchar(255) No '' The text displayed for the link, which may be
modified by a title callback stored in
{menu_router}.

options text Yes A serialized array of options to be passed to
the url() or l() function, such as a query
string or HTML attributes.

module varchar(255) No 'system' The name of the module that generated this
link.

hidden int:small No 0 A flag for whether the link should be rendered
in menus (1 indicates a disabled menu item
that may be shown on admin screens; -1, a
menu callback; and 0, a normal, visible link).

external int:small No 0 A flag to indicate if the link points to a full
URL starting with a protocol, like http:// (1
for external and 0 for internal).

has_children int:small No 0 Flag indicating whether any links have this
link as a parent (1 means children exist; 0
means there are no children).

expanded int:small No 0 Flag for whether this link should be rendered
as expanded in menus; expanded links have
their child links displayed always, instead of
only when the link is in the active trail (1
means expanded, and 0 means not
expanded).

weight int No 0 Link weight among links in the same menu at
the same depth.

depth int:small No 0 The depth relative to the top level. A link with
plid == 0 will have depth == 1.

customized int:small No 0 A flag to indicate that the user has manually
created or edited the link (1 means cus-
tomized, and 0 means not customized).

Continued

APPENDIX A ! DATABASE TABLE REFERENCE 587

09898appAfinal 7/30/08 3:12 PM Page 587

http:

Name Type Null Default Description
p1 int, unsigned No 0 The first mlid in the materialized path. If N =

depth, then pN must equal the mlid. If depth > 1,
then p(N-1) must equal the plid. All pX where X >
depth must equal 0. The columns p1 . . . p9
are also called the parents.

p2 int, unsigned No 0 The second mlid in the materialized path. See p1.

p3 int, unsigned No 0 The third mlid in the materialized path. See p1.

p4 int, unsigned No 0 The fourth mlid in the materialized path. See p1.

p5 int, unsigned No 0 The fifth mlid in the materialized path. See p1.

p6 int, unsigned No 0 The sixth mlid in the materialized path. See p1.

p7 int, unsigned No 0 The seventh mlid in the materialized path. See
p1.

p8 int, unsigned No 0 The eighth mlid in the materialized path. See p1.

p9 int, unsigned No 0 The ninth mlid in the materialized path. See p1.

updated int:small No 0 Flag that indicates that this link was generated
during the update from Drupal 5.

menu_router
This table maps paths to various callbacks (e.g., access, page, and title callbacks).

Name Type Null Default Description
path varchar(255) No '' Primary key: the Drupal path this entry

describes.

load_functions varchar(255) No '' A serialized array of function names
(like node_load) to be called to load an
object corresponding to a part of the
current path.

to_arg_functions varchar(255) No '' A serialized array of function names
(like user_uid_optional_to_arg) to be
called to replace a part of the router
path with another string.

access_callback varchar(255) No '' The callback that determines the access
to this router path; defaults to user_
access.

access_arguments text Yes A serialized array of arguments for the
access callback.

page_callback varchar(255) No '' The name of the function that renders
the page.

page_arguments text Yes A serialized array of arguments for the
page callback.

fit int No 0 A numeric representation of how
specific the path is.

number_parts int:small No 0 Number of parts in this router path.

APPENDIX A ! DATABASE TABLE REFERENCE588

09898appAfinal 7/30/08 3:12 PM Page 588

Name Type Null Default Description
tab_parent varchar(255) No '' Only for local tasks (tabs); the router

path of the parent page (which may also
be a local task).

tab_root varchar(255) No '' Router path of the closest nontab parent
page. For pages that are not local tasks,
this will be the same as the path.

title varchar(255) No '' The title for the current page or the title
for the tab if this is a local task.

title_callback varchar(255) No '' A function that will alter the title;
defaults to t().

title_arguments varchar(255) No '' A serialized array of arguments for the
title callback. If empty, the title will be
used as the sole argument for the title
callback.

type int No 0 Numeric representation of the type of
the menu item, like MENU_LOCAL_TASK.

block_callback varchar(255) No '' Name of a function used to render the
block on the system administration page
for this menu item.

description text No A description of this menu item.

position varchar(255) No '' The position of the block (left or right)
on the system administration page for
this menu item.

weight int No 0 Weight of the element. Lighter weights
are higher up; heavier weights move
down.

file text:medium Yes The file to include for this element, usu-
ally the page callback function lives in
this file.

node (node module)
This is the base table for nodes.

Name Type Null Default Description
nid serial No The primary identifier for a node

vid int, unsigned No 0 The current {node_revisions}.vid version
identifier

type varchar(32) No '' The {node_type}.type of this node

language varchar(12) No '' The {languages}.language of this node

title varchar(255) No '' The title of this node, always treated as
nonmarkup, plain text

uid int No 0 The {users}.uid that owns this node; initially,
the user who created it

Continued

APPENDIX A ! DATABASE TABLE REFERENCE 589

09898appAfinal 7/30/08 3:12 PM Page 589

Name Type Null Default Description
status int No 1 Boolean value indicating whether the node is

published (visible to nonadministrators)

created int No 0 The Unix timestamp when the node was
created

changed int No 0 The Unix timestamp when the node was most
recently saved

comment int No 0 Whether comments are allowed on this node: 0
means no; 1 means comments are read-only;
and 2 means comments can be read or written

promote int No 0 Boolean value indicating whether the node
should be displayed on the front page

moderate int No 0 Previously, a Boolean value indicating whether
the node was “in moderation”; not currently
used by core

sticky int No 0 Boolean value indicating whether the node
should be displayed at the top of lists in which
it appears

tnid int, unsigned No 0 The translation set ID for this node, which
equals the node ID of the source post in each
set

translate int No 0 A Boolean value indicating whether this trans-
lation page needs to be updated

node_access (node module)
This table identifies which realm/grant pairs a user must possess in order to view, update, or
delete specific nodes.

Name Type Null Default Description
nid int, unsigned No 0 The {node}.nid this record affects.

gid int, unsigned No 0 The grant ID a user must possess in
the specified realm to gain this row’s
privileges on the node.

realm varchar(255) No '' The realm in which the user must
possess the grant ID. Each node-
access node can define one or more
realms.

grant_view int:tiny, unsigned No 0 Boolean value indicating whether a
user with the realm/grant pair can
view this node.

grant_update int:tiny, unsigned No 0 Boolean value indicating whether a
user with the realm/grant pair can
edit this node.

grant_delete int:tiny, unsigned No 0 Boolean value indicating whether a
user with the realm/grant pair can
delete this node.

APPENDIX A ! DATABASE TABLE REFERENCE590

09898appAfinal 7/30/08 3:12 PM Page 590

node_comment_statistics (comment module)
This table maintains statistics of nodes and comments posts to show "new" and "updated"
flags.

Name Type Null Default Description
nid int, unsigned No 0 The {node}.nid for which the

statistics are compiled

last_comment_timestamp int No 0 The Unix timestamp of the last
comment that was posted within
this node, from {comments}.
timestamp

last_comment_name varchar(60) Yes The name of the latest author to
post a comment on this node,
from {comments}.name

last_comment_uid int No 0 The user ID of the latest author
to post a comment on this node,
from {comments}.uid

comment_count int, unsigned No 0 The total number of comments
on this node

node_counter (statistics module)
This table stores access statistics for nodes.

Name Type Null Default Description
nid int No 0 The {node}.nid for these statistics

totalcount int:big, unsigned No 0 The total number of times the {node} has
been viewed

daycount int:medium, unsigned No 0 The total number of times the {node} has
been viewed today

timestamp int, unsigned No 0 The most recent time the {node} has
been viewed

node_revisions (node module)
This table stores information about each saved version of a node.

Name Type Null Default Description
nid int, unsigned No 0 The {node} this version belongs to

vid serial No The primary identifier for this version

uid int No 0 The {users}.uid that created this version

title varchar(255) No '' The title of this version

Continued

APPENDIX A ! DATABASE TABLE REFERENCE 591

09898appAfinal 7/30/08 3:12 PM Page 591

Name Type Null Default Description
body text:big No The body of this version

teaser text:big No The teaser of this version

log text:big No The log entry explaining the changes in this
version

timestamp int No 0 A Unix timestamp indicating when this version
was created

format int No 0 The input format used by this version’s body

node_type (node module)
This table stores information about all defined {node} types.

Name Type Null Default Description
type varchar(32) No The machine-readable name of

this type.

name varchar(255) No '' The human-readable name of
this type.

module varchar(255) No The module that implements
this type.

description text:medium No A brief description of this type.

help text:medium No Help information shown to the
user when creating a {node} of
this type.

has_title int:tiny, unsigned No Boolean value indicating
whether this type uses the
{node}.title field.

title_label varchar(255) No '' The label displayed for the title
field on the edit form.

has_body int:tiny, unsigned No Boolean value indicating
whether this type uses the
{node_revisions}.body field.

body_label varchar(255) No '' The label displayed for the body
field on the edit form.

min_word_count int:small, unsigned No The minimum number of words
the body must contain.

custom int:tiny No 0 A Boolean value indicating
whether this type is defined by a
module (0) or by a user via a
module like the Content
Construction Kit (1).

modified int:tiny No 0 A Boolean value indicating
whether this type has been
modified by an administrator;
currently not used in any way.

APPENDIX A ! DATABASE TABLE REFERENCE592

09898appAfinal 7/30/08 3:12 PM Page 592

Name Type Null Default Description
locked int:tiny No 0 A Boolean value indicating whether the

administrator can change the machine name
of this type.

orig_type varchar(255) No '' The original machine-readable name of this
node type. This may be different from the
current type name if the locked field is 0.

openid_association (openid module)
This table stores temporary shared key association information for OpenID authentication.

Name Type Null Default Description
idp_endpoint_uri varchar(255) Yes URI of the OpenID provider endpoint

assoc_handle varchar(255) No Primary key: used to refer to this
association in subsequent messages

assoc_type varchar(32) Yes The signature algorithm used: HMAC-
SHA1 or HMAC-SHA256

session_type varchar(32) Yes Valid association session types: no-
encryption, DH-SHA1, and DH-SHA256

mac_key varchar(255) Yes The MAC key (shared secret) for this
association

created int No 0 Unix timestamp for when the
association was created

expires_in int No 0 The lifetime, in seconds, of this
association

permission (user module)
This table stores permissions for users.

Name Type Null Default Description
pid serial No Primary key: unique permission ID

rid int, unsigned No 0 The {role}.rid to which the permissions are
assigned

perm text:big Yes List of permissions being assigned

tid int, unsigned No 0 Originally intended for taxonomy-based per-
missions, but never used

APPENDIX A ! DATABASE TABLE REFERENCE 593

09898appAfinal 7/30/08 3:12 PM Page 593

poll (poll module)
This table stores poll-specific information for poll nodes.

Name Type Null Default Description
nid int, unsigned No 0 The poll’s {node}.nid

runtime int No 0 The number of seconds past {node}.created
during which the poll is open

active int, unsigned No 0 Boolean value indicating whether or not the
poll is open

poll_choices (poll module)
This table stores information about all choices for all polls.

Name Type Null Default Description
chid serial No Primary key: unique identifier for a poll choice

nid int, unsigned No 0 The {node}.nid this choice belongs to

chtext varchar(128) No '' The text for this choice

chvotes int No 0 The total number of votes this choice has
received by all users

chorder int No 0 The sort order of this choice among all choices
for the same node

poll_votes (poll module)
This table stores per-user votes for each poll.

Name Type Null Default Description
nid int, unsigned No The {poll} node this vote is for

uid int, unsigned No 0 The {users}.uid this vote is from, unless the
voter was anonymous

chorder int No -1 The {users}’s vote for this poll

hostname varchar(128) No '' The IP address this vote is from, unless the
voter was logged in

APPENDIX A ! DATABASE TABLE REFERENCE594

09898appAfinal 7/30/08 3:12 PM Page 594

profile_fields (profile module)
This table stores profile field information.

Name Type Null Default Description
fid serial No Primary key: unique profile field ID

title varchar(255) Yes Title of the field shown to the end user

name varchar(128) No '' Internal name of the field used in the form
HTML and URLs

explanation text Yes Explanation of the field to end users

category varchar(255) Yes Profile category that the field will be grouped
under

page varchar(255) Yes Title of page used for browsing by the field’s
value

type varchar(128) Yes Type of form field

weight int:tiny No 0 Weight of field in relation to other profile
fields

required int:tiny No 0 Whether the user is required to enter a value
(0 for no and 1 for yes)

register int:tiny No 0 Whether the field is visible in the user
registration form (1 for yes and 0 for no)

visibility int:tiny No 0 The level of visibility for the field (0 for
hidden, 1 for private, 2 for public on profile
pages but not on member list pages, and 3
for public on profile and list pages)

autocomplete int:tiny No 0 Whether form automatic completion is
enabled (0 for disabled and 1 for enabled)

options text Yes List of options to be used in a list selection
field

profile_values (profile module)
This table stores values for profile fields.

Name Type Null Default Description
fid int, unsigned No 0 The {profile_fields}.fid of the field

uid int, unsigned No 0 The {users}.uid of the profile user

value text Yes The value for the field

APPENDIX A ! DATABASE TABLE REFERENCE 595

09898appAfinal 7/30/08 3:12 PM Page 595

role (user module)
This table stores user roles.

Name Type Null Default Description
rid serial No Primary key: unique role ID

name varchar(64) No '' Unique role name

search_dataset (search module)
This table stores items that will be searched.

Name Type Null Default Description
sid int, unsigned No 0 Search item ID, for example, the node ID for

nodes

type varchar(16) Yes Type of item, for example, node

data text:big No List of space-separated words from the item

reindex int, unsigned No 0 Set to force node reindexing

search_index (search module)
This table stores the search index and associates words, items, and scores.

Name Type Null Default Description
word varchar(50) No '' The {search_total}.word that is associated

with the search item

sid int, unsigned No 0 The {search_dataset}.sid of the searchable
item to which the word belongs

type varchar(16) Yes The {search_dataset}.type of the searchable
item to which the word belongs

score float Yes The numeric score of the word, higher being
more important

APPENDIX A ! DATABASE TABLE REFERENCE596

09898appAfinal 7/30/08 3:12 PM Page 596

search_node_links (search module)
This table stores items (like nodes) that link to other nodes; it is used to improve search scores
for nodes that are frequently linked to.

Name Type Null Default Description
sid int, unsigned No 0 The {search_dataset}.sid of the searchable

item containing the link to the node

type varchar(16) No '' The {search_dataset}.type of the searchable
item containing the link to the node

nid int, unsigned No 0 The {node}.nid that this item links to

caption text:big Yes The text used to link to the {node}.nid

search_total (search module)
This table stores search totals for words.

Name Type Null Default Description
word varchar(50) No '' Primary key: unique word in the search index

count float Yes The count of the word in the index using Zipf’s
law to equalize the probability distribution

sessions
Drupal’s session handlers read and write into the sessions table. Each record represents a user
session, either anonymous or authenticated.

Name Type Null Default Description
uid int, unsigned No The {users}.uid corresponding to a session or

0 for anonymous user.

sid varchar(64) No '' Primary key: a session ID. The value is
generated by PHP’s Session API.

hostname varchar(128) No '' The IP address that last used this session ID
(sid).

timestamp int No 0 The Unix timestamp when this session last
requested a page. Old records are purged by
PHP automatically. See sess_gc().

cache int No 0 The time of this user’s last post. This is used
when the site has specified a minimum_cache_
lifetime. See cache_get().

session text:big Yes The serialized contents of $_SESSION, an array
of name/value pairs that persists across page
requests by this session ID. Drupal loads
$_SESSION from here at the start of each request
and saves it at the end.

APPENDIX A ! DATABASE TABLE REFERENCE 597

09898appAfinal 7/30/08 3:12 PM Page 597

system
The system table contains a list of all modules, themes, and theme engines that are or have
been installed in Drupal’s file system.

Name Type Null Default Description
filename varchar(255) No '' The path of the primary file for this item,

relative to the Drupal root; e.g., modules/
node/node.module.

name varchar(255) No '' The name of the item; for example, node.

type varchar(255) No '' The type of the item: module, theme, or
theme_engine.

owner varchar(255) No '' A theme’s “parent”; can be either a theme
or an engine.

status int No 0 Boolean value indicating whether or not
this item is enabled.

throttle int:tiny No 0 Boolean value indicating whether this
item is disabled when the throttle.
module disables items that can be
throttled.

bootstrap int No 0 Boolean value indicating whether this
module is loaded during Drupal’s early
bootstrapping phase (e.g., even before the
page cache is consulted).

schema_version int:small No -1 The module’s database schema version
number. -1 if the module is not installed
(its tables do not exist). If the module is
installed, 0 or the largest N of the module’s
hook_update_N() function that has either
been run or existed when the module was
first installed.

weight int No 0 The order in which this module’s hooks
should be invoked relative to other
modules. Equally weighted modules are
ordered by name.

info text Yes A serialized array containing information
from the module’s .info file; keys can
include name, description, package,
version, core, dependencies, dependents,
and php.

APPENDIX A ! DATABASE TABLE REFERENCE598

09898appAfinal 7/30/08 3:12 PM Page 598

term_data (taxonomy module)
This table stores term information.

Name Type Null Default Description
tid serial No Primary key: unique term ID

vid int, unsigned No 0 The {vocabulary}.vid of the vocabulary to
which the term is assigned

name varchar(255) No '' The term name

description text:big Yes A description of the term

weight int:tiny No 0 The weight of this term in relation to other
terms

term_hierarchy (taxonomy module)
This table stores the hierarchical relationship between terms.

Name Type Null Default Description
tid int, unsigned No 0 Primary key: the {term_data}.tid of the term.

parent int, unsigned No 0 Primary key: the {term_data}.tid of the term’s
parent. 0 indicates no parent.

term_node (taxonomy module)
This table stores the relationship of terms to nodes.

Name Type Null Default Description
nid int, unsigned No 0 The {node}.nid of the node

vid int, unsigned No 0 Primary key: the {node}.vid of the node

tid int, unsigned No 0 Primary key: the {term_data}.tid of a term
assigned to the node

term_relation (taxonomy module)
This table stores nonhierarchical relationships between terms.

Name Type Null Default Description
trid serial No Primary key: unique term relation ID

tid1 int, unsigned No 0 The {term_data}.tid of the first term in a
relationship

tid2 int, unsigned No 0 The {term_data}.tid of the second term in
a relationship

APPENDIX A ! DATABASE TABLE REFERENCE 599

09898appAfinal 7/30/08 3:12 PM Page 599

term_synonym (taxonomy module)
This table stores term synonyms.

Name Type Null Default Description
tsid serial No Primary key: unique term synonym ID

tid int, unsigned No 0 The {term_data}.tid of the term

name varchar(255) No '' The name of the synonym

trigger_assignments (trigger module)
This table maps triggers to hook and operation assignments from the trigger module.

Name Type Null Default Description
hook varchar(32) No '' Primary key: the name of the internal Drupal

hook on which an action is firing; for example,
nodeapi

op varchar(32) No '' Primary key: the specific operation of the hook
on which an action is firing; for example,
presave

aid varchar(255) No '' Primary key: the action’s {actions}.aid

weight int No 0 The weight of the trigger assignment in relation
to other triggers

upload (upload module)
This table stores uploaded file information and table associations.

Name Type Null Default Description
fid int, unsigned No 0 Primary key: the {files}.fid

nid int, unsigned No 0 The {node}.nid associated with the
uploaded file

vid int, unsigned No 0 Primary key: the {node}.vid
associated with the uploaded file

description varchar(255) No '' Description of the uploaded file

list int:tiny, unsigned No 0 Whether the file should be visibly
listed on the node (1 for yes and 0
for no)

weight int:tiny No 0 Weight of this upload in relation to
other uploads in this node

APPENDIX A ! DATABASE TABLE REFERENCE600

09898appAfinal 7/30/08 3:12 PM Page 600

url_alias (path module)
This table contains a list of URL aliases for Drupal paths; a user may visit either the source or
destination path.

Name Type Null Default Description
pid serial No A unique path alias identifier.

src varchar(128) No '' The Drupal path this alias is for, for example,
node/12.

dst varchar(128) No '' The alias for this path, for example, title-of-
the-story.

language varchar(12) No '' The language this alias is for; if blank, the alias
will be used for unknown languages. Each
Drupal path can have an alias for each sup-
ported language.

users (user module)
This table stores user data.

Name Type Null Default Description
uid serial No Primary key: unique user ID.

name varchar(60) No '' Unique username.

pass varchar(32) No '' User’s password (MD5 hash).

mail varchar(64) Yes '' User’s e-mail address.

mode int:tiny No 0 Per-user comment display mode (threaded
vs. flat), used by the {comment} module.

sort int:tiny Yes 0 Per-user comment sort order (newest vs.
oldest first), used by the {comment} module.

threshold int:tiny Yes 0 Previously used by the {comment} module for
per-user preferences; no longer used.

theme varchar(255) No '' User’s default theme.

signature varchar(255) No '' User’s signature.

created int No 0 Timestamp for when user was created.

access int No 0 Timestamp for previous time user accessed
the site.

login int No 0 Timestamp for user’s last login.

status int:tiny No 0 Whether the user is active (1) or blocked (0).

timezone varchar(8) Yes User’s time zone.

language varchar(12) No '' User’s default language.

picture varchar(255) No '' Path to the user’s uploaded picture.

Continued

APPENDIX A ! DATABASE TABLE REFERENCE 601

09898appAfinal 7/30/08 3:12 PM Page 601

Name Type Null Default Description
init varchar(64) Yes '' E-mail address used for initial account

creation.

data text:big Yes A serialized array of name/value pairs that are
related to the user. Any form values posted
during user edit are stored and loaded into the
$user object during user_load(). Use of this
field is discouraged, and it will likely disappear
in a future version of Drupal.

users_roles (users)
This table maps users to roles.

Name Type Null Default Description
uid int, unsigned No 0 Primary key: {users}.uid for user

rid int, unsigned No 0 Primary key: {role}.rid for role

variable
Named variable/value pairs created by Drupal core or any other module or theme are stored
in this table. All variables are cached in memory at the start of every Drupal request, so devel-
opers should not be careless about what is stored here.

Name Type Null Default Description
name varchar(128) No '' Primary key: the name of the variable

value text:big No The value of the variable

APPENDIX A ! DATABASE TABLE REFERENCE602

09898appAfinal 7/30/08 3:12 PM Page 602

vocabulary (taxonomy module)
This table stores vocabulary information.

Name Type Null Default Description
vid serial No Primary key: unique vocabulary ID

name varchar(255) No '' Name of the vocabulary

description text:big Yes Description of the vocabulary

help varchar(255) No '' Help text to display for the vocabulary

relations int:tiny, unsigned No 0 Whether or not related terms are
enabled within the vocabulary (0 for
disabled and 1 for enabled)

hierarchy int:tiny, unsigned No 0 The type of hierarchy allowed within
the vocabulary (0 for disabled, 1 for
single, and 2 for multiple)

multiple int:tiny, unsigned No 0 Whether or not multiple terms from
this vocabulary may be assigned to a
node (0 for disabled and 1 for enabled)

required int:tiny, unsigned No 0 Whether or not terms are required for
nodes using this vocabulary (0 for
disabled and 1 for enabled)

tags int:tiny, unsigned No 0 Whether or not free tagging is enabled
for the vocabulary (0 for disabled and 1
for enabled)

module varchar(255) No '' The module that created the vocabulary

weight int:tiny No 0 The weight of the vocabulary in relation
to other vocabularies

vocabulary_node_types (taxonomy module)
This table stores which node types vocabularies may be used with.

Name Type Null Default Description
vid int, unsigned No 0 Primary key: the {vocabulary}.vid of the

vocabulary

type varchar(32) No '' Primary key: the {node}.type of the node type
for which the vocabulary may be used

APPENDIX A ! DATABASE TABLE REFERENCE 603

09898appAfinal 7/30/08 3:12 PM Page 603

watchdog (dblog module)
The watchdog table contains logs of all system events.

Name Type Null Default Description
wid serial No Primary key: unique watchdog event ID

uid int No 0 The {users}.uid of the user who
triggered the event

type varchar(16) No '' Type of log message, for example "user"
or "page not found"

message text:big No Text of log message to be passed into
the t() function

variables text:big No Serialized array of variables that match
the message string and that is passed
into the t() function

severity int:tiny, unsigned No 0 The severity level of the event; ranges
from 0 (Emergency) to 7 (Debug)

link varchar(255) No '' Link to view the result of the event

location text No URL of the origin of the event

referer varchar(128) No '' URL of referring page

hostname varchar(128) No '' Hostname of the user who triggered the
event

timestamp int No 0 Unix timestamp of when event occurred

APPENDIX A ! DATABASE TABLE REFERENCE604

09898appAfinal 7/30/08 3:12 PM Page 604

Resources

Many resources are available for the Drupal developer. The most useful of these are listed
here.

Code
Some Drupal code resources follow.

Drupal CVS
http://cvs.drupal.org

Access to the CVS tree containing the Drupal core codebase and contributions repository
has been covered in Chapter 21; however, a convenient web interface for browsing the
repositories is available at the preceding URL. Especially nice is the ability to do color-
coded diffs quickly.

Drupal API Reference
http://api.drupal.org

The comments from Drupal functions, as well as the documentation available in the
contributions/docs/developer area of the Drupal contributions CVS repository, are avail-
able at http://api.drupal.org. Code is searchable, cross-referenced, and organized by
major version. It’s well worth your time to get familiar with this site. In fact, you can set
up your own local version; instructions are at http://drupal.org/node/26669.

Security Advisories
http://drupal.org/security

Security advisories are available by e-mail or as an RSS feed from this page. You can sub-
scribe to the advisories from this page when logged in to http://drupal.org.

605

A P P E N D I X B

09898appBfinal 7/30/08 3:10 PM Page 605

http://cvs.drupal.org
http://api.drupal.org
http://api.drupal.org
http://drupal.org/node/26669
http://drupal.org/security
http://drupal.org

Updating Modules
http://drupal.org/update/modules

When an API changes with a new release of Drupal, the technical implications of the
change are documented here. This page is invaluable for keeping your modules in sync
with changes to Drupal’s codebase.

Updating Themes
http://drupal.org/update/theme

This page has the same kind of critical information as the “Updating Modules” page, but
for themes. It’s critical for updating themes from one version of Drupal to another.

Handbooks
The online handbooks at http://drupal.org/handbooks are constantly being updated and
improved. Many HOWTO documents are posted here as well, providing step-by-step instruc-
tions.

Forums
The forums at http://drupal.org/forum are an excellent place to get help with Drupal. Usually
someone else has experienced the problem you are having and has documented this on the
forums. For problems that are clearly bugs with contributed modules, however, it is best to
create an issue in the module’s issue queue, since developers are more likely to see your bug
report there than in the forums.

!Tip Try using a search engine to constrain results to http://drupal.org. For example, the query
"installation profiles" site:drupal.org on Google will search all of http://drupal.org for the
string “installation profiles.”

Mailing Lists
Many topic-specific mailing lists are available. Subscription management for these lists and
archives is available at http://lists.drupal.org/listinfo.

development
This list is for Drupal developers and includes general discussion about Drupal’s future direc-
tion, development-related questions, and merits of different approaches. If a major change is
being made, it’s usually discussed here. Hotly.

APPENDIX B ! RESOURCES606

09898appBfinal 7/30/08 3:10 PM Page 606

http://drupal.org/update/modules
http://drupal.org/update/theme
http://drupal.org/handbooks
http://drupal.org/forum
http://drupal.org
http://drupal.org
http://lists.drupal.org/listinfo

documentation
This list is for documentation writers. Documentation of Drupal’s code and behavior is a
never-ending task. Writing documentation is crucial to Drupal’s success, and discussion of
documentation improvements and changes happens here. New developers will benefit from
some time spent on this list.

drupal-cvs
This list contains all CVS commit messages. It’s useful for finding out what’s happening in
the CVS repositories. Alternatives include RSS feeds such as http://drupal.org/
cvs?rss=true&nid=3060 for Drupal’s core repository and the list of recent commits at http://
drupal.org/cvs.

infrastructure
This list is for those who volunteer their time maintaining the infrastructure on which the
Drupal project runs, including the web server, the database server, the CVS repositories,
mailing lists, and so on.

support
Although much support takes place in the http://drupal.org forums, there’s also a mailing
list where people can help one another get Drupal up and running.

themes
This list is for theme developers to discuss Drupal theming issues.

translations
This is a list for those translating Drupal’s interface into other languages.

webmasters
This is a list for those who volunteer their time maintaining the web sites at
http://drupal.org.

CVS-applications
CVS accounts for committing code to the contributions repository aren’t available to just any-
one. To receive an account, a new developer sends an application to this list justifying why an
account is needed. The application is reviewed by seasoned developers and then approved or
denied. See http://drupal.org/cvs-account.

consulting
This is for Drupal consultants and Drupal service and hosting providers to discuss topics
related to for-pay Drupal services.

APPENDIX B ! RESOURCES 607

09898appBfinal 7/30/08 3:10 PM Page 607

http://drupal.org
http://drupal.org/cvs
http://drupal.org/cvs
http://drupal.org
http://drupal.org
http://drupal.org/cvs-account

User Groups and Interest Groups
Local or regional user groups and those working on a particular aspect of Drupal can use the
infrastructure at http://groups.drupal.org to organize and communicate. The site uses the
organic groups module to provide functionality. Of particular interest to beginning developers
is the Drupal Dojo group (http://groups.drupal.org/drupal-dojo). This group’s goal is to
teach Drupal skills to beginning developers and promises to “make you skilled like a ninja.”

Internet Relay Chat
Internet Relay Chat (irc) is primarily used by Drupal developers as a real-time chat to help one
another and to discuss issues related to Drupal. Not all developers are available on irc, and
some believe that assistance given on irc is detrimental because answers to the questions
asked aren’t visible for others, as they would be had the question been asked on the forums at
http://drupal.org or on a mailing list. Still, irc has its place when quick interaction on a topic
is needed. It also serves to help developers get to know one another in an informal way. Sev-
eral channels are related to Drupal. Occasionally, special channels are set up for code sprints
(where a certain area of Drupal is worked on intensively) or bug squashing in preparation for
a new release.

There is a particular culture on irc. In order to avoid making a faux pas, read the “How to
Use IRC Effectively” page at http://drupal.org/node/108355.

All the channels in this section are available on the freenode network (http://
freenode.net).

#drupal-support
This is a channel where volunteers answer questions about Drupal. The focus is on using
Drupal through the web-based administrative screens or on figuring out which module does
what. Coding questions are usually better asked in #drupal.

#drupal-themes
This is a discussion of Drupal theming, including creation, modification, and distribution of
themes.

#drupal-ecommerce
This is a channel pertaining to using Drupal for e-commerce (see http://drupal.org/
project/ecommerce).

#drupal
Chat about Drupal development on this channel. Many core developers hang out here. Cod-
ing questions are appropriate in #drupal. Noncoding support questions are not permitted in
this channel; use #drupal-support or the http://drupal.org forums instead.

APPENDIX B ! RESOURCES608

09898appBfinal 7/30/08 3:10 PM Page 608

http://groups.drupal.org
http://groups.drupal.org/drupal-dojo
http://drupal.org
http://drupal.org/node/108355
http://freenode.net
http://freenode.net
http://drupal.org
http://drupal.org

#drupal-dev
This channel is reserved for code discussions that need a quiet place. Developers often move
here when #drupal is too noisy or when discussion of a specific module or feature is not of
interest to the people on #drupal.

#drupal-consultants
Drupal consultants who provide paid support can be found in this channel (as well as on the
paid Drupal services forum: http://drupal.org/forum/51). Any discussion of fees is done in
private.

#drupal-dojo
Lessons for the Drupal Dojo group (see “User Groups and Interest Groups”) are conducted here.

Videocasts
Sometimes, concepts are difficult to describe but easy to demonstrate. A growing collection of
videocasts and screencasts are available at http://drupal.org/videocasts.

Weblogs
Weblogs are online journals. Many Drupal developers have weblogs in which they record their
experiences with Drupal.

Planet Drupal
http://drupal.org/planet

Posts from weblogs related to Drupal are aggregated here. Reading this aggregator regu-
larly is helpful for keeping your finger on the pulse of what’s happening in the Drupal
community.

Conferences
The Drupal community gathers at conferences that feature presentations, discussions, and
lots of fun. Typically, a conference takes place in the spring in North America and in the fall in
Europe. Conferences are a great way to learn about Drupal, make connections, and make new
friends. If you have a chance to go, by all means take it. Details can be found at http://
drupalcon.org. The #drupalcon irc channel is used before and during the conference to find
and communicate with other attendees.

A code sprint is often scheduled before or after a Drupal conference.

APPENDIX B ! RESOURCES 609

09898appBfinal 7/30/08 3:10 PM Page 609

http://drupal.org/forum/51
http://drupal.org/videocasts
http://drupal.org/planet
http://drupalcon.org
http://drupalcon.org

Contribute
Contributors are Drupal’s most valuable asset and are the reason why Drupal continues to
move forward not only as a development platform but also as a community.

At http://drupal.org/contribute, you can contribute to Drupal not only through devel-
opment but also through documentation, translations, usability, donations, marketing, and
more. This page is the jumping-off point for contributing to the project at any level.

APPENDIX B ! RESOURCES610

09898appBfinal 7/30/08 3:10 PM Page 610

http://drupal.org/contribute

!SYMBOLS
! prefix, t() function, 456, 457
character

ID selector, CSS, 380
recognizing properties, 231
use of Perl-style comment characters, 374

$ character, jQuery syntax, 379
% wildcard character, 75
% placeholder prefix, t() function, 456, 457
%% placeholder, database queries, 93
%index token, load arguments, 79
%map token, load arguments, 78
& (ampersand) character

reference to objects, 20
? query string

controlling caching using dummy query
string, 175

@ character
cvs.drupal.org connection hostname, 492
Doxygen constructs, 483

@ placeholder prefix, t() function, 456, 457
_ (underscore) character, 480, 482

!A
a1/a2 parameters, actions_do(), 54
abstraction

database abstraction layer, 89–90
abstraction of terms, taxonomy, 327
accent removal

search HTML indexer, 300
access arguments key

defining in menu item, 71
mistakes implementing menu hook, 87
permissions and page callbacks, 467

access callback key
controlling access to menus, 70
defining in menu item, 70, 71
mistakes implementing menu hook, 87

access column, users table, 371, 601
access component, user object, 117
access content permission

status attribute, nodes, 139
access control

see also permissions
grant ID, 160

keeping data private with
db_rewrite_sql(), 465

menu system, 70–71
node access process, 161
node_access table, node module, 590
realms, 160
restricting access to nodes, 159–162

defining node grants, 160–161
superuser, 145

access control phase, bootstrap process, 9
access devel information permission, 522
access key

form_builder() checking, 225
access hook see hook_access()
access property, 255

fieldset element, 264
access table, user module, 573
accesslog table, statistics module, 573
access_arguments column, menu_router

table, 588
access_callback column, menu_router table,

588
account parameter, hook_user(), 119
acl realm

restricting access via ACLs, 160
action IDs, 53
action property, forms, 232, 253
action_ids parameter, actions_do(), 53
action_info hook see hook_action_info()
action_info(), 41, 42, 44
actions, 37–47

actions supporting any trigger, 42
adding triggers to existing hooks, 56–58
assigning, 41
calling action directly with actions_do(),

53–54
changing actions with drupal_alter(), 48
changing function signature of, 47
changing triggers supported by, 41
configurable (advanced) actions, 42–47
configurable key, 42
creating, 39–41
defining triggers with hook_hook_info(),

54–56
determining kinds of, 40
determining parameters, 40

Index

611

09898idxfinal 7/30/08 12:42 PM Page 611

enumerating operations supported, 40
establishing context, 49–51
examining context, 51–52
friendly name of, 40
functions and, 37
how trigger module prepares context,

47–49
reasons for using, 54
relation between

hooks/operations/triggers, 39
simple/advanced actions compared, 43
storing, 52–53
using context in, 47–51

actions table, 52–53, 574
actions_aid table, 53, 574
actions_do(), 53–54
active column, poll table, 594
Add language page, Languages screen, 413,

425
addClass method, jQuery, 385
admin operation, hook_search(), 294
admin.inc files, 483
administration page, 27–29
administrative account

login/logout operations, 381
administrative categories

creating, 27–29
paths to, 29

administrative interface, 3
block caching, 358
enabling greyscale theme in, 173

administrative pages
secure handling of user input, 459

administrative settings
categories of, 27
link to annotation module settings, 28
presenting settings form to user, 29–31
resetting to default values, 32
retrieving stored values with

variable_get(), 34
storing settings, 32–34
validating user-submitted settings, 31–32

administrator see site administrator
advanced actions see configurable actions
advanced search form, search API, 292
after_build property, 256

functions altering forms post build, 226
using post property, 254

after_update value, hook_user(), 118
aggregator module, 459

aggregator_category table, 575
aggregator_category_feed table, 575
aggregator_category_item table, 575

aggregator_feed table, 575
aggregator_item table, 576

aggregator_category table, 575
aggregator_category_feed table, 575
aggregator_category_item table, 575
aggregator_feed table, 575
aggregator_filter_xss(), 459
aggregator_item table, 576
aggressive caching, 355
AHAH (Asynchronous HTML and HTTP)

dynamic replacement of text using, 269
giving information to implementation of,

267
ahah property, 267–273
AJAX

building jQuery voting widget, 393, 396,
399, 402, 404

security, 474
alerts parameter, file_munge_filename(), 324
algorithms

MD5, 370
aliases

callback mapping, URLs to functions, 60
common values of primary_table aliases,

109
making path aliases searchable, 295–298
url_alias table, path module, 601

Allow directive, htaccess file, 469
allow_insecure_uploads variable, 324
alter value, hook_nodeapi(), 156
Alternative PHP Cache (APC), 528, 529
AND, using in URLs, 333
annotate directory, 422
annotate table, creating, 22
annotate.admin.inc file, 16, 17
annotate.info file, 13–14, 422
annotate.install file, 23, 422
annotate.module file, 14–15, 19, 422
annotate.pot file, 422
annotate_admin_settings(), 29
annotate_admin_settings_validate(), 31, 32
annotate_entry_form(), 21
annotate_install(), 23, 24
annotate_menu(), 15
annotate_nodeapi(), 19, 20, 22
annotation forms, web page, 20, 22
annotation settings form, 29
annotations

link to annotation module settings, 28
restricting to some node types, 16

Annotations per node field, 33
annotations table, 24
Annotations will be deleted field, 33

!INDEX612

09898idxfinal 7/30/08 12:42 PM Page 612

anonymous functions, JavaScript, 383
anonymous users

checking out code from contributions
repository, 502

displaying blocks to, 218
page caching, 351, 352, 354
session life cycle, 371
session usage, 367
storing session information, 367
storing viewing preferences for, 366
user object, 115, 374
user_is_anonymous(), 118

Apache
clean URLs, 8
Drupal’s technology stack, 2
MaxClients directive, 530
MaxRequestsPerChild value, 530
mod_expires module, 530
mod_rewrite component, 2
optimizing web server, 530–531

APC (Alternative PHP Cache), 528, 529
api module, 15

Doxygen documentation, 484
APIs

API reference, 605
batch API, 560–570
block API, 203, 204
cache API, 360–363
file API, 313–326
filter API, 283
form API, 221–273
schema API, 95,–05
search API, 292

application profiling, 522–524
finding CPU bottlenecks, 529

approval module, 210, 217
approval.info file, 210
approval_block(), 211, 214
architectures, 542–544

multiple database servers, 544
separate database server, 542

with web server cluster, 542–544
single server, 542

archiveoffline_menu_alter(), 58
args parameter, hook_db_rewrite_sql(), 109
arguments

page callback arguments, 65–68
title arguments, 71, 73–74

arrays, 481
db_fetch_array(), 94

array_filter(), 262
assignments

trigger_assignments table, 600

assoc_handle column, 593
assoc_type column, 593
Asynchronous HTML and HTTP see AHAH
at symbol see @ character
Atom feeds, 459
attributes property, 255
audio files, 313
authenticated users

optimizing traffic, 537
session usage, 367

authentication
distributed authentication, 124
external authentication, 124, 130–134
hooks for downloading, 325
user login process, 124
user_authenticate_finalize(), 369
user_login_authenticate_validate(), 132

authmap table, 134, 576
author column, aggregator_item table, 576
author variable, comment.tpl.php, 192
autocomplete column, profile_fields table,

595
autocomplete_path property, textfield, 258
automatic throttling for optimization,

539–541
configuring throttle module, 540
enabling throttle module, 539
making modules and themes throttle-

aware, 541
auto_start functionality, 368

!B
b option, cvs tag command, 509
b placeholder, database query, 93
bandwidth optimization, 536

finding bottlenecks, 528
bar key

progress key, ahah property, 269, 270
base URL, 9
base_path variable, page.tpl.php, 185, 186
batch API, 560–570

batch operation callback, 565–567
batch request cycle, 569
enabling modules, 561
error handling, 568
redirection, 568

batch request cycle, 569
batch sets, 561, 562–565

progressive/nonprogressive, 568
batch table, batch.inc, 577
batch_process(), 561
batch_set(), 561
beep_action_info(), 40, 41

!INDEX 613

09898idxfinal 7/30/08 12:42 PM Page 613

beep_multiple_beep_action_xyz(), 44
behaviors, 404
bid column, blocks table, 206
binary placeholder, 93
blink tag, 237
block API, 203, 204
block column

aggregator_category table, 575
aggregator_feed table, 576

Block current user action, 48
block hook see hook_block()
block module

blocks table, 577
blocks_roles table, 578
boxes table, 579
cache_block table, 579

block variable, block.tpl.php, 192
block.tpl.php file, 190–192

adding to greyscale theme, 177
description, 483
inserting automatically into page, 176, 177
suggestion hierarchy, 191
theming blocks, 208
variables for block templates, 192

blocks, 203–219
adding pending users block, 217
block administration pages, 204, 211
block overview page, 204, 211
block placement, 206
block regions, 203

controlling arrangement in, 209
defining, 200
determining relative position in, 207
name of region where block appears,

207
setting default region, 209

building blocks, 210–217
cache_block table, 351
caching, 207, 209, 358–359
configuration form, 210
configuration options, 204–205
custom blocks, 203, 209
custom title for, 207
database schema for, 206
default title for, 209
defining, 206–210
defining phases, 209
description, 6, 140, 203–204

for site administrators, 209
disabled blocks on custom pages, 188, 207
displaying blocks, 210

to anonymous users only, 218
to logged-in users only, 218

enabling blocks when module installed,
218

hook_block(), 204, 206, 208–210, 211
how theme function works, 178
ID of block to return, 210
listing unpublished nodes, 217
module blocks, 209
module-provided blocks, 203
name of module defining, 206
nodes compared, 140, 203
one-off blocks, 203
returning array of blocks defined by

module, 209
returning form definition array of fields,

209
setting title, 214
show_blocks variable, 188
specifying if block enabled, 209
storing block properties, 206
storing content and input format type, 206
storing key for unique block, 207
storing name of theme for block, 207
storing role-based permissions, 206
suggestion hierarchy, 191
theming blocks, 208
tracking blocks to be throttled, 207
tracking if block is enabled, 207
visibility, 207, 209

controlling, 203
examples, 218
hiding blocks by default, 387
Page visibility settings section, 218
page-specific settings, 205
role-specific settings, 205
user-specific settings, 205, 207

blocks table, 206, 218, 577
blocks_roles table, 206, 578
BLOCK_CACHE_XYZ constants, 209, 359
block_callback column, menu_router table,

589
block_get_cache_id(), 359
block_id variable, block.tpl.php, 192
BLOCK_NO_CACHE constant, 359
block_zebra variable, block.tpl.php, 192
body view, nodes in, 189
body_classes variable, page.tpl.php, 185
body_label column, node_type table, 592
body_label value, node_info(), 144
boot hook see hook_boot()
book table, book module, 578
bootstrap column, system table, 598
bootstrap process, 9–10

access control phase, 9

!INDEX614

09898idxfinal 7/30/08 12:42 PM Page 614

drupal_bootstrap(), 355
DRUPAL_BOOTSTRAP_LANGUAGE

portion, 428
early page cache phase, 9
full phase, 10
initialize configuration phase, 9
initialize database phase, 9
initialize session handling phase, 9
language determination phase, 10
late page cache phase, 10
overriding PHP session handling, 368
path phase, 10
phased bootstrapping system, 353
session life cycle, 370
session-related settings, 368
storage of session information, 369

bootstrap.inc file, 9, 437
session-related settings, 368

bootstrap_invoke_all(), 355
bottlenecks

database bottlenecks, 531–536
finding bottlenecks, 527–530

CPU usage, 527
page serving performance, 528
RAM on server, 527, 529–530
web server CPU usage, 528–529

box.tpl.php template file, 193
boxes table, blocks, 206, 579
braces, function control structures, 478
branches

advanced branching, 516–517
branches in Drupal core, 493
checking out Drupal using tag/branch

name, 496
creating, 508–515
Drupal-5 compatible branch, 509–511
Drupal-6 compatible branch, 512–515
hyphens in branch names, 515
relationship between tags/branches, 509

tags/branches/releases/tarballs, 496
snapshots of, 494
using HEAD for Drupal-6 releases,

512–513
breadcrumb navigation

HTML for displaying, 185
theme_breadcrumb(), 180

breadcrumb variable, page.tpl.php, 185
breadcrumb.tpl.php file, 182
breadcrumb_delimiter variable, 182
break statement

annotate_nodeapi(), 20
coding standard when omitted, 479

browsers
JavaScript and, 377
session conversations, 372–373
session usage, 367
tracking browser visiting web site, 365

bugs
committing bug fixes, 507–508

build_id property, forms, 252
build_mode variable, node.tpl.php, 189
built-in strings

replacing with custom strings, 410–420
button element, form API, 265
button_type property, submit element, 265

!C
cache see caching
cache API, 360–363

caching data with cache_set(), 360
clearing caches, 361–363
retrieving cached data with cache_get(),

361
cache column

blocks table, 207, 578
filter_formats table, 584
sessions table, 367, 370, 597

cache component, user object, 117
cache functions

block_get_cache_id(), 359
drupal_flush_all_caches(), 363
drupal_page_cache_header(), 355
hook_flush_caches(), 363
menu_cache_clear_all(), 351

cache property, forms, 254
cache table, 350–351, 579

caching administrative settings, 352
defining new cache tables, 350
indicating if cache data serialized, 351
recording date cache entry created, 351
specifying cache data expiry time, 351
storing cache data, 350
storing HTTP header responses, 351
storing primary cache ID, 350
table schema, 350

cache value, hook_block(), 209
cacherouter module, 357
cache_block table, 351, 579
cache_clear_all(), 362
cache_expire setting, sessions table, 537
cache_filter table, 280, 282, 580

changes to default length of node teasers,
352

description, 351, 352
cache_form table, 351, 580

!INDEX 615

09898idxfinal 7/30/08 12:42 PM Page 615

cache_get(), 361
cache_menu table, 351, 581
cache_page table, 351, 581
CACHE_PERMANENT value, 351
cache_set(), 360

iteration pattern for, 361
CACHE_TEMPORARY value, 351
cache_update table, 582
caching

variables, 352
aggressive caching, 355
blocks, 358–359
caching data with cache_set(), 360
clearing caches, 361–363
clearing internal cache, 361
controlling caching using dummy query

string, 175
creating new administrative category, 28
customized caching solutions, 357
database bottlenecks, 534
determining how blocks are cached, 207,

209
disabled page caching, 353
disabling caching, 285
drupal_clear_css_cache(), 323
drupal_flush_all_caches(), 519
early page cache phase, 9
empty cache link, devel block, 519
enabling MySQL query cache, 532
fastpath cache setting, 357–358
filtered input, 352
filters, 280, 282, 285
how caching works, 350–351
late page cache phase, 10
lifetime of expired cache content, 356
memcache module, 349
memcached, 535
menu system, 351
minimum cache lifetime setting, 356
normal page caching, 353–355
opcode cache, 528
operation code caching, 528
optimizing node loading, 534
page caching for optimization, 536
pages, 352–358
page_cache_fastpath(), 9
per-request caching with static variables,

360
retrieving cached data with cache_get(),

361
using cache API, 360–363
when to cache, 349
within Drupal core, 351–363

call syntax errors
XML-RPC clients, 444–445

callback arguments
keys in keyed arrays, 66
page callback arguments, 65–68
passing and displaying, 66

callback column, actions table, 574
callback function, 10
callback functions

prefix name, 143
callback mapping, 59–68

adding link to navigation block, 67–68
dispatching, 59
mapping URLs to functions, 59–65, 83
menu dispatching process, 61
overriding page title during code

execution, 64
page callback arguments, 65–68
page callback key, 59
page callbacks in other files, 67
path, 59
router and link building process, 62
routing, 59

callback parameter, file_scan_directory(),
322, 323

callback registry, 10
callbacks

assigning, without adding link to menu, 83
batch operation callback, 565–567
callbacks displayed as tabs, 84
calling from different menu items, 66
description, 59
hooks and, 4
indicating menu item called by JavaScript,

267
permissions and page callbacks, 467
title callbacks, 71–73
using batch API to enable modules, 561
validation callbacks, 228

camel casing
Drupal and XML-RPC, 446

canonical tag names, 494
caption column, search_node_links table,

597
carriage returns

converting to HTML counterparts, 277
casting

XML-RPC parameter types, 445
categories, 119, 120

aggregator_category table, 575
aggregator_category_feed table, 575
description
providing user information categories, 129
understanding hook_user(‘view’

!INDEX616

09898idxfinal 7/30/08 12:42 PM Page 616

categories value, hook_user(), 118
categorization see taxonomy
category column, contact table, 583
category column, profile_fields table, 595
category parameter, hook_user(), 119
CCK (Content Construction Kit)

creating node type with CCK, 158–159
changed attribute, nodes, 139
channels

drupal channel, 608
drupal-consultants channel, 609
drupal-dev channel, 609
drupal-dojo channel, 609
drupal-ecommerce channel, 608
drupal-support channel, 608
drupal-themes channel, 608

char data type, 100
checkboxes element, form API, 261
checkout command, 492
check_markup(), 454
check_plain(), 190, 454

handling URLs securely, 460
running value replacing token through,

456
secure handling of user input, 455–457

check_url(), 454, 455
handling URLs securely, 460

children element, rendering forms, 227
Chinese Word Splitter module, 300
chmod command, 487
chorder column, poll_choices table, 594
chorder column, poll_votes table, 594
chtext column, poll_choices table, 594
chvotes column, poll_choices table, 594
cid column

cache table, 350, 579
cache_xyx tables, 579, 580, 581, 582

cid parameter, cache_clear_all(), 362
cid parameter, cache_get(), 361
cid parameter, cache_set(), 360
class selector

accessing elements, jQuery, 384
CSS class selector, 380

classification see taxonomy
clean URLs, 2, 8, 9, 59
clients

XML-RPC clients, 440–445
closing tags, 477

problems with trailing whitespace, 15
closure variable, page.tpl.php, 186
code

checking coding style programmatically,
487

cleanly modifying core code, 499

customizing code, 13
database bottlenecks, 533
searching code with egrep, 488–489
secure coding, 453–476
testing and developing code, 519–522
tracking code changes, 498–499
updating code with CVS, 497–498

code resources, 605–606
Drupal API reference, 605
Drupal CVS, 605
security advisories, 605
updating modules, 606
updating themes, 606

code reuse, 239
code-style.pl Perl script, 469, 487–488
codefilter module

prepare operation, hook_filter(), 285
coder module

checking coding style programmatically,
488

coding standards, 477–483
see also naming conventions
arrays, 481
checking coding style matches standards,

487–488
coder module, 488
conditional statements, 478
constants, 481
control loops, 478
control structures, 478
documentation files, 482
filenames, 482
function calls, 479
function declarations, 480
function names, 480
global variables, 482
line indentation, 477
module names, 482
opening and closing tags, PHP, 477

collapsed property, 234, 265
collapsibility

collapsible CSS selectors for fieldset, 154
collapsible fieldsets, 378
collapsible property, 234, 265, 266
Collect query setting, 520
cols property, 259
command line

creating .pot files for modules, 421
comment attribute, nodes, 139
comment column, node table, 590
comment hook see hook_comment()
comment module

comments table, 582
how theme function works, 178

!INDEX 617

09898idxfinal 7/30/08 12:42 PM Page 617

node_comment_statistics table, 591
session usage, 366

comment variable, comment.tpl.php, 192
comment.tpl.php file, 192–193
comments, 140

see also documentation
file token, 15
Pending comments block, 213, 214
PHP comments, 483–486
wrapping comment submission form, 193
writing modules, 15

comments table, comment module, 582
commit command see cvs commit command
commit messages, CVS, 508
common functions, 7, 355
common.inc file, 437
compatibility, jQuery, 405
conditional statements, 478
conferences, 609
configurable (advanced) actions, 42–47

configurable key, 42
context parameter, 47

establishing context, 49–51
examining context, 51–52
how trigger module prepares context,

47–49
object parameter, 47

configurable key
beep_action_info(), 40
configurable (advanced) actions, 42
simple/advanced actions compared, 43

configuration files
default.settings.php file, 7

configuration form
annotate.module file, 19
save operation, hook_block(), 210

configuration options
PHP changing, 368

configuration options, blocks, 204–205
configuration phase, bootstrap process, 9
configure task, 553
configure value, hook_block(), 209, 211
conf_init(), 374
connections

connecting to database, 91
connecting to multiple databases, 111
connecting to non-Drupal databases, 111
database abstraction layer, 90
database connections, 89
db_set_active(), 111
MySQL and PostgreSQL, 111

constants, 481, 485
consultants

drupal-consultants channel, 609

consulting mailing list, 607
contact module

contact table, 583
flood table, 584

contact table, contact module, 583
content

content title, 188
controlling pieces of content in page, 189
replacing static content with Drupal

variables, 174
viewing content by term, 333–335

Content management category, 29
Content screen, 433
content translation, 432–437

multilingual support, 432–433
with translation, 433–437

content translation module, 432
content types see node types
content variable

box.tpl.php, 193
comment.tpl.php, 192
node.tpl.php, 189, 190

inserting into page.tpl.php, 177
page.tpl.php, 186, 189

context parameter
actions_do(), 54
batch sets, 567
configurable (advanced) actions, 47

establishing context, 49–51
how trigger module prepares context,

47–49
storing actions, 53
using context in actions, 47–51

examining context, 51–52
contributions repository, CVS, 502–504

adding module to repository, 504–505
checking out code from, 502
checking out modules, 506
first commit of files to repository, 505–506

contributors, 610
control loops, 478
control structures, 478
controlled vocabularies, taxonomy, 328, 329
conventions

coding standards, 477–483
cookies

changing time before cookie expires, 373
cookie-based session management, 369
interacting with Drupal, 115
overriding PHP session handling, 368
session conversations, 372–373
session life cycle, 370
session-related settings, 369
sessions and, 365

!INDEX618

09898idxfinal 7/30/08 12:42 PM Page 618

sessions_use_only_cookies directive, 369
storing data in sessions, 374
tracking browser visiting web site, 365

cookie_domain value, sessions, 373
cookie_lifetime value, sessions

optimizing authenticated user traffic, 537
settings.php file, 373

copying files, 315–316
core, 2, 5

adding functionality to, 13
core modules

choosing modules to throttle, 539
modules folder, 7

core repository, CVS, 502
count column, search_total table, 597
CPU usage, web server

finding bottlenecks, 527, 528–529
PHP code execution, 528–529

created attribute, nodes, 139
created column

cache table, 350, 351, 579
cache_xyx tables, 579, 580, 581, 582

created component, user object, 117
creativejuice module

creating custom filters, 282
implementing hook_filter(), 283

creativejuice_filter(), 283
creativejuice_filter_tips(), 287
creativejuice_sentence(), 286
cron command

overdue for running on busy site, 539
running cron for optimization, 538
using search HTML indexer, 299

cron hook, 39
cron.php file, 7, 472
Cross Site Scripting see XSS
Cross-Site Request Forgeries (CSRF), 468
cross-site scripting (XSS) attacks

HTML filter, 277
CSRF (Cross-Site Request Forgeries), 468
CSS (cascading style sheets)

body_classes variable, page.tpl.php, 185
building jQuery voting widget, 394
building PHPTemplate theme using,

169–171
changing values of CSS elements, 386
class selector, 380
collapsible CSS selectors for fieldset, 154
customizing/overriding web sites, 5
drupal_add_css(), 188
filter_xss() handling security of user input,

458
HTML for linking to CSS files, 188

ID selector, 380
Optimize CSS files, Performance page, 536
selecting elements from documents, 379
syntax, 379
using CSS class selector, 380
using CSS ID selector, 379

css files, 483
css method, jQuery, 386
CSS preprocessing engine

importance of style.css file, 175
css variable, page.tpl.php, 186
custom blocks, 203, 206
custom column, blocks table, 577
custom column, node_type table, 592
custom strings

adding custom language for, 413
replacing built-in strings with, 410–420

custom value, hook_block(), 209
customization, 1
customized column, menu_links table, 587
customizing code

Drupal updates and, 13
using CVS-aware Drupal, 491

CVS (Concurrent Versions System), 490–500
adding module to repository, 504–505
advanced branching, 516–517
applying security updates, 491
authenticating to CVS server, 492
backing up before running CVS

command, 497
branches in Drupal core, 493
changing password to CVS account, 503
checking out Drupal, 491–493

using tag or branch name, 496
checking out modules from repository,

506
checkout command, 492
cleanly modifying core code, 499
commit messages, 508
committing bug fixes, 507–508
contributions repository, 502–504
creating branches, 508–515

Drupal-5 compatible branch, 509–511
Drupal-6 compatible branch, 512–515

creating project on drupal.org, 506
creating release node, 517–518
cvs command, 491
CVS identification tag, 14
discovering developer hacks, 491
Drupal CVS, 605
drupal-cvs mailing list, 607
first commit of files to repository, 505–506
getting Drupal CVS account, 502

!INDEX 619

09898idxfinal 7/30/08 12:42 PM Page 619

installing CVS client, 491
installing CVS-aware Drupal, 490
maintaining custom modifications, 491
maintaining Drupal site with modules

from, 506
mixing SVN with CVS for project

management, 518
new versions creating branch within, 493
repositories, 492, 502
requesting CVS account, 502
resolving CVS conflicts, 499
safety of CVS version of Drupal, 490
secure coding with protected files, 469
tags and branches, 493–497
tags in Drupal core, 494
TortoiseCVS, 490
tracking Drupal code changes, 498–499
updating code with, 497–498
using CVS-aware Drupal, 491
viewing history of files, 508

cvs command
checking out working copy of Drupal, 491
d option, 492
installing CVS client, 491
z6 flag, 503

cvs commit command
committing bug fixes, 507
creating Drupal-5 compatible branch, 511
using HEAD for Drupal-6 releases, 512,

513
cvs diff command

applying patches, 501
committing bug fixes, 507
creating Drupal-5 compatible branch, 510
creating patches, 501
p option, 499
patches, 500
tracking Drupal code changes, 498
u option, 499
unified diffs, 499
using HEAD for Drupal-6 releases, 513

cvs log command, 508
cvs status command

checking version of HEAD, 509
creating Drupal-5 compatible branch, 510
tagging and creating releases, 512
using HEAD for Drupal-6 releases, 513

cvs tag command
b option, 509
creating Drupal-5 compatible branch, 509
creating Drupal-6 branch, 514
tagging and creating releases, 512
using HEAD for Drupal-6 releases, 513

cvs update command
creating Drupal-5 compatible branch, 510
creating Drupal-6 branch, 514
d option, 497
disabling noncore modules and themes,

498
P option, 497
resolving CVS conflicts, 499
updating code with CVS, 497
using HEAD for Drupal-6 releases, 512

CVS-applications mailing list, 607
cvspass file

authenticating to CVS server, 492
CVSROOT environmental variable, 504

!D
d option, cvs command, 492
d option, cvs update command, 497
d parameter, checkout command, 492
d placeholder

database query placeholders, 93
Drupal-specific SQL syntax, 92
storing data in database table, 26

data
never altering user’s original data, 282
saving data in files, 315
storing data in sessions, 374
term_data table, taxonomy module, 599
theming data, 11

data column
cache table, 350, 579
cache_xyx tables, 579, 580, 581, 582
search_dataset table, 596
users table, 374, 602

data entry form, modules, 19–27
data field, users table, 117
data parameter, cache_set(), 360
data parameter, file_save_data(), 315
data types

declaring column type with mysql_type,
102–103

field type mapping, schema to database,
99–102

native data types, MySQL/PostgreSQL, 103
secure handling of user input, 453–455

HTML text, 455
plain text, 454
rich text, 455
secure conversions between text types,

454
URL, 455

!INDEX620

09898idxfinal 7/30/08 12:42 PM Page 620

database abstraction layer, 89–90
MySQL and PostgreSQL connections, 111
reasons for, 90
writing, 112–113

database bottlenecks, 531–536
caching queries manually, 534
changing table type, MyISAM to InnoDB,

534–535
enabling MySQL query cache, 532
identifying expensive code, 533
identifying expensive pages, 533
identifying expensive queries, 532
memcached, 535
optimizing sessions table, 537
optimizing SQL tables, 534
page caching for optimization, 536

database integrity
reasons for locking, 534

database phase, bootstrap process, 9
database schema, file API, 314
database schema, updating, 8
database server architectures

multiple architecture, 544
separate architecture, 542

with web server cluster, 542–544
single architecture, 542

database table reference, 573–604
access table, 573
accesslog table, 573
actions table, 574
actions_aid table, 574
aggregator_category table, 575
aggregator_category_feed table, 575
aggregator_category_item table, 575
aggregator_feed table, 575
aggregator_item table, 576
authmap table, 576
batch table, 577
blocks table, 577
blocks_roles table, 578
book table, 578
boxes table, 579
cache table, 579
cache_block table, 579
cache_filter table, 580
cache_form table, 580
cache_menu table, 581
cache_page table, 581
cache_update table, 582
comments table, 582
contact table, 583
files table, 583
filter_formats table, 584
filters table, 584

flood table, 584
forum table, 585
history table, 585
languages table, 585
locales_source table, 586
locales_target table, 586
menu_custom table, 586
menu_links table, 587
menu_router table, 588
node table, 589
node_access table, 590
node_comment_statistics table, 591
node_counter table, 591
node_revisions table, 591
node_type table, 592
openid_association table, 593
permission table, 593
poll table, 594
poll_choices table, 594
poll_votes table, 594
profile_fields table, 595
profile_values table, 595
role table, 596
search_dataset table, 596
search_index table, 596
search_node_links table, 597
search_total table, 597
sessions table, 597
system table, 598
term_data table, 599
term_hierarchy table, 599
term_node table, 599
term_relation table, 599
term_synonym table, 600
trigger_assignments table, 600
upload table, 600
url_alias table, 601
users table, 601
users_roles table, 602
variable table, 602
vocabulary table, 603
vocabulary_node_types table, 603
watchdog table, 604

database task, 552
databases

connecting to database, 91
connecting to multiple databases, 111
connecting to non-Drupal databases, 111
creating database tables, 23
database abstraction layer, 89–90, 112–113
database connections, 89
database drivers, 112–113
database partitioning, 544
database query placeholders, 93

!INDEX 621

09898idxfinal 7/30/08 12:42 PM Page 621

database replication, 544
db_set_active(), 111
declaring column type with mysql_type,

102–103
defining database parameters, 89
Drupal’s technology stack, 2
field type mapping, schema to database,

99–102
inserts/updates with

drupal_write_record(), 106
multiple database server architecture, 544
MySQL and PostgreSQL connections, 111
performing queries, 92–93
referring to database tables, 25
retrieving query results, 94–95
saving information to, 559
storing data in database table, 22–27
storing taxonomies, 335–336
using module .install files, 96

dataset
search_dataset table, 596

date element, form API, 263
date variable, comment.tpl.php, 192
date variable, node.tpl.php, 189
dates

format_date(), 192
datetime data type, 102
daycount column, node_counter table, 591
dblog module

watchdog table, 604
db_escape_string(), 466
db_fetch_array(), 94
db_fetch_object(), 90, 94
db_last_insert_id(), 101
db_lock_tables(), 535
db_query()

database abstraction layer, 89
dynamic queries, 466
getting limited range of results, 95
keeping data private with

db_rewrite_sql(), 466
parameters, 93
performing queries, 92–93
saving information to database, 559
secure coding of queries with, 461–465

db_query_callback(), 466
db_query_range(), 95
db_query_temporary(), 112
db_result(), 27, 94
db_rewrite_sql hook see

hook_db_rewrite_sql()
db_rewrite_sql()

dynamic queries, 466
exposing queries to other modules, 108

keeping data private with, 465
limited SQL syntax for, 110
retrieving query results, 95
when to use, 108

db_set_active(), 111
db_type_map(), 99
db_unlock_tables(), 535
db_url value, settings.php file

building, 89
connecting to multiple databases, 111
determining type of database to connect

to, 90
writing DNAbase database driver, 113

debugging
access devel information permission, 522
application profiling and debugging,

522–524
devel module, 519
dpm() function, 522
dpr() function, 522
dvm() function, 522
dvr() function, 522
printing out debug messages, 522
switching user, 521

default configuration file
settings.php file, 7

default directory, 7
default operation, hook_filter(), 285
default profile, 547

see also installation profiles
default search form, search API, 292
default_profile_tasks(), 554, 559
default_value property, 18, 256, 265
default_value key

Annotations per node field, 33
delete hook see hook_delete()
delete operation, 39
delete revision value, hook_nodeapi(), 156
DELETE statement, SQL, 93
delete value, hook_nodeapi(), 156
delete value, hook_user(), 118
deleting data with hook_delete(), 150
deleting revision with hook_nodeapi(), 151
delta column

blocks_roles table, 578
filters table, 584

delta field, blocks table, 207, 577
delta parameter

hook_block(), 210, 215, 216
hook_filter(), 284

delta property, weight element, 264
Deny directive, .htaccess files, 469
depth column, menu_links table, 587

!INDEX622

09898idxfinal 7/30/08 12:42 PM Page 622

depth parameter
taxonomy_get_tree(), 345
taxonomy_select_nodes(), 347

description column, upload table, 314
description key

beep_action_info(), 40
taxonomy_save_term(), 344
taxonomy_save_vocabulary(), 342

description operation, hook_filter(), 284
description property, 254
description value, node_info() hook, 143
dest parameter

file_copy(), 316
file_save_data(), 315
file_save_upload(), 319, 320

dev suffix
version development, 495–496

devel module
empty cache link, 519
enable theme developer link, 519
Execute PHP block, 522
function reference link, 519
hook elements link, 519
identifying expensive queries, 532
rebuild menus link, 519
reinstall modules link, 520
session viewer link, 520
switching user, 521
testing and developing code, 519–522
variable editor link, 520

developers
CVS-applications mailing list, 607
documentation mailing list, 607
Dojo group, 608
Drupal API reference, 605
Internet Relay Chat (IRC), 608

development
dev suffix, 495–496
drupal channel, 608
Drupal development timeline, 493
drupal-dev channel, 609

development best practices
application profiling and debugging,

522–524
checking coding style matches standards,

487–488
coding standards, 477–483
creating and applying patches, 500–501
devel module, 519–522
displaying queries, 520
documentation, 483–486
maintaining modules, 501–518
mixing SVN with CVS for project

management, 518

module_builder module, 522
PHP comments, 483–486
searching code with egrep, 488–489
testing and developing code, 519–522
time-consuming queries, 520–521
version control, 490–500

development mailing list, 606
development module, 28
diff command see cvs diff command
diff command, UNIX, 488, 498
dir parameter, file_scan_directory(), 322
direction column, languages table, 585
directives

denoting form properties, 17
moving from .htaccess to httpd.conf, 531
sessions_use_only_cookies directive, 369
stopping setting at runtime, 369

directories
checking directories, 317
default directory, 7
finding files in directories, 322–323
finding temp director, 323
sites directory, 7, 8
synchronizing files using rsync, 543

directory parameter, file_check_directory(),
317

directory structure, 6–8
adding custom theme engines, 166
caution with mirrored directory structure,

424
core theme engines, 166
default folder structure, 6

directory variable, page.tpl.php, 185, 186
disabled page caching, 353
disk space

checking disk space used by files, 325
dispatching process, 59

callback mapping, URLs to functions, 61
Display query log setting, 520
DNAbase database, 112–113
do-while loop, 478
document.ready, jQuery code, 383
documentation, 483–486

see also comments
generating automatically for modules, 484
constants, 485
Doxygen, 483, 484
functions, 485–486

documentation files, 482
documentation mailing list, 607
Dojo group, 608

drupal-dojo channel, 609
DOM (Document Object Model), 377

jQuery code, 383

!INDEX 623

09898idxfinal 7/30/08 12:42 PM Page 623

DOM Inspector window, 378
DOM traversal, 377

CSS selectors, 379
JavaScript and, 378

domain column, languages table, 585
Domain Name Only setting, language

negotiation, 431
done task, 553
downloading files

authentication hooks for downloading,
325

file download security, 309
Doxygen, 483, 484

ingroup construct, 486
list of constructs, 483
see construct, 486

dpm() function, 522
dpr() function, 522
drivers

writing database drivers, 112–113
Drupal

actions, 37–47
architectures, 542–544
blocks, 203–219
caching, 349–364
callback mapping, 59–68
database table reference, 573–604
development best practices, 477–525
development of next version, 495–496
events and triggers, 35–37
external logins, 129–134
file API, 313–326
filters, 275–289
form API, 221–273
installation profiles, 547–571
jQuery within Drupal, 381–392
localization, 407–438
menu system, 59–88
optimizing, 527–545
resources, 605–610
schema API, 90, 95–105
secure coding, 453–476
sessions, 365–375
taxonomy, 327–348
theme system, 165–201
triggers, 35–37
user object, 115–118
uses of, 1

drupal channel, 608
Drupal API reference, 605
Drupal community

building custom search engine, 291
theme engine, 165

Drupal core, 2

Drupal CVS, 605
Drupal installer, entry point for, 7
Drupal pager, 95
Drupal path, 59, 63
Drupal site

getting locked out of, 173
maintaining with modules from CVS, 506

Drupal-5 compatible branch, 509–511
Drupal-6 compatible branch, 512–515
drupal-consultants channel, 609
drupal-contrib folder, 169
drupal-cvs mailing list, 607
drupal-dev channel, 609
drupal-dojo channel, 609
drupal-ecommerce channel, 608
drupal-support channel, 608
drupal-themes channel, 608
Drupal.behaviors, 404
drupal.org

changing password to CVS account, 503
creating project on, 506
creating release node, 517
maintaining modules, 501

drupal.org forums, 606
drupal_add_css(), 188, 437
drupal_add_feed(), 186
drupal_add_js(), 381, 382

calling from inside page.tpl.php, 392
overridable JavaScript, 390

drupal_alter(), 48
drupal_bootstrap(), 355
DRUPAL_BOOTSTRAP_LATE_PAGE_CACHE

phase, 355
DRUPAL_BOOTSTRAP_SESSION phase, 370
drupal_clear_css_cache(), 323
drupal_cron_run(), 472
drupal_discover_template(), 199
drupal_eval(), 476
drupal_execute(), 246, 560
drupal_flush_all_caches(), 363, 519
drupal_get_destination(), 214, 298
drupal_get_form()

call order of validation/submit functions,
240

check for function or call hook_forms(),
239

displaying form, 22
form IDs, 232
implementing hooks, 16
initializing form processing, 223
parameters property, 252
presenting settings form to user, 29
rendering forms, 227
setting form ID, 223

!INDEX624

09898idxfinal 7/30/08 12:42 PM Page 624

drupal_get_title(), 186
drupal_get_token(), 468
drupal_goto(), 229, 253
drupal_http_request(), 443
drupal_install_schema(), 96
drupal_json(), 399
drupal_mail(), 471
DRUPAL_MAXIMUM_TEMP_FILE_AGE

value, 320
drupal_page_cache_header(), 355
drupal_prepare_form(), 252
drupal_private_key variable, 223
drupal_render(), 226
drupal_retrieve_form(), 252
drupal_set_html_head(), 186
drupal_set_message(), 366

file name munging, 324
handling XML-RPC client errors, 445
multipage forms, 251
secure handling of user input, 455
storing data in database table, 26

drupal_set_title(), 64, 72, 86
drupal_urlencode(), 454, 460
drupal_valid_token(), 468
drupal_write_record(), 106
dvm() function, 522
dvr() function, 522
dynamic content

getting locked out of Drupal site, 174
replacing static content with Drupal

variables, 174
search HTML indexer, 301

dynamic queries
secure coding, 466–467

dynamic web sites
caching, 349

!E
e-commerce

drupal-ecommerce channel, 608
eAccelerator

operation code caching, 528
early page cache phase, bootstrap process, 9
Eclipse IDE, 522
Edit language screen, 430
edit parameter, hook_block(), 210
edit parameter, hook_user(), 119
effect key, ahah property, 268
egrep command, Unix, 488–489
elements

form elements, 267
elements hook see hook_elements()
elements, forms see form API elements

element_info()
collecting form element definitions, 223,

224
element default values, 254

element_validate property
date element, 263
element-specific validation, 228, 243

else statement, 478
elseif statement, 478
email, 471–472
empty cache link, devel block, 519
enable theme developer link, devel block,

519
enabled column, languages table, 585
encoded characters, 453
encoding

drupal_urlencode(), 460
mime_header_encode(), 471
secure handling of user input, 453
special characters, 454

enctype property, 264
engine files, 469
enhanced options form, 31
EntriesXyz files, 469
error handling, batch API, 568
error messages

session usage, 366
error reporting logs, optimizing, 537–538

logging to database, 538
logging to syslog, 538

error reporting severity levels, 537
errors

Cannot use string offset as array in
form.inc, 231

form_set_error(), 241
handling XML-RPC client errors, 442–445
call syntax errors, 444–445
HTML for validation errors, 187
HTTP errors, 443
network errors, 443
optimizing error reporting logs, 537–538
xmlrpc_error(), 447

error_message key, batch set, 565
etag column, aggregator_feed table, 576
eval() function, 476
event column, flood table, 584
event key, ahah property, 268
event listener

building jQuery voting widget, 403
events, 35–37

see also hooks
indicating JavaScript event occurs, 268
using Drupal behaviors, 404

Execute PHP block, devel module, 522

!INDEX 625

09898idxfinal 7/30/08 12:42 PM Page 625

executes_submit_callback property, 265
exit hook see hook_exit()
expanded column, menu_links table, 587
expire column

cache table, 350, 351, 579
cache_xyx tables, 579, 580, 581, 582

expire parameter, cache_set(), 360
expires column, openid_association table,

593
Expires HTTP headers

mod_expires module, Apache, 530
EXPLAIN keyword, SQL

dealing with time-consuming queries, 521
optimizing tables, 534

explanation column, profile_fields table, 595
export-html.tpl.php file, 483
extensions parameter

file_munge_filename(), 324
file_validate_extensions(), 321

external authentication, 130–134, 136
distributed authentication, 124

external column, menu_links table, 587
external logins, 129–134

path of execution for, 133
Extract page, Translate interface screen, 423
extractors

translation template extractor module,
421–423

!F
f placeholder, database queries, 93
fadeIn method, jQuery, 379, 380, 383

overridable JavaScript, 391
fastpath cache setting, 357–358
feeds

aggregator_category_feed table, 575
aggregator_category_item table, 575
aggregator_feed table, 575
aggregator_item table, 576
drupal_add_feed(), 186

feed_icons variable, page.tpl.php, 186
fid column, files table, 314
fid column, upload table, 314
field type mapping, schema to database,

99–102
fields

profile_fields table, 595
viewing fields with hook_view(), 151–155

fieldsets, form API, 233–235, 264, 266
field_prefix property, textfield element, 258
field_suffix property, textfield element, 258
file API, 313–326

authentication hooks for downloading,
325

database schema, 314
files table, 314
functions, 314–325
upload table, 314

file column, menu_router table, 589
file element, form API, 264
file key, batch set, 565
file layout, 6–8
file parameter, file_validate_xyz(), 321
file path key, 29, 67
file system path, 315, 316

file permissions, 468
file token

comments, writing modules, 15
file upload interface, 264
file uploads

PHP settings for, 311–312
secure coding, 469
separate database/web server cluster,

543–544
session usage, 367

filemime column, files table, 314
filename column, files table, 314
filename parameter, file_munge_filename(),

324
filenames

coding standards, 482
secure coding, 470

filepath column, files table, 314
files

checking directories, 317
checking disk space used by, 325
checking file location, 317
checking paths, 317
copying, 315–316
cron.php file, 7
deleting, 316
file API, 313–326
file download security, 309
finding file system path, 315
finding in directories, 322–323
finding temp directory, 323
getting paths of items, 316
getting URLs for, 321–322
index.php file, 7
install.php file, 7
interface specifying file-related settings,

310
location of temporary files directory, 311
media files, 312–313
moving, 316
necessary for production environment,

471
neutralizing dangerous files, 324

!INDEX626

09898idxfinal 7/30/08 12:42 PM Page 626

PHP settings for file uploads, 311–312
private files, 311
public files, 310
robots.php file, 8
saving data in, 315
secure coding, 468–471

file permissions, 468
filenames, 470
paths, 470

protected files, 468–469
serving, 309–311
template files, 176–194
update.php file, 8
uploading, 318–321
using shared, mounted file system, 543
viewing history of, 508
xmlrpc.php file, 8

files folder, 7
FILES superglobal variable, 318
files table, 314, 583

changing status of records in, 320
file_set_status(), 320

filesize column, files table, 314
FilesMatch directive, .htaccess files, 468, 469
file_check_directory(), 317
file_check_location(), 317, 470
file_check_path(), 317
file_copy(), 315
FILE_CREATE_DIRECTORY value, 317
file_create_path(), 316
file_create_url(), 322
file_delete(), 316
file_directory_path(), 315, 319
file_directory_temp(), 323
file_download hook see

hook_file_download()
FILE_EXISTS_XYZ constants, 315
file_limit parameter, file_validate_size(), 321
FILE_MODIFY_PERMISSIONS value, 317
file_move(), 316
file_munge_filename(), 324
file_save_data(), 315
file_save_upload(), 318–321
file_scan_directory(), 322
file_set_status(), 320
file_space_used(), 325
file_unmunge_filename(), 324
file_validate_extensions(), 321
file_validate_image_resolution(), 319, 321
file_validate_is_image(), 321
file_validate_name_length(), 321
file_validate_size(), 321
filter API, 283
filter hook see hook_filter()

filter module
cache_filter table, 580
filter_formats table, 584
filters table, 584

Filtered HTML filter
protecting against malicious HTML, 288

Filtered HTML input format, 277, 288
filters, 275–282

adding and removing, 278
array_filter(), 262
assigning to input formats, 276
cache_filter table, 280, 282, 351
caching, 352
caching layer, 280, 282

disabling caching, 285
codefilter module, 285
creating custom filters, 282–288

default operation, 285
description operation, 284
list operation, 284
no cache operation, 285
prepare operation, 285
process operation, 285
settings operation, 285

creating node module, 148–149
declaring multiple filters, 284
ensuring text returned from module, 285
executing PHP, 278
Filtered HTML filter, 288
form interface for configuration needed,

285
grouping, 276, 278
hook_filter(), 275, 283
hook_filter_tips(), 287–288
HTML corrector filter, 277
HTML filter, 277, 285
indexing filtered output of nodes, 301
input formats and, 276–282
installed filters, 277
installing, 279
life cycle of text filtering system, 281
line break converter filter, 277
performance gains, 280, 281
PHP evaluator filter, 278, 301
preparing text for processing, 285
protecting against malicious HTML, 288
rearranging order of filter execution, 278
relationship with modules, 279
removing unwanted markup, 276
running text through, 454
text manipulation, 285
transforming text, 275
URL filter, 277
when to use, 280–282

!INDEX 627

09898idxfinal 7/30/08 12:42 PM Page 627

filters table, filter module, 584
filter_allowed_protocols variable, 458
filter_formats table, filter module, 584
filter_tips hook see hook_filter_tips()
filter_xss(), 454

preventing XSS attacks, 458–459
filter_xss_admin(), 459
filter_xss_bad_protocol(), 460
finished key, batch set, 565
finished task, 553
finished value, context parameter, 567
fit column, menu_router table, 588
flags

menu item type flags, 82, 83
MENU_NORMAL_ITEM type, 83

float data type, 101
float placeholder, 93
flood table, contact module, 584
flush_caches hook see hook_flush_caches()
flushing caches

drupal_flush_all_caches(), 519
hook_flush_caches(), 363, 519

folders
default folder structure, 6
drupal-contrib folder, 169
includes folder, 7
misc folder, 7
modules folder, 7
profiles folder, 7
scripts folder, 7
themes folder, 7, 169

footer hook see hook_footer()
footer variable, page.tpl.php, 186
footer_message variable, page.tpl.php, 186
for loop, 478
foreach loop, 478
form API, 221–273

see also forms
altering forms, 245–246
call order of validation/submit functions,

240
changing forms with hook_form_alter(),

245–246
altering any form, 245
altering specific form, 246

creating forms, 229–252
Cross-Site Request Forgeries (CSRF), 468
fieldsets, 233–235
form IDs, 232
form processing, 221–229

building form, 225
checking if form submitted, 226
collecting form element definitions,

223–224

finding theme function for form, 226
functions altering forms post build, 226
initializing, 223
looking for submit function, 225
looking for validation function, 225
modules altering forms pre build, 225
modules modifying forms before

rendering, 226
redirecting users, 228
rendering form, 226–227
setting form ID, 223
setting tokens, 223
submitting forms, 228
validating forms, 227–228

form rebuilding, 244
get method, 232
internal form value, 257
introduction, 221
multipage forms, 247–252
properties, 231
secure coding, 474–475
specifying validation/submit functions,

239
submitting programmatically, 246
theming forms, 236–238

markup attribute, 237
prefix attribute, 236
specifying theme function to use, 238
suffix attribute, 236
using theme function, 237

writing submit function, 245
writing validation functions, 240–244

element-specific validation, 243–244
passing data with form_set_value(),

242–243
passing data with form_state variable,

243
passing data with validation functions,

241–243
form API elements, 257

adding content before and after, 236
calling array of functions after build, 256
declaring type, 255
default value, 256
determining if element shown to user, 255
difference between properties and, 231
element-specific validation, 243–244
highlighting elements failing validation,

240
indicating use of AHAH with, 267
looking for theme function for, 256
manipulating at form building time, 255
prefixing rendered element, 256
properties added to all elements, 254–255

!INDEX628

09898idxfinal 7/30/08 12:42 PM Page 628

properties allowed in all elements,
255–257

suffixing rendered element, 256
form API elements, list of

button, 265
checkboxes, 261
date, 263
fieldset, 264
file, 264
hidden, 262
image_button, 265
item, 266
markup, 266
password, 258
password_confirm, 258
radios, 261
select, 259
submit, 265
textarea, 259
textfield, 257
title, 256
value, 262
weight, 256, 263

form API properties, 231, 252–273
difference between elements and, 231
form elements, 267
keys and properties, 231
properties added to all elements, 254–255
properties allowed in all elements,

255–257
properties for root of form, 252–254
recognizing properties, 231

form API properties, list of
access, 255
action, 253
after_build, 256
ahah property, 267, 273
attributes, 255
build_id, 252
cache, 254
default_value, 256
description, 254
id, 253
method, 253
parameters, 252
parents, 255
post, 254
post_render, 254
prefix, 256
pre_render, 253
process, 255
programmed, 252
redirect, 253
required, 254

suffix, 256
theme, 256
title, 256
token, 253
tree, 254
type, 255
weight, 256

form definition function, 44, 45
form elements

allowing change using JavaScript, 267
form hook see hook_form()
form IDs, 232

enforcing IDs unique on page, 253
mapping many to validation/submission

functions, 239
overriding form ID, 232

form parameter, node_validate(), 156
form processing, 221–229

building form, 225
checking if form submitted, 226
collecting form element definitions,

223–224
finding theme function for form, 226
flattening form values, 234
functions altering forms post build, 226
initializing, 223
looking for submit function, 225
looking for validation function, 225
modules altering forms pre build, 225
modules modifying forms before

rendering, 226
redirecting users, 228
rendering forms, 226–227
setting form ID, 223
setting tokens, 223
submitting forms, 228
validating forms, 227–228

built-in validation, 228
element-specific validation, 228
token validation, 228
validation callbacks, 228

form root
properties for, 252–254

form submissions, 253
form tree

functions altering forms post build, 226
tree property, 235

form value, hook_user(), 118
form variable

cache property, 254
form processing, 223
passing values to form_state, 262
post_render property, 254

!INDEX 629

09898idxfinal 7/30/08 12:42 PM Page 629

pre_render property, 253
properties for root of form, 252

format column, comments table, 582
format column, filter_formats table, 584
format column, filters table, 584
format parameter, hook_filter(), 284
format property, nodes, 148
formats

filter_formats table, 584
format_date(), 192
format_plural(), 408
forms

see also form API
adding content before and after elements,

236
annotation form on Drupal web page, 22
appending form to page content, 22
cache_form table, 580
creating forms, 229–252
default_value property, 18
denoting form properties, 17
description, 17
element default values, 254
enforcing IDs unique on page, 253
identifying specific instance of, 252
introducing HTML markup into, 237
multipage forms, 247–252
options property, 17
overriding form ID, 232
presenting settings form to user, 29–31
property controlling caching, 254
splitting up into fieldsets, 233
submitting programmatically, 252, 560
system_settings_form(), 18
theming, 200
title property, 18
type property, 17
unique token sent out with, 253
uniquely identifying forms, 232

forms hook see hook_forms()
formula column, languages table, 585
formwizard module, 247
formwizard_multiform(), 250
form_alter(), 130
form_alter hook see hook_form_alter()
form_builder()

building forms, 225
functions altering forms post build, 226

form_clean_id(), 253
form_error(), 244
form_expand_ahah(), 267
form_id variable, form processing, 223
form_item parameter, file_check_directory(),

317

form_set_error()
element-specific validation, 244
validating fields with hook_validate(), 149
writing form validation functions, 241

form_set_value(), 242–243
form_state parameter,

annotate_entry_form(), 21
form_state variable

form processing, 223
form processor flattening form values, 234
form rebuilding, 244
multipage forms, 250, 252
passing data with, 243
passing values from form to, 262
redirecting users, 228
tree property, 254
writing submit function, 245

forum table, forum module, 585
forums, 606
free tagging, 328

multiple terms, 329
front_page variable, page.tpl.php, 186
fsockopen(), 443
Full HTML input format, 278
full phase, bootstrap process, 10
function calls

coding standards, 479
JavaScript, 383

function declarations, 480
function names, 480
function reference link, devel block, 519
functions

see also hooks; methods
control structures, 478
creating menu item, 62, 63
calling array of functions after element

built, 256
altering forms post build, 226
file API, 314–325
documenting functions, 485–486
form validation functions, 240–244
function call syntax, 479
function declarations, 480
function names, 480
hook implementations, 486
hooks firing functions, 4
implementing hooks, 15
libraries of common functions, 7
linking sets of related functions, 486
mapping to function parameters using

keys, 66
mapping URLs to, 10, 59–65
naming conventions, 480

for themable items, 179, 180

!INDEX630

09898idxfinal 7/30/08 12:42 PM Page 630

overriding parts of Drupal page, 5
page callback arguments, 65–68
passing data with validation functions,

241–243
referencing functions, 486
submit functions, 44, 46, 239, 240
taxonomy functions, 342–348
theme functions, 177–179, 196–199
underscore prefix, 480
validation functions, 239–244

functions, list of
actions_do(), 53–54
aggregator_filter_xss(), 459
annotate_admin_settings(), 29
annotate_admin_settings_validate(), 31,

32
annotate_entry_form(), 21
annotate_install(), 23, 24
annotate_menu(), 15
annotate_nodeapi(), 19, 22
approval_block(), 211, 214
archiveoffline_menu_alter(), 58
array_filter(), 262
batch_process(), 561
batch_set(), 561
block_get_cache_id(), 359
bootstrap_invoke_all(), 355
cache_clear_all(), 362
cache_get(), 361
cache_set(), 360
check_markup(), 454
check_plain(), 190, 454, 455–457, 460
check_url(), 454, 455, 460
conf_init(), 374
db_escape_string(), 466
db_fetch_array(), 94
db_fetch_object(), 94
db_last_insert_id(), 101
db_lock_tables(), 535
db_query(), 92–93, 461–465
db_query_callback(), 466
db_query_range(), 95
db_query_temporary(), 112
db_result(), 27, 94
db_rewrite_sql(), 95, 108, 465
db_set_active(), 111
db_type_map(), 99
db_unlock_tables(), 535
default_profile_tasks(), 554
dpm(), 522
dpr(), 522
drupal_add_css(), 188
drupal_add_feed(), 186
drupal_add_js(), 381, 382

drupal_alter(), 48
drupal_bootstrap(), 355
drupal_clear_css_cache(), 323
drupal_cron_run(), 472
drupal_discover_template(), 199
drupal_eval(), 476
drupal_execute(), 246
drupal_flush_all_caches(), 363, 519
drupal_get_destination(), 214, 298
drupal_get_form(), 16, 22, 29
drupal_get_title(), 186
drupal_get_token(), 468
drupal_goto(), 229
drupal_http_request(), 443
drupal_install_schema(), 96
drupal_json(), 399
drupal_mail(), 471
drupal_page_cache_header(), 355
drupal_render(), 226
drupal_retrieve_form(), 252
drupal_set_html_head(), 186
drupal_set_message(), 26, 251, 366, 445
drupal_set_title(), 64
drupal_urlencode(), 454, 460
drupal_valid_token(), 468
drupal_write_record(), 106
dvm(), 522
dvr(), 522
element_info(), 223, 254
eval(), 476
file_check_directory(), 317
file_check_location(), 317, 470
file_check_path(), 317
file_copy(), 315
file_create_path(), 316
file_create_url(), 322
file_delete(), 316
file_directory_path(), 315
file_directory_temp(), 323
file_move(), 316
file_munge_filename(), 324
file_save_data(), 315
file_save_upload(), 318–320
file_scan_directory(), 322
file_set_status(), 320
file_space_used(), 325
file_unmunge_filename(), 324
file_validate_extensions(), 321
file_validate_image_resolution(), 319, 321
file_validate_is_image(), 321
file_validate_name_length(), 321
file_validate_size(), 321
filter_xss(), 454, 458–459
filter_xss_admin(), 459

!INDEX 631

09898idxfinal 7/30/08 12:42 PM Page 631

filter_xss_bad_protocol(), 460
format_date(), 192
format_plural(), 408
formwizard_multiform(), 250
form_alter(), 130
form_builder(), 225
form_clean_id(), 253
form_error(), 244
form_expand_ahah(), 267
form_set_error(), 149, 241, 244
form_set_value(), 242–243
get_defined_functions(), 519
gzencode(), 536
gzinflate(), 536
hook_access(), 145–146
hook_block(), 204, 206, 208–210, 211, 358,

359
hook_boot(), 355
hook_db_rewrite_sql(), 108–110
hook_delete(), 150
hook_elements(), 223
hook_exit(), 355
hook_file_download(), 325
hook_filter(), 275, 283
hook_filter_tips(), 287–288
hook_flush_caches(), 363, 519
hook_footer(), 186
hook_form(), 146–147
hook_forms(), 239
hook_form_alter(), 225, 293
hook_help(), 187
hook_hook_info(), 54–56
hook_insert(), 149
hook_install(), 520
hook_link(), 189
hook_load(), 151
hook_menu_alter(), 57
hook_nodeapi(), 151, 155–156, 280
hook_node_access_records(), 159
hook_node_grants(), 159
hook_node_info(), 143
hook_perm(), 70
hook_profile_alter(), 121
hook_requirements(), 550
hook_schema_alter(), 105
hook_search(), 293–294, 295, 303
hook_search_page(), 295, 297
hook_taxonomy(), 339–340
hook_theme(), 152, 195
hook_uninstall(), 520
hook_update(), 150
hook_update_index(), 302, 303, 308
hook_user(), 118–121
hook_validate(), 149

hook_view(), 151–155
hook_xmlrpc(), 446, 447–448
image_get_info(), 321
importusers_finished(), 565
importusers_form_submit(), 564
importusers_import(), 565, 567
importusers_optimize(), 565
include(), 9
include_once(), 9
ini_set(), 368
install_goto(), 553
install_module_batch(), 561
l(), 456, 457
load(), 78
locale(), 412
menu_cache_clear_all(), 351
menu_rebuild(), 87, 351, 519
mime_header_encode(), 454, 471
moderate_db_rewrite_sql(), 110
module_invoke_all(), 16, 363
node_access(), 160
node_access_acquire_grants(), 160
node_access_rebuild(), 159
node_get_types(), 18
node_load(), 77, 340
node_type_save(), 559
node_view(), 302
pager_query(), 95
page_cache_fastpath(), 9
pathfinder_search_page(), 298
phptemplate_blockaway_javascript(), 392
phptemplate_theme(), 195
plusone_get_total(), 399
plusone_get_vote(), 399
plusone_vote(), 396, 399, 403
plusone_widget(), 400, 401
rawurlencode(), 460
register_shutdown_function(), 306
request_uri(), 253
search_index(), 306
sess_read(), 369, 370
sess_write(), 370, 371
sess_xyz(), 368, 369
st(), 424, 548
statistics_exit(), 355
string translation(), 18
system_check_directory(), 226
system_cron(), 320
system_settings_form(), 18, 30
system_theme_data(), 560
t(), 18, 408–409, 455, 457, 548
tablesort_sql(), 298
taxonomy_del_term(), 345
taxonomy_del_vocabulary(), 343

!INDEX632

09898idxfinal 7/30/08 12:42 PM Page 632

taxonomy_get_children(), 345
taxonomy_get_parents(), 345
taxonomy_get_parents_all(), 345
taxonomy_get_synonyms(), 347
taxonomy_get_synonym_root(), 347
taxonomy_get_term(), 343
taxonomy_get_term_by_name(), 343
taxonomy_get_tree(), 345
taxonomy_get_vocabularies(), 342
taxonomy_node_get_terms(), 340, 344
taxonomy_node_get_terms_by_vocabular

y(), 344
taxonomy_render_nodes(), 348
taxonomy_save_term(), 344
taxonomy_save_vocabulary(), 342
taxonomy_select_nodes(), 341, 347
taxonomy_term_path(), 338
taxonomy_vocabulary_load(), 342
template_preprocess(), 197
template_preprocess_node(), 198
theme_blocks(), 208
theme_breadcrumb(), 180, 181, 195
theme_links(), 189
theme_mark(), 192
theme_placeholder(), 456
theme_plusone_widget(), 401, 402
theme_render_template(), 197, 199
theme_textfield(), 227
theme_user_profile(), 119
throttle_exit(), 355
to_arg(), 79–80
university_profile_modules(), 550
university_profile_tasks(), 553, 554
upload_space_used(), 325
user_access(), 71
user_authenticate_finalize(), 369
user_autocomplete(), 258
user_external_login_register(), 134
user_is_anonymous(), 118
user_is_logged_in(), 118
user_load(), 126
user_login_authenticate_validate(), 132
user_login_final_validate(), 132
user_login_name_validate(), 132
user_register(), 223
user_save(), 117, 374
user_search(), 292
user_validate_picture(), 319
valid_url(), 460
variable_del(), 554
variable_get(), 18, 33, 34
variable_set(), 18, 33, 213, 559
var_dump(), 428, 522

watchdog(), 408
xmlrpc(), 440
xmlrpc_error(), 447
xmls_remotehello_hello(), 446

!G
garbage collection, 320

sessions table, 367
gc_maxlifetime setting, settings.php file, 367

optimizing sessions table, 537
general.pot file, 421

creating .pot files for modules, 422
generic file handling modules

handling media files, 313
get method

form API support for, 232
menu API required, 253

GET requests
Cross-Site Request Forgeries (CSRF), 468
jQuery, 396

getCapabilities method, XML-RPC, 450
getCurrentTime method, XML-RPC, 440
getElementById method, jQuery, 384
getStateName method, XML-RPC, 442
getter functions

variable_get(), 18
get_defined_functions(), 519
global variables, 482
global.css file

building PHPTemplate using existing CSS,
170

not loading if path changed, 174
renaming global.css to style.css, 175

glossary module, 328
GNU General Public License (GPL)

contributing modules to Drupal, 502
grant ID, 160
grants see permissions
grant_delete column, 590
grant_update column, 590
grant_view column, 590
greyscale theme

adding node template file to, 177
adding/manipulating template variables,

183
building PHPTemplate using existing

HTML/CSS, 171
creating .info file for themes, 172
creating additional page templates, 193
enabling in administrative interface, 173

gzencode() function, 536
gzinflate() function, 536

!INDEX 633

09898idxfinal 7/30/08 12:42 PM Page 633

!H
handbooks, online resources, 606
handlers

overriding PHP session handling, 368
hash_function directive, sessions, 370
has_body column, node_type table, 592
has_body value, node_info() hook, 143
has_children column, menu_links table, 587
has_garbage_value property

image_button element setting, 265
has_title column, node_type table, 592
has_title value, node_info() hook, 143
head variable, page.tpl.php, 186
HEAD version

alternative branching approach, 516
dev suffix, 495
new versions creating branch within CVS,

493
safety of CVS version of Drupal, 490
using HEAD for Drupal-6 releases,

512–513
using the latest version of HEAD, 509

header variable, page.tpl.php, 186
headers column

cache table, 350, 351, 579
cache_xyx tables, 580, 581, 582

headers parameter, cache_set(), 360
headers, email

encoding mail headers, 471–472
head_title variable, page.tpl.php, 186
help hook see hook_help()
help key, taxonomy_save_vocabulary(), 342
help text, hook_filter_tips(), 287
help variable, page.tpl.php, 187
hidden attribute, link item, 86
hidden column, menu_links table, 587
hidden element, form API, 262
hierarchy

hierarchical list of terms, 331–332
multiple hierarchical list of terms, 332–333
retrieving information about term

hierarchy, 345
specifying depth for vocabularies, 334–335
term_hierarchy table, 336, 599

hierarchy column, vocabulary table, 603
hierarchy key, taxonomy_save_vocabulary(),

342
history

login history tracking user logins, 129
history table, node module, 585
homepage column, comments table, 583
hook column, trigger_assignments table, 600
hook elements link, devel block, 519
hook_info hook see hook_hook_info()

hooks
see also functions
adding data entry form, 20
adding triggers to, 56–58
authentication hooks for downloading,

325
building jQuery voting widget, 396
creating by appending name to module,

16
creating node via module using, 140–156
description and introduction, 4, 37
documenting functions, 486
firing hooks, 4
function driving hook mechanism, 16
HTML indexing hooks, 302
implementing, 15–16
internal events and, 35
modules defining multiple new hooks, 56
naming conventions, 4
operations of, 37
relation between

hooks/operations/triggers, 39
search HTML indexer, 302–308
supported hooks, 5, 16

hooks key, beep_action_info(), 40
hook_access()

limiting access to node type, 145, 146
hook_action_info()

configurable actions, 42, 44
creating actions, 39, 40

hook_block()
adding pending users block, 217
block API, 204
block caching, 358, 359
building blocks, 211
defining blocks, 206
parameters, 209–210
storing key for unique block, 207
using block hook, 208–210, 211

hook_boot(), 355
hook_comment()

establishing context, 49
hook_hook_info(), 54
internal events and hooks, 37
relation between

hooks/operations/triggers, 39
hook_db_rewrite_sql()

changing queries of other modules,
109–110

exposing queries to other modules,
108–110

parameters, 109
when to use, 108

hook_delete(), 150

!INDEX634

09898idxfinal 7/30/08 12:42 PM Page 634

hook_elements()
collecting form element definitions, 223
element default values, 254
hook elements link, devel block, 519
TinyMCE module, 224

hook_exit(), 355
hook_file_download(), 325
hook_filter(), 275, 283

declaring multiple filters, 284
hook_filter_tips(), 287–288
hook_flush_caches(), 363, 519
hook_footer(), 186
hook_form(), 146–147
hook_forms(), 239
hook_form_alter()

altering any form, 245
altering specific form, 246
building custom search page, 293
changing forms with, 245–246
modules altering forms pre build, 225
pre_render property, 253
writing submit function, 245

hook_help(), 187
hook_hook_info()

adding triggers to existing hooks, 57
defining triggers with, 54–56

hook_insert(), 149
hook_install(), 520

creating tables, schema API, 96
enabling blocks when module installed,

218
hook_link(), 189

multilingual support with translation, 434
hook_load(), 151

dealing with time-consuming queries, 520
hook_menu()

adding page arguments key, 65
building jQuery voting widget, 396
common mistakes implementing, 87
creating menu item, 62
creating new administrative category, 27
implementing hooks, 15, 16
permissions and page callbacks, 467
running t() implicitly, 408

hook_menu_alter()
adding triggers to existing hooks, 57
altering menu items from other modules,

80–81
modifying menu callback, 144

hook_menu_link_alter(), 82
hiding existing menu items, 86

hook_nodeapi()
adding data entry form, 20

adding form for notes to
annotate.module, 19

adding metadata to nodes, 302–303
building jQuery voting widget, 402
changeable parameters, 156
deleting revisions not entire node, 151
how search HTML indexer works, 302
internal events and hooks, 36
manipulating nodes with, 155–156
node object, 155
op parameter values, 155
relation between

hooks/operations/triggers, 39
storing data in database table, 26
using URL filter instead, 280

hook_node_access_records(), 159, 160
hook_node_grants(), 159, 160
hook_node_info(), 143

creating initial node types, 559
customizing node form for node type, 147

hook_perm(), 145
building jQuery voting widget, 396
controlling access to menus, 70
permissions and page callbacks, 467

hook_profile_alter(), 121
hook_requirements(), 550
hook_schema(), 104
hook_schema_alter(), 105
hook_search(), 293–294, 295, 296

indexing non-node content, 303, 307
keys parameter, 293
op parameter, 293

hook_search_page(), 295
building custom search page, 297

hook_taxonomy(), 339–340
relation between

hooks/operations/triggers, 39
hook_theme()

building jQuery voting widget, 400
theme registry, 195
using theme function, 237, 238
viewing fields, 152

hook_uninstall(), 105, 520
hook_update(), 150
hook_update_index()

how search HTML indexer works, 302
indexing non-node content, 302, 303–308

hook_user(), 118–121
account parameter, 119
category parameter, 119
creating registration form, 123
edit parameter, 119
function signature, 118
internal events and hooks, 36

!INDEX 635

09898idxfinal 7/30/08 12:42 PM Page 635

op parameter, 118
relation between

hooks/operations/triggers, 39
understanding hook_user(‘view’), 119–121
user object, 119

hook_validate(), 149
hook_view(), 151–155
hook_xmlrpc(), 446, 447–448
hostname column

flood table, 584
poll_votes table, 594
sessions table, 367, 370, 597
watchdog table, 604

hostname component, user object, 117
hosts

banning hosts, 9
htaccess files

auto_start functionality, sessions, 368
Drupal’s technology stack, 2
mod_expires module, Apache, 530
mod_rewrite rule, 8
moving to httpd.conf file, 531
neutralizing dangerous files, 324
protecting cron.php, 472
public file downloads, 310
secure coding with protected files, 468
session-related settings, 368, 369

HTML
Asynchronous HTML and HTTP (AHAH),

267
building PHPTemplate theme using

existing, 169–171
check/clean HTML using tag whitelist, 454
content variable, page.tpl.php, 186
converting carriage returns to, 277
converting into corresponding entities,

285
Drupal theme sites compared, 167
editing within module files, 165
Full HTML input format, 278
generating output for themable item, 177
indexing hooks, 302
indexing HTML and assigning token

scores, 301
linking to CSS files, 188
protecting against malicious HTML, 288
search HTML indexer, 299–308
secure handling of user input, 455
theme layer creating, 5
turning nodes into, 178

HTML corrector filter, 277

HTML entities
encoding special characters into, 454
filter_xss() handling security of user input,

458
HTML filter, 277, 285

caching, 352
filter_xss() handling user input security,

458
Filtered HTML filter, 288
Filtered HTML input format, 277
prepare operation preventing actions of,

285
removing unwanted markup, 276
running after URL filter, 278

HTML forms
see also form API
creating forms, 229–252
form API elements, 257
form API properties, 252–273

form elements, 267
properties added to all elements,

254–255
properties allowed in all elements,

255–257
properties for root of form, 252–254

form processing, 221–229
generating/validating/processing, 221

html.tpl.php file, 483
HTTP

Asynchronous HTML and HTTP (AHAH),
267

description, 365
Expires HTTP headers, 530
HTTP GET/HTTP POST requests, jQuery,

396
JavaScript HTTP request, 268
storing HTTP header responses, 351

HTTP errors, XML-RPC clients, 443
HTTP requests

drupal_http_request(), 443
entry point for serving requests, 7
fsockopen function, 443
JavaScript, 269
multiple XML-RPC method calls per

request, 451
processing requests, 10
serving requests, 8–10
using temporary tables during, 112
XML-RPC, 8, 439, 440
XML-RPC clients, 440
XML-RPC getting state name example, 442
XML-RPC getting time example, 441
XML-RPC request life cycle, 447, 448

!INDEX636

09898idxfinal 7/30/08 12:42 PM Page 636

HTTP responses
call syntax errors, 444
XML-RPC getting state name example, 442
XML-RPC getting time example, 440, 441

httpd.conf file
moving .htaccess file to, 531

hyperlinks
converting web and e-mail addresses into,

277

!I
icons

misc folder, 7
id property, forms, 253

overriding form ID, 232
ID selector

accessing elements, jQuery, 384
CSS ID selector, 379, 380

id variable, template files, 185
IDEs

application profiling and debugging, 522
idp_endpoint_uri column, 593
IDs, nodes, 138, 140
if statement, 478
IIS

see also web servers
clean URLs, 9
Drupal’s technology stack, 2

images
handling media files, 313
misc folder, 7

image_button element, form API, 265
image_gallery module, 337, 338
image_get_info(), 321
importusers_finished(), 565
importusers_form_submit(), 564
importusers_import(), 565, 567
importusers_optimize(), 565
inc files, 483

secure coding with protected files, 469
include() function, 9
includes folder, 7

files for production environment, 472
menu.inc file, 59

include_once(), 9
indentation

line indentation, 477
index

creating tables, schema API, 98
search_index table, 596

index token
predefined load arguments, 79

index.php file, 7, 8
files for production environment, 472
normal page caching, 355

indexing
hook_update_index(), 302, 303–308
indexing dynamic content, 301
indexing elements that aren’t nodes, 303
indexing filtered output of nodes, 301
indexing HTML and assigning token

scores, 301
search HTML indexer, 299–308

adding metadata to nodes, 302
adding metadata to nodes, 302–303
how search HTML indexer works,

299–308
indexing non-node content, 302
indexing non-node content, 303–308
when to use, 299

update index value, hook_nodeapi(), 156
info column, system table, 598
info files

adding JavaScript via theme .info file, 387
creating .info file for theme, 172–176
creating Drupal-5 compatible branch, 510
creating forms, 229
creating node module, 142
description, 483
reasons for, 14
secure coding with protected files, 469

info value, hook_block(), 209
infrastructure mailing list, 607
ingroup construct, Doxygen, 486
init column, users table, 602
init component, user object, 117
initialize configuration phase, bootstrap, 9
initialize database phase, bootstrap, 9
initialize session handling phase, bootstrap,

9
init_message key, batch set, 565
ini_set()

PHPSESSID appearing in query string, 369
session-related settings, 368

InnoDB tables
changing table type from MyISAM,

534–535
input

secure handling of user input, 453–460
input formats

Add input format form, 277
adding and removing filters, 278
assigning filters to, 276
default input formats, 277, 279
Filtered HTML input format, 277

!INDEX 637

09898idxfinal 7/30/08 12:42 PM Page 637

filters and, 276–282
Full HTML input format, 278
PHP code input format, 278
rearranging order of filter execution, 278

insert hook see hook_insert()
insert operation, 39

establishing context, 49
INSERT statement, SQL, 93
insert value, hook_nodeapi(), 155
insert value, hook_user(), 118

external authentication, 134
inserts

drupal_write_record(), 106
install files

adding data to user object at load time,
126

building jQuery voting widget, 393
creating node module, 141–142
enabling blocks when module installed,

218
implementing uninstall hook, 105
maintaining tables, 104
making Drupal forget about modules, 25
secure coding with protected files, 469
using module .install files, 96

install hook see hook_install()
install suffix, 23
install.php file, 7

session usage, 367
installation profiles, 7, 547, 548–570

batch API, 560–570
batch operation callback, 565–567
batch request cycle, 569
defining batch set, 562–565
enabling modules, 561
error handling, 568
progressive/nonprogressive batch sets,

568
redirection, 568

creating initial node types, 559
default profile, 547
defining additional installation tasks,

551–553
directories for modules, 551
indicating modules to enable, 550–551
installer interacting with, 549
naming profile modules, 550
resources, 570
running additional installation tasks,

553–569
saving information to database, 559
selecting installation profile, 548
setting Drupal variables, 559
setting themes during installation, 560

storing profiles, 547–548
submitting forms programmatically, 560
university_profile_modules(), 550

installer
entry point for Drupal installer, 7

installer.pot file, 421
installer translations, 424

install_goto(), 553
install_module_batch(), 561
integer data type, 101
integer placeholder, 93
interest groups, 608
interfaces

translation interface, 407–420
internal arrays, creating, 481
internal cache, clearing, 361
internal events, hooks and, 35
internal path see Drupal path
internationalization, 437
Internet Relay Chat (IRC), 608
interval key

progress key, ahah property, 269
intro CSS class selector, 380
intro CSS ID selector, 379
inversion of control design pattern, 4
I/O

finding bottlenecks, 528
IP addresses

banning hosts, 9
IRC (Internet Relay Chat), 608
is_front variable, template files, 185, 187
is_variable, template files, 185
item element, form API, 266
items array

adding page arguments key, 65

!J
JavaScript

adding, from module, 387–389
adding, via theme .info file, 387
allowing form elements to be changed,

267
browsers and, 377
converting PHP variables into, 399
description, 377
DOM traversal, 378
drupal_add_js(), 381, 382
event triggering HTTP request, 268
function call, 383
indicating event occurs, 268
indicating menu item called by, 267
jQuery code, 383
misc folder, 7

!INDEX638

09898idxfinal 7/30/08 12:42 PM Page 638

Optimize JavaScript files, Performance
page, 536

overridable JavaScript, 390–392
removing harmful JavaScript from URLs,

454
writing, using jQuery, 377

javascript column, languages table, 585
JavaScript HTTP request, 269
JOIN keyword, SQL

using db_rewrite_sql(), 110
jQuery, 379–380

see also jQuery within Drupal
accessing elements by ID, 384
compatibility, 405
concatenating series of methods, 384
description, 377–378, 379
DOM Inspector window, 378
HTTP GET/HTTP POST requests, 396
official web site, 377
plug-ins, 377
selecting elements from documents, 379
syntax, 379
using CSS class selector, 380
using CSS ID selector, 379
using jQuery in modules, 391–392
writing JavaScript using, 377
XPath selectors, 379

jQuery engine, 379
jQuery methods

addClass method, 385
css method, 386
fadeIn method, 379, 380, 383, 391
getElementById method, 384
removeClass method, 385
slideDown method, 391
toggleClass method, 385
wrap method, 386

jQuery within Drupal, 381–392
adding JavaScript from module, 387–389
adding JavaScript via theme’s .info file, 387
adding/removing classes, 385
building jQuery voting widget, 393–405

building module, 395–403
extending module, 404
using Drupal.behaviors, 404

changing values of CSS elements, 386
further information, 405
locating JavaScript, 386–389
method chaining, 384
overridable JavaScript, 390–392
targeting elements by ID, 384
wrapping existing elements, 385

jquery.js file, 382
js file extension, 267

jsEnabled test
building jQuery voting widget, 403
using Drupal.behaviors, 404

JSON (JavaScript Object Notation)
building jQuery voting widget, 396
drupal_json(), 399
further information, 399

just-in-time translation, 415

!K
key column, SQL

dealing with time-consuming queries, 521
key parameter

file_scan_directory(), 322, 323
taxonomy_get_children(), 345
taxonomy_node_get_terms(), 344

keys
in keyed arrays, 66
properties and, 231

keys parameter, hook_search(), 293, 294
Komodo IDE

application profiling and debugging, 522

!L
l() function, 456, 457
language attribute, nodes, 138
language column

locales_target table, 586
node table, 589
url_alias table, 601
users table, 601

language component, user object, 117
language determination phase, bootstrap, 10
language negotiation, 427, 432

Domain Name Only, 431
None setting, 428
Path Prefix Only, 429
Path Prefix with Language Fallback, 431

language object, 428, 429
language property, language object, 429
language switcher block, 435, 436
language translation, 412
language variable, page.tpl.php, 187
language.inc file, 437
languages

see also translations
adding custom language for custom

strings, 413
adding language setting interface, 437
choosing language for installer, 425
choosing user-specific language, 428
determining programmatically, 428, 437
determining, using domain name, 431

!INDEX 639

09898idxfinal 7/30/08 12:42 PM Page 639

determining, using path prefix, 429, 430
with language fallback, 431

disabling, 414
Edit language screen, 430
enabling, 414
global language variable/object, 428
installing language translations, 424–425
installing translation on existing site, 425
language negotiation, 427–432
language set as default language, 428
managing language translations, 437
multiple languages enabled, 437
right-to-left language support, 426
selecting preferred language, 414
setting up translation at install time, 424

Languages screen
Add language page, 413, 425
List page, 414

languages table, locale module, 585
LANGUAGE_RTL constant, 426
late page cache phase, bootstrap, 10
layers

database abstraction layer, 89–90
layout variable, page.tpl.php, 187
left variable, block.tpl.php, 177
left variable, page.tpl.php, 187
legacy databases

connecting to non-Drupal databases, 111
indexing non-node content, 303, 305

legacysearch.info file, 305
legacysearch.module file, 305
legacysearch_search(), 307, 308
legalagree module, 121
libraries

libraries of common functions, 7
secure coding with protected files, 469

lighttpd web server, 531
serving large media files, 543

LIMIT clause, db_query(), 95
line break converter filter, 277
line feeds

encoding mail headers, 471
line indentation, 477
link column, aggregator_item table, 576
link column, watchdog table, 604
link hook see hook_link()
links

adding link to navigation block, 67–68
altering menu links from other modules,

82
assigning callbacks without adding link to

menu, 83
converting URLs to clickable links, 285
empty cache link, 519

enable theme developer link, 519
function reference link, 519
hook elements link, 519
hook_link(), 189
how search HTML indexer works, 302
HTML for linking to CSS files, 188
menu_links table, 60
primary_links variable, page.tpl.php, 187
rebuild menus link, 519
reinstall modules link, 520
router and link building process, 62
search_node_links table, 597
secondary_links variable, page.tpl.php,

187
session viewer link, 520
theme_links(), 189
variable editor link, 520

links variable, comment.tpl.php, 192
links variable, node.tpl.php, 189
link_path column, menu_links table, 587
link_title column, menu_links table, 587
Linux Virtual Server

load balancing, 543
list array, hook_block(), 209, 211
list column, upload table, 314, 600
list operation, hook_filter(), 284
List page, Languages screen, 414
listMethods method, XML-RPC, 449
load arguments key, 78
load balancing, 542

Linux Virtual Server, 543
load() function

passing additional arguments to, 78
load hook see hook_load()
load operation, user hook, 126–129
load value, hook_nodeapi(), 156
load value, hook_user(), 119, 124
load_functions column, menu_router table,

588
local tasks, 84

displaying menu items as tabs, 84–86
local tasks and tabbed menus, 86
mistakes implementing menu hook, 87

locale module
enabling locale module, 407
languages table, 585
locales_source table, 586
locales_target table, 586
replacing strings with locale module,

412–418
web interface, 415

locale() function
just-in-time translation, 415
replacing strings, 412

!INDEX640

09898idxfinal 7/30/08 12:42 PM Page 640

locale-initial-batch task, 553
locale-initial-import task, 552
locale-remaining-batch task, 553
locale-select task, 552
locale.inc file, 437
locale.module file, 437
locales_source table, locale module, 586
locales_target table, locale module, 586
localization

see also translation interface; translations
content translation, 432–437
enabling locale module, 407
files related to, 437
internationalization, 437
language negotiation, 427–432
locale-specific part of t() function, 408
right-to-left language support, 426

Localization client module, 418
location column, locales_source table, 586
location column, watchdog table, 604
locations

checking file location, 317
LOCK TABLES command, 535
locked column, node_type table, 593
locked value, node_info() hook, 144
locking

db_lock_tables(), 535
db_unlock_tables(), 535
reasons for, 534
table locking, 534, 535

log column, node_revisions table, 592
log command see cvs log command
log entries

session usage, 367
logged_in variable, template files, 185, 187
login column, users table, 601
login component, user object, 117
login operation, 39

administrative account, 381
login value, hook_user(), 119

user login process, 124
loginhistory module, 126
logins

external logins, 129–134
login history tracking user logins, 129
testing if user is logged in, 118
user login process, 124–129
user_external_login_register(), 134
user_login_authenticate_validate(), 132
user_login_final_validate(), 132
user_login_name_validate(), 132

login_history table, 128
logo variable, page.tpl.php, 187

logos
sites/default/files folders, 7

logout operation, 39
administrative account, 381

logout value, hook_user(), 119
logs

optimizing error reporting logs, 537–538
running cron for optimization, 538
watchdog table, dblog module, 604

loops
control loops, 478

!M
mac_key column, openid_association table,

593
mail

drupal_mail(), 471
encoding mail headers, 471–472

mail column, comments table, 583
mail column, users table, 601
mail component, user object, 116
mailing lists, 606–607
map token

predefined load arguments, 78
mapping

authmap table, 576
callback mapping, 59–68
db_type_map(), 99
field type mapping, schema to database,

99–102
mapping URLs to functions, 59–65

creating menu item, 62–64
defining title, 64–65

page callback arguments, 65–68
markup

check_markup(), 454
filters removing unwanted markup, 276

markup attribute, 237
markup element, form API, 266
mask column, access table, 573
mask parameter, file_scan_directory(), 322
MaxClients directive, Apache, 530
maximum_dimensions parameter, 321
maxlength property

built-in validation, 228
textfield element, 258

MaxRequestsPerChild value, Apache, 530
max_depth parameter, taxonomy_get_tree(),

345
max_execution_time setting, 312
max_input_time setting, 312

!INDEX 641

09898idxfinal 7/30/08 12:42 PM Page 641

MD5 algorithm, 370
computing hash value of string of text, 280
creating unique session names for sites,

374
media files, handling, 312–313
memcache

database bottlenecks, 535
PECL Memcache PHP extension, 535

memcache module, 349
memcached library, 535
memory usage

reasons for .info files, 14
menu cache

creating new administrative category, 28
mistakes implementing menu hook, 87

menu callback, modifying, 144–145
menu dispatching process, 61
menu hook see hook_menu()
menu items, 82–83

access arguments key, 71
access callback key, 70, 71
altering menu items from other modules,

80–81
altering menu links from other modules,

82
callback mapping, URLs to functions, 59,

62–64
calling same callback from several, 66
creating, 62–64
creating new administrative category, 28
defining title callbacks, 71–73
displaying menu items as tabs, 84–86
file key, 67
hiding existing menu items, 86
indicating item called by JavaScript, 267
load arguments key, 78
menu item type flags, 82, 83
page arguments key, 65, 66
page callback arguments, 65–68
page callback key, 59
title arguments, 73–74
title arguments key, 73
title callback key, 71
title key, 64–65, 71
type key, 67, 82
weight key, 68
wildcards, 75–80

menu module
menu_custom table, 586
menu_links table, 587
using menu.module, 87

menu nesting, 69

menu system, 59–88
access control, 70–71
caching, 351
callback mapping, 59–68
defining permissions, 71
essential code file, 59
menu nesting, 69
optional code file, 59
primary responsibilities, 59

menu tree
storing data structure representing, 87

menu.inc file, includes folder, 59
menufun module, 62
menus

assigning callbacks without adding link to,
83

cache_menu table, 351, 581
common development problems, 83–86
controlling access to, 70
implementing, 15, 16
local tasks and tabbed menus, 86
mistakes implementing menu hook, 87
rebuild menus link, 519

menu_alter hook see hook_menu_alter()
menu_cache_clear_all(), 351
MENU_CALLBACK type, 57, 84
menu_custom table, menu module, 586
MENU_DEFAULT_LOCAL_TASK type, 71, 84
menu_links table, 60, 87, 587
menu_link_alter hook see

hook_menu_link_alter()
MENU_LOCAL_TASK type, 57, 84, 87
MENU_NORMAL_ITEM type

adding link to navigation block, 67
flags of, 83
type key, 82
wildcards in menu items, 75

menu_rebuild(), 87, 351, 519
menu_router table, 588

callback mapping, URLs to functions, 60
menu title strings, 71
overriding page title during code

execution, 64
storing menu tree, 87

MENU_XYZ flags/types, 82, 83, 87
message column, watchdog table, 604
message value, context parameter, 567
messages array, user’s session, 366
messages variable, page.tpl.php, 187

show_messages variable is FALSE, 188
metadata

adding metadata to nodes, 302–303
modules defining node types, 143

method chaining, jQuery, 384

!INDEX642

09898idxfinal 7/30/08 12:42 PM Page 642

method form API property, 232
method key, ahah property, 268
method property, forms, 253
methodCall tag, XML-RPC clients, 440
methodHelp method, XML-RPC, 448, 450
methodName tag, XML-RPC clients, 440
methods

see also functions
get method

form API support for, 232
menu API required, 253

methods, jQuery see jQuery methods
methods, XML-RPC see XML-RPC methods
methodSignature method, XML-RPC, 448,

450
Microsoft IIS see IIS
mime_header_encode(), 454, 471
minimum cache lifetime setting, 356
minimum__dimensions parameter, 321
min_depth parameter, file_scan_directory(),

322
min_word_count column, node_type table,

592
min_word_count value, node_info(), 144
misc folder, 7, 472
mission variable, page.tpl.php, 187
mode column, users table, 601
mode component, user object, 116
moderate attribute, nodes, 139
moderate column, node table, 590
moderate_db_rewrite_sql(), 110
modified column, node_type table, 592
modifying nodes with hook_load(), 151
module column

authmap table, 576
blocks table, 206, 577
blocks_roles table, 578
filters table, 584
menu_links table, 587
vocabulary table, 337, 603

module files
creating node module, 142
description, 483
secure coding with protected files, 469

module key, 149, 150, 151, 155, 337
module names, 482
module value, node_info() hook, 143
module-based vocabularies, 337–340
module-provided blocks, 203
module.inc file, 355
modules

adding data entry form, 19–27
adding extra modules, 7

adding functionality to Drupal core, 13,
16–19

adding JavaScript from, 387–389
adding module-specific settings, 16–19
adding to repository, 504–505
altering forms pre build, 225
altering menu items from, 80–81
altering menu links from, 82
annotate.info file, 13–14
annotate.module file, 14–15

configuration form for, 19, 27–29
automatically generating documentation

for, 484
building jQuery voting widget, 395–403
changing queries of, 109–110
checking out, from repository, 506
choosing modules to throttle, 539
contributed modules, 139
contributed modules repository, 7
contributing modules to Drupal-502
core required module definitions, 573
creating .pot files for, 421–423
creating files, 13–15
creating new administrative category,

27–29
creating site-specific modules, 204
defining multiple new hooks, 56
defining new cache tables for, 350
defining node types, 143
deleting tables on uninstall, 105
description and introduction, 3
directories for, 551
documentation, 484
editing HTML within module files, 165
enabling additional modules, 4
enabling blocks when module installed,

218
ensuring text returned from filters, 285
exposing queries to, 108–110
external authentication, 130
grouping in packages, 14
hooks firing functions, 4, 15–16
installation profile modules enabling,

550–551
internal events and hooks, 35
inversion of control design pattern, 4
maintaining, 501–518
modifying forms before rendering, 226
naming, 13

avoiding namespace collisions, 129
presenting settings form to user, 29–31
README.txt file, 34
reinstall modules link, 520
relationship between filters, 279

!INDEX 643

09898idxfinal 7/30/08 12:42 PM Page 643

restricting annotations to some node
types, 16

retrieving stored values, variable_get(), 34
returning array of blocks defined by, 209
schema versions, 104
storing data in database table, 22–27
storing, 13
storing settings, 32–34
updating, 606
using batch API to enable, 561
using jQuery in, 391–392
using menu.module, 87
using module .install files, 96
validating user-submitted settings, 31–32
writing, 13–34

modules directory, 472, 551
modules folder, 7
modules subdirectory

checking out code, contributions
repository, 502, 503

modules, list of
aggregator, 459
api, 15, 484
approval, 210, 217
cacherouter, 357
Chinese Word Splitter, 300
codefilter, 285
coder, 488
comment, 178, 366
content translation, 432
creativejuice, 282, 283
devel, 519–520, 521–522
development, 28
formwizard, 247
glossary, 328
image_gallery, 337, 338
legalagree, 121
locale, 407, 412–418
Localization client, 418
loginhistory, 126
memcache, 349
menufun, 62
module_builder, 522
mod_expires, Apache, 530
node, 140–156
path, 194
pathauto, 194
Porter-Stemmer, 299, 300
profile, 123, 129
pubcookie, 550
remotehello, 446
schema, 98–99
stringoverrides, 412
syslog, 538

system, 485
taxonomy, 327
theme developer, 200
throttle, 203, 207, 539–541
TinyMCE, 224
translation template extractor, 421–423
trigger, 37, 47–49, 51
upload, 312
user, 47
userapproval, 217

module_builder module, 522
module_invoke(), 56
module_invoke_all(), 16, 56, 363
mod_expires module, Apache, 530
mod_rewrite component, Apache, 2
mod_rewrite rule, .htaccess file, 8
moving files, 316
msgid/msgstr, portable object files, 419
multiCall method, XML-RPC, 451
multilingual support with translation

content translation, 432–437
multipage forms, 247–252
multiple column, vocabulary table, 603
multiple database server architecture, 544
multiple key, taxonomy_save_vocabulary(),

342
multiple property, select element, 261
munging

file name munging, 324
my.cnf option file, 532
MyISAM tables

changing table type to InnoDB, 534–535
MySQL

allowing MySQL connections, 111
database abstraction layers compared, 90
database connections, 89
enabling MySQL query cache, 532
native data types, 103
viewing values of MySQL variables, 532

mysql_type, 102–103

!N
name component, user object, 116
name key, taxonomy_save_term(), 344
name key, taxonomy_save_vocabulary(), 342
name operation, hook_search(), 294, 296
name property, submit element, 265
name value, node_info() hook, 143
name value, sessions, 373, 374
name variable, node.tpl.php, 189
namespace collisions

avoiding, 129
storing settings using variables table, 33

!INDEX644

09898idxfinal 7/30/08 12:43 PM Page 644

naming conventions
see also coding standards
constants, 481
documentation files, 482
filenames, 482
functions, 480
hooks, 4
local tasks, 84
module names, 482
private functions, 480
tags, 494
template files, 176
themable items, 179, 180

native column, languages table, 585
native data types

MySQL and PostgreSQL, 103
navigation see breadcrumb navigation
navigation block, adding link to, 67–68
navigation menus

caching, 351
wildcards in menu items, 75

navigation.tpl.php file, 483
nesting

menu nesting, 69
network bandwidth

finding bottlenecks, 528
network errors

XML-RPC clients, 443
new variable, comment.tpl.php, 192
nid (node ID), 137

building jQuery voting widget, 401
nid attribute, nodes, 138

tnid attribute, 140
nid column, upload table, 314
no cache operation, hook_filter(), 285
node access rules, 108
Node annotation category, 28
node forms

customizing for node type, 146–147
Input format section, 287

node ID ($nid), 137
node module

history table, 585
node table, 589
node_access table, 590
node_revisions table, 591
node_type table, 592

node module, creating, 140–156
adding filter format support, 148–149
creating .info file, 142
creating .install file, 141–142
creating .module file, 142
customizing node form for node type,

146–147

defining node-type specific permissions,
145

deleting data, 150
deleting revision, 151
limiting access to node type, 145–146
manipulating nodes, 155–156
modifying menu callback, 144–145
modifying nodes, 151
providing node type information, 143–144
saving data, 149
updating data, 150
validating fields, 149
viewing fields, 151–155

node object, hook_nodeapi(), 155
node objects, 158

finding taxonomy terms in, 340
security when formatting directly, 190

node parameter
annotate_entry_form(), 21
annotate_nodeapi(), 20

node properties, 148, 156, 158, 190
behavioral properties, 5
making available to template file, 199

node searching, 291
node table, 589

node attributes, 138
storing nodes, 157

node templates
see also node.tpl.php file
granularity, 189
passing node object to node template

files, 190
node types

associating vocabularies with, 328
behavioral properties of nodes, 5
checking, 20
content types, 137, 138
creating initial node types, 559
creating with CCK, 158–159
creating via module using hooks, 140–156
customizing node form for, 146–147
derivation from basic nodes, 138
description, 5
limiting access to, 145–146
modules defining, 143
object orientation, 137
providing node type information, 143–144
restricting annotations to, 16
terms for site administrators, 137
vocabulary_node_types table, 336, 603

node variable, comment.tpl.php, 192
node variable, node.tpl.php, 189
node variable, page.tpl.php, 187
node-export-html.tpl.php file, 483

!INDEX 645

09898idxfinal 7/30/08 12:43 PM Page 645

node-joke.tpl.php, 153, 154
node.tpl.php file, 189, 190

adding to greyscale theme, 177
inserting automatically into page.tpl.php,

176, 177
limiting set of tags selected, 384
turning nodes into HTML, 178
variables for node templates, 189–190

nodeapi hook see hook_nodeapi()
nodes key, taxonomy_save_vocabulary(), 342
nodes, 137–140

adding metadata to, 302–303
adding module-specific settings, 16
attributes, 138

changed, 139
comment, 139
created, 139
language, 138
moderate, 139
node ID (nid), 138
promote, 139
revision ID (vid), 138
status, 139
sticky, 140
title, 138
tnid, 140
translate, 140
type, 138
user ID (uid), 139

behavioral properties, 5
block listing unpublished nodes, 217
blocks compared, 203
building custom search page, 291
caching node content, 351
checking node type, 20
classifying, 327
comments, users and blocks, 140
content types, 137, 138
creating node module, 140–156
creating node type with CCK, 158–159
creating release node, 517–518
deleting, 20
deriving node types from, 138
description and introduction, 5
easy theming of node listings, 185
examples of Drupal events, 35
finding nodes with certain terms, 347
grant ID, 160
identifying expensive code, 533
IDs, 138, 140
indexing elements that aren’t nodes, 303
indexing filtered output of, 301
inserting, 20
loading taxonomy terms into, 340

manipulating, hook_nodeapi(), 155–156
node access process, 161
node ID ($nid), 137
node revisions, 341
nodeapi hook, 20
PHP evaluator filter, 301
published/unpublished status, 139
realms, 160
restricting access to nodes, 159–162

based on taxonomy terms, 160
defining node grants, 160–161
via ACLs, 160

restricting annotations to some node
types, 16

search_node_links table, 597
selecting template file for, 199
showing node on front page, 139
single or multiple terms for, 329
storing, 157
taxonomy_node_get_terms(), 340
taxonomy_select_nodes(), 341
template_preprocess_node(), 198
terms for site administrators, 137
term_node table, 336, 599
timestamps, 139
title, 137
turning nodes into HTML, 178
viewing content by term, 333–335
vocabulary_node_types table, 336

node_access table
default record for, 159
keeping data private with

db_rewrite_sql(), 466
realms, 160
restricting access to nodes, 159

node_access table, node module, 590
node_access(), 160
node_access_acquire_grants(), 160
node_access_rebuild(), 159
node_access_records hook see

hook_node_access_records()
node_comment_statistics table, 591
node_counter table, 591
node_get_types(), 18, 147
node_grants hook see hook_node_grants()
node_info hook see hook_node_info()
node_load(), 77, 78

loading taxonomy terms into nodes, 340
node_revisions table

creating .install file, 141
node attributes, 138
storing nodes, 157

node_type table, 592
node_type_save(), 559

!INDEX646

09898idxfinal 7/30/08 12:43 PM Page 646

node_url variable, node.tpl.php, 189
node_view(), 302
nomask parameter, file_scan_directory(), 322
None setting, language negotiation, 428
normal page caching, 353–355
notes

entering notes about web page, 19
number_parts column, menu_router table,

588
numbers

d placeholder, 26
numeric data type, 101

!O
object orientation, 137
object parameter, 47, 53
objects

db_fetch_object(), 94
node object, 158
references to node objects, 20
targeting objects, 377
user object, 115–118

onClick event, jQuery, 401
online handbooks, 606
onload event, jQuery, 383
onxyz attributes, HTML, 458
op parameter

annotate_nodeapi(), 20
hook_block(), 209–210, 211, 212
hook_filter(), 284
hook_nodeapi(), 155
hook_search(), 293
hook_user(), 118

opcode cache, 528
openid_association table, openid module,

593
opening tags, 477
operating systems, 2
operation code caching

finding CPU bottlenecks, 528
operations, 37, 39
operations key, batch set, 564, 565
operator parameter,

taxonomy_select_nodes(), 347
optimization, 527–545

see also performance
Apache web server, 530–531
architectures, 542–544
authenticated user traffic, 537
automatic throttling, 539–541
bandwidth optimization, 536
cron overdue for running on busy site, 539
database bottlenecks, 531–536
Drupal-specific optimizations, 536–541

finding bottlenecks, 527–530
CPU usage, 527
RAM on server, 527
RAM on web server, 529–530
web server CPU usage, 528–529

lighttpd web server, 531
mod_expires module, 530
moving .htaccess file to httpd.conf, 531
page caching, 536
PHP optimizations, 528
pruning error reporting logs, 537–538
pruning sessions table, 537
running cron, 538

Optimize CSS files, Performance page, 536
Optimize JavaScript files, Performance page,

536
options column, menu_links table, 587
options column, profile_fields table, 595
options property, forms, 17
options property, select element, 260
OR, using in URLs, 333
Order directive, .htaccess files, 469
order parameter, taxonomy_select_nodes(),

348
orig_type column, node_type table, 593
overridable JavaScript

jQuery within Drupal, 390–392
overriding

editing HTML within module files, 165
functions overriding parts of Drupal page,

5
overriding template files, 392
overriding themable items, 179–182

with template files, 181–182
with theme functions, 180–181

string overrides in settings.php, 410–412
Overview page, Translate interface screen,

415
owner column, system table, 598

!P
p option, cvs diff command, 499
P option, cvs update command, 497
p1/p2 ... columns, menu_links table, 588
packages, 14
page arguments key

defining page callback arguments, 65, 66
mistakes implementing menu hook, 87
using value of wildcard, 76

page caching, 352–358
aggressive caching, 355
disabled page caching, 353
fastpath cache setting, 357–358

!INDEX 647

09898idxfinal 7/30/08 12:43 PM Page 647

minimum cache lifetime setting, 356
normal page caching, 353–355

page callback arguments, 65–68
adding link to navigation block, 67–68
page callbacks in other files, 67
wildcards in menu items, 75

page callback key, 59
page column, profile_fields table, 595
page parameter, annotate_nodeapi(), 20
page parameter, node_view(), 156
page template files see page.tpl.php file
page title

default or different title, 86
overriding, during code execution, 64
text to be displayed in, 186

page variable, node.tpl.php, 189
Page visibility settings section

block configuration page, 218
page-specific visibility settings, blocks, 205
page-user.tpl.php template file, 193
page.html file, 169
page.tpl.php file, 176, 185–188

calling drupal_add_js() from, 392
creating additional page templates, 193
defining new block regions, 200
how theme function works, 178
inserting templates automatically into,

176, 177
making custom page template, 185
multiple page templates, 193–194
region variables, 188
renaming page.html file as, 171
replacing static content with Drupal

variables, 174
variables for page templates, 185–188

pager, 95
pager parameter, taxonomy_select_nodes(),

348
pager_query(), 95
pages see web pages
pages column, blocks table, 207, 578
pages value, hook_block(), 209
pages.inc .pages.inc files, 483
page_arguments column, 588
page_cache_fastpath(), 9
page_callback column, 588
parameters

casting XML-RPC parameter types, 445
defining database parameters, 89
wildcards and parameter replacement,

77–79
parameters column, actions table, 574
parameters property, forms, 252
params tag, XML-RPC clients, 440

parent column, term_hierarchy table, 599
parent key, taxonomy_save_term(), 344
parent parameter, taxonomy_get_tree(), 345
parent term, taxonomy, 330, 332
parents property, elements, 255
parsing

XML-RPC getting time example, 441
partitioning, database, 544
pass column, users table, 601
path column, accesslog table, 574
pass component, user object, 116
password element, form API, 258
passwords

checking if passwords match, 258
password_confirm element, form API, 258
patch program, 501
patches, 500–501
path key, ahah property, 267
path module, 194

url_alias table, 601
path parameter, file_check_path(), 317
path parameter, file_create_url(), 322
path phase, bootstrap process, 10
Path Prefix Only setting, language

negotiation, 429
Path Prefix with Language Fallback setting,

431
path, URLs see URLs
pathauto module, 194
pathfinder.info file, 295
pathfinder.module file, 295
pathfinder_search_page(), 298
paths

aliases for, 60
making path aliases searchable,

295–298
autocomplete_path property, textfield,

258
base_path variable, page.tpl.php, 185
building paths from wildcards using

to_arg(), 79–80
callback mapping, 59

URLs to functions, 60
checking, 317
checking file location, 317
copying files into file system path, 315
custom paths for taxonomy terms, 338
Drupal path, 59, 63
file_create_path(), 316
finding file system path, 315
getting paths of items, 316
paths to themes, 185
secure coding, 470

!INDEX648

09898idxfinal 7/30/08 12:43 PM Page 648

taxonomy_term_path(), 338
user path redirection after form

submission, 253
PECL Memcache PHP extension, 535
Pending comments block, 213, 214
per-request caching with static variables, 360
performance

see also optimization
application profiling, 529
description, 527
filters improving, 280, 281
finding bottlenecks, 527–530

CPU usage, 527
I/O, 528
networks, 528
RAM on server, 527
RAM on web server, 529–530
web server CPU usage, 528–529

invoking user hook, 126
normal page caching, 353
operation code caching, 528
PHP optimizations, 528
storing data in user object, 118

Performance Monitor, Windows, 528
Performance page

bandwidth optimization, 536
perm hook see hook_perm()
permission table, user module, 593
permissions

see also access control
checking coding style programmatically,

487
controlling access to menus, 70
defining node-type specific permissions,

145
file permissions, 468
hook_node_grants(), 159
page callbacks and, 467
rate content permission, 398
saving information to database, 559
selecting different theme permission, 168
storing role-based permissions for blocks,

206
temporary tables, 112

pgsql_type
declaring specific column type with, 102

phased bootstrapping system, 353, 355
PHP

converting variables into JavaScript
equivalents, 399

Drupal’s technology stack, 2
executing, 278

finding CPU bottlenecks, 528–529
application profiling, 529
operation code caching, 528
PHP optimizations, 528

opening and closing tags, 477
overriding PHP session handling, 368
rawurlencode(), 460
secure coding of stand-alone PHP, 473–474
syslog(), 538

PHP code input format, 278
PHP comments, 483–486
PHP constants, 481, 485
PHP evaluator filter, 278, 301
php files

neutralizing dangerous files, 324
PHP filter

best practice, 386
experimenting with jQuery, 382
secure coding without, 476

PHP function
mapping external method to, 447

PHP opening tag
writing modules, 14

PHP theme engine, 168
PHP typecasting, 445
php.ini file

PHP settings for file uploads, 311–312
session-related settings, 369

PHPSESSID cookie, 365, 369, 374
PHPTAL theme engine, 166, 167, 168
PHPTemplate theme engine

building PHPTemplate theme, 169–176
creating .info file for theme, 172–176

using existing HTML and CSS files,
169–171

choosing templating languages, 166
creating additional page templates, 193
Drupal community, 165
passing node object to node template

files, 190
snippet of template file, 168
template file extension for, 168
template files, 469

phptemplate_blockaway_javascript(), 392
phptemplate_theme(), 195
picture column, users table, 601
picture component, user object, 117
picture variable, comment.tpl.php, 192
picture variable, node.tpl.php, 189, 190
placeholder prefixes
placeholders

d placeholder, 26
database query placeholders, 93
Drupal-specific SQL syntax, 92

!INDEX 649

09898idxfinal 7/30/08 12:43 PM Page 649

dynamic queries, 466
inserting values into strings, 408
s placeholder, 26
storing data in database table, 25
theme_placeholder(), 456

plain text
secure handling of user input, 454

planet weblog, 609
plural column, locales_target table, 586
plurals column, languages table, 585
plurals, translating, 408
plusone see voting widget, jQuery
plusone_get_total(), 399
plusone_get_vote(), 399
plusone_vote(), 396, 399, 403
plusone_widget(), 400, 401
poll module, 594
poll table, poll module, 594
poll_choices table, poll module, 594
portable object (.po) files, 419

installation profiles, 558
secure coding with protected files, 469

portable object template (.pot) files, 420, 421
creating, 421–423
name reflecting where found, 423

Porter-Stemmer module, 299, 300
position column, menu_router table, 589
POST data

copy of original POST data, 254
form API security, 474
validating forms, 227

post property, elements, 254
POST requests

Cross-Site Request Forgeries (CSRF), 468
jQuery, 396, 399, 403
method property, 253
XML-RPC clients, 440

PostgreSQL
allowing PostgreSQL connections, 111
database abstraction layers compared, 90
database connections, 89
native data types, 103

posts see nodes
post_max_size setting, 311
post_render property, forms, 227, 254
potx-cli.php/potx.inc files

creating .pot files for modules, 421
creating .pot files for web site, 423

prefix attribute
theming forms, 236

prefix column, languages table, 585
prefix property

elements, 256
item element, 267

markup element, 266
rendering forms, 227

prepare operation, hook_filter(), 285
prepare translation value, hook_nodeapi(),

156
prepare value, hook_nodeapi(), 155
preprocessing functions

execution order of, 184
how theme function works, 178
importance of style.css file in Drupal, 175
pairing, 198
setting variables, 178
template variables, 182, 183
template_preprocess(), 195, 196, 197

preprocessing phase
search HTML indexer, 299

presave operation, 39
presave value, hook_nodeapi(), 155
pre_render property, forms, 253

modules modifying forms before
rendering, 226

primary keys
creating tables, schema API, 98
database table reference, 573
dealing with time-consuming queries, 521

primary_field parameter,
hook_db_rewrite_sql(), 109

primary_links variable, page.tpl.php, 187
primary_table parameter,

hook_db_rewrite_sql(), 109
private data

keeping private with db_rewrite_sql(), 465
private files

private download mode, 309, 311
private functions

naming conventions, 480
process operation, hook_filter(), 285, 286
process property, 255

checkboxes element, 262
date element, 263
default value, 267
fieldset element, 265
hidden element, 263
password element, 258
radios element, 261
select element, 261
submit element, 265
textarea element, 259
textfield element, 258
TinyMCE module, 224
using post property, 254
weight element, 264

processed property, 256
processing, forms, 221–229

!INDEX650

09898idxfinal 7/30/08 12:43 PM Page 650

production environment
files necessary for, 471
writing security checking into scripts, 473

profile files
secure coding with protected files, 469
storing profiles, 547, 548

profile module
profile_fields table, 595
profile_values table, 595
providing user information categories, 129
user registration process, 123

profile task, 553
profile-finished task, 553
profile-install task, 552
profile-install-batch task, 552
profile-select task, 552
profiles

application profiling and debugging,
522–524

default profile, 547
installation profiles, 547–571
naming profile modules, 550
selecting profile, 548
storing profiles, 547–548

profiles directory
directories for modules, 551
how installation profiles work, 548

profiles folder, 7
profile_alter hook see hook_profile_alter()
profile_fields table, profile module, 595
profile_values table, profile module, 595
programmed property, forms, 252
progress bar (bar key), 269, 270
progress key, ahah property, 268, 269, 270
progress_message key, batch set, 565
project management

mixing SVN with CVS, 518
projects

creating project on drupal.org, 506
promote attribute, nodes, 139
promote column, node table, 590
properties, form API see form API properties
protected files

secure coding, 468–469
protocols

filter_xss() handling user input, 458
filter_xss_bad_protocol(), 460
stateless protocol, 365

pubcookie module, 550
public files, 310

download method, 309, 310
published/unpublished status, nodes, 139
punchline field

viewing fields with hook_view(), 151–155

!Q
queries

building taxonomy queries, 341
changing queries of other modules,

109–110
database bottlenecks, 532

caching queries manually, 534
database query placeholders, 93
displaying, 520
dynamic queries, 466–467
exposing queries to other modules,

108–110
performing, 92–93
retrieving results, 94–95
search queries, 291
secure coding with db_query(), 461–465
time-consuming queries, 520–521
using temporary tables in, 112

query cache
database bottlenecks, 532

query parameter, hook_db_rewrite_sql(), 109
query strings

dummy query string controlling caching,
175

!R
r parameter, checkout command, 492
radio buttons, radios element, 261
radios element, form API, 261
RAM

finding bottlenecks, 527, 529–530
rate content permission

building jQuery voting widget, 398
rawurlencode(), PHP, 460
README.txt file

writing modules, 13, 34
ready() function, documents

jQuery code, 383
realm column, node_access table, 590
realms, 160
rebuild key, form_state variable

form rebuilding, 244
multipage forms, 250
setting in submit functions, 245

rebuild menus link, devel block, 519
recipients column, contact table, 583
records

drupal_write_record(), 106
recurse parameter, file_scan_directory(), 322
recursive searching, 489
redirect key, form_state variable, 245

!INDEX 651

09898idxfinal 7/30/08 12:43 PM Page 651

redirect property, 253
redirecting users, 228
running additional installation tasks, 557
writing submit function, 245

redirection, batch API, 568
refresh column, aggregator_feed table, 575
region column, blocks table, 207, 577
region value, hook_block(), 209
region variable, box.tpl.php, 193
region variables, page.tpl.php, 188
regions

block placement, 203
controlling arrangement of block in, 209
defining, 206
defining new block regions, 200
determining relative position of blocks in,

207
name of region where block appears, 207
setting default region, 209
theming blocks, 208

register column, profile_fields table, 595
register value, hook_user(), 119
register_shutdown_function(), 306
registration

user registration process, 121–124
regular expressions

searching code with egrep, 488
regular index

creating tables, schema API, 98
reindex column, search_dataset table, 596
reinstall modules link, devel block, 520
related terms, taxonomy, 330
relations

term_relation table, taxonomy module,
599

relations column, vocabulary table, 603
relations key, taxonomy_save_term(), 344
relations key, taxonomy_save_vocabulary(),

342
releases

corresponding tag names, 515
creating release node, 517–518
relationship with tags/branches/tarballs,

496
tagging and creating, Drupal-5, 511
tags denoting, 511
using HEAD for Drupal-6 releases,

512–513
relevancy, searching, 299
remote server

XML-RPC getting time example, 441
remotehello.module, 446
removeClass method, jQuery, 385

rendering
jQuery code, 383
theme_render_template(), 197, 199

rendering forms, 226–227
drupal_render(), 226
modules modifying forms before, 226
post_render property, 254
pre_render property, 253
theming forms, 236

replace parameter
file_copy(), 316
file_save_data(), 315
file_save_upload(), 319

replication, database, 544
reply column, contact table, 583
Reports category, 29
repositories, CVS, 492, 502

adding module to, 504–505
checking out modules, 506
contributions repository, 502–504
core repository, 502
first commit of files to, 505–506

Repository files, 469
requests see HTTP requests
request_uri()

action property, 232, 253
required column, profile_fields table, 595
required column, vocabulary table, 603
required key, taxonomy_save_vocabulary(),

343
required property, elements, 254
required vocabularies, taxonomy, 328
requirements hook see hook_requirements()
requirements task, 552
reset operation, hook_search(), 294
reset parameter

clearing internal cache, 361
resizable property, textarea element, 259
resources, 605–610

code resources, 605–606
conferences, 609
contributors, 610
forums, 606
interest groups, 608
Internet Relay Chat (IRC), 608
mailing lists, 606–607
online handbooks, 606
user groups, 608
videocasts, 609
weblogs, 609

responses see HTTP responses
results

formatting search results, 295
getting limited range of query results, 94

!INDEX652

09898idxfinal 7/30/08 12:43 PM Page 652

getting multiple rows of query results, 94
getting single value as query result, 94
paging display of query results, 95

results array, context parameter, 567
return items

implementing menu hook, 87
return variable, theme functions, 178
revision control see version control
rich text

secure handling of user input, 455
right variable, page.tpl.php, 187
right-to-left language support, 426
robot exclusion standard, 8
robots

storing session information, 367
xmlrpc.php file security, 439

robots.php file, 8
robots.txt file, 472
role table, user module, 596
role-specific visibility settings, blocks, 205
roles

blocks_roles table, 206
roles column, filter_formats table, 584
roles component, user object, 117
Root files

secure coding with protected files, 469
root of form, properties for, 252–254
router_path column, menu_links table, 587
routing, 59

menu_router table, 60, 588
router and link building process, 62

rows
db_last_insert_id(), 101

rows property, textarea element, 259
RPC (remote procedure call)

methodName tag, 440
XML-RPC, 439

RSS feed links
feed_icons variable, page.tpl.php, 186

RSS feeds
automatic RSS feeds, 335
secure handling of user input, 459

rss item value, hook_nodeapi(), 156
rsync program, 543
rtl.css suffixed files, 483

right-to-left language support, 426
run operation, 39
runtime column, poll table, 594

!S
s placeholder

database query placeholders, 93
storing data in database table, 26

sampling frequency
configuring throttle module, 541

sandbox area, context parameter
batch sets, 567

save value, hook_block(), 210, 212
saving data in files, 315
scalability, 527

early page cache phase, 9
memcached, 535

schema API, 90, 95–105
changing schemas with

hook_schema_alter(), 105
creating tables, 96–98
declaring specific column type, 102–103
deleting tables on uninstall, 104
field type mapping, schema to database,

99–102
functions for dealing with schemas, 104
maintaining tables, 103–104
using module .install files, 96
using schema module, 98–99

schema hook see hook_schema()
schema module, 98–99
schema versions

modules, 104
updating database schema, 8

schema_alter hook see hook_schema_alter
schema_version column, system table, 598
score column, search_index table, 596
scripts

writing security checking into, 474
scripts directory

checking coding style programmatically,
487–488

scripts folder, 7
scripts variable, page.tpl.php, 187
search API

default search form, 292
search engines

Drupal community building custom, 291
search forms, search API

adding to search form, 293–298
advanced search form, 292
default search form, 292
hook_search(), 293–294
hook_search_page(), 295
making path aliases searchable, 295–298

search hook see hook_search()
search HTML indexer, 299–308

adding metadata to nodes, 302–303
dynamic content, 301
filtered output of nodes, 301
hooking into, 302–308
indexing non-node content, 302, 303–308

!INDEX 653

09898idxfinal 7/30/08 12:43 PM Page 653

internal links, 302
numerical data with punctuation, 301
preprocessing phase, 299
tokens, 300
when to use, 299

search index, resetting, 294
search module

search_dataset table, 596
search_index table, 596
search_node_links table, 597
search_total table, 597

Search now page, Translate interface screen,
417

search operation, hook_search(), 294, 297
search page, building custom, 291–298

adding to search form, 293–298
advanced search form, 292
default search form, 292
hook_search(), 293–294
hook_search_page(), 295
making path aliases searchable, 295–298

Search page, Translate interface screen, 416
search queries, 291
search relevancy, 299
search result value, hook_nodeapi(), 156
search results

formatting with hook_search_page(), 295
search_box variable, page.tpl.php, 187
search_dataset table, search module, 596
search_index table, search module, 596
search_index(), 306
search_node_links table, search module, 597
search_page hook see hook_search_page()
search_total table, search module, 597
searching

advanced search options, 293
building custom search page, 291–298
default user interface, 292
node searching, 291
recursive searching, 489
searching code with egrep, 488–489
user_search(), 292

secondary_links variable, page.tpl.php, 187
secure coding

Ajax, 474
cron.php file, 472
Cross-Site Request Forgeries (CSRF), 468
disabling testing code, 474
dynamic queries, 466–467
encoding mail headers, 471–472
eval function, without, 476
files, 468–471

file permissions, 468
file uploads, 469

filenames, 470
paths, 470
protected files, 468–469

form API, 474–475
introduction, 453
permissions and page callbacks, 467
preventing XSS attacks, 458–459
private data with db_rewrite_sql(), 465
queries with db_query(), 461–465
SSL support, 472
stand-alone PHP, 473–474
superuser account, 475
URLs, 455, 460
user input, 453–460

check_plain(), 455–457
data types, 453–455
filter_xss(), 458–459
filter_xss_admin(), 459
HTML text, 455
plain text, 454
rich text, 455
secure conversions between text types,

454
t() function, 455–457

writing security checking into scripts, 474
security

controlling access to menus, 70
enabling PHP code input format, 278
executing PHP, 278
file download security, 309

private files, 309, 311
public files, 309, 310

files, 468–471
formatting node objects directly, 190
protecting against malicious HTML, 288
session hijacking, 369
setting form tokens, 223
URL based session management, 369
using CVS-aware Drupal, 491
xmlrpc.php file, 439

security advisories, 605
@see construct, Doxygen, 486
select different theme permission, 168
select element, form API, 259
SELECT statement, SQL, 93
selected column, contact table, 583
selector key, ahah property, 269
Send e-mail action

examining context, 51
serial data type, 101
serialize(), PHP

storing cache data, 350

!INDEX654

09898idxfinal 7/30/08 12:43 PM Page 654

serialized column
cache table, 350, 351, 579
cache_xyx tables, 580, 581, 582

server architectures
multiple database server architecture, 544
separate database server architecture, 542

with web server cluster, 542–544
single server architecture, 542

servers
see also web servers
XML-RPC servers, 445–448

serving requests, 8–10
bootstrap process, 9–10
entry point for, 7
web server’s role, 8

session column, sessions table, 367, 370, 597
session component, user object, 117
session functions

sess_ prefix for, 368
session handling

initialize session handling phase, 9
overriding PHP session handling, 368, 369

SESSION superglobal
displaying contents of, 520
multipage forms, 252
storing data in, 371, 374

sessions
auto_start functionality, 368
bootstrap.inc file, 368
changing name of, 373
changing time before cookie expires, 373
cookie-based session management, 369
cookies and session-related settings, 369
cookie_domain value, 373
cookie_lifetime value, 373
creating unique session names for sites,

374
deploying web sites on multiple

subdomains, 373
description, 365
hash_function directive, 370
htaccess file, 368
instantiating user object, 372
modifying session-related settings,

367–369
name value, 373
PHPSESSID cookie, 365
session conversations, 372–373
session hijacking, 369
session life cycle, 370–371
session viewer link, devel block, 520
sessions_use_only_cookies directive, 369
session_inc variable, 369
session_write_interval variable, 371

settings.php file, 368
storage of session information, 369–370
storing data in, 374
tracking browser visiting web site, 365
URL based session management, 369
uses of, 366–367
use_trans_sid value, 369

sessions table, 369–370, 597
components for user object, 117
garbage collection, 367
length of time rows remain in table, 367
pruning for optimization, 537
removing session entries, 539
session life cycle, 370
storing session information, 367

session_type column, openid_association
table, 593

sess_read(), 369, 370
sess_write(), 370, 371
sess_xyz functions

overriding PHP session handling, 368, 369
setter functions

variable_set(), 18
settings see administrative settings
settings operation, hook_filter(), 285
settings.php file

cleanly modifying core code, 499
connecting to multiple databases, 111
cookie_lifetime, 373
creating unique session names for sites,

374
database connections, 89
default configuration file, 7
directories for modules, 551
gc_maxlifetime setting, 367
initialize configuration phase, 9
optimizing sessions table, 537
secure handling of user input, 458
session-related settings, 368
string overrides in, 410–412

severity column, watchdog table, 604
severity levels

error reporting, 537
sh files

secure coding with protected files, 469
show_blocks variable, page.tpl.php, 188
show_messages variable, page.tpl.php, 188
sid column, sessions table, 367, 370
sid component, user object, 117
sidebars, HTML for, 187
signature column, users table, 601
signature component, user object, 117
signature variable, comment.tpl.php, 192
single server architecture, 542

!INDEX 655

09898idxfinal 7/30/08 12:43 PM Page 655

site administrator
descriptions of block for, 209
presenting settings form to user, 29–31
validating user-submitted settings, 31–32

Site building category, 29
Site configuration category, 28, 29
sites see web sites
sites directory, 7, 8

configuring with multiple folders, 92
directories for modules, 551
files for production environment, 472
storing modules, 13

site_name variable, page.tpl.php, 188
site_slogan variable, page.tpl.php, 188
size property

file element, 264
password element, 258
textfield element, 258

slideDown method, jQuery, 391
Smarty theme engine, 167, 168
sort column, users table, 601
sort component, user object, 116
source column, locales_source table, 586
source parameter, file_copy(), 315
source parameter, file_save_upload(), 318
special characters

encoding into %0x, 454
encoding into HTML entities, 454

splitting words
search HTML indexer, 300

SQL
creating annotate table, 22
dealing with time-consuming queries, 521
Drupal-specific syntax, 92
dynamic queries, secure coding of, 466
enabling MySQL query cache, 532
secure coding with protected files, 469
tablesort_sql(), 298

SQL injection attacks
Drupal-specific SQL syntax, 93
secure coding with db_query(), 461, 463
storing data in database table, 26

src property, image_button element, 265
SSL support, 472
st() function

recognizing installer translations, 424
storing profiles, 548, 558

standards
coding standards, 477–483

stateless protocol, 365
static variables

per-request caching with, 360
statistics

node_comment_statistics table, 591

statistics module
accesslog table, 573
node_counter table, 591

statistics_exit(), 355
status attribute, nodes, 139
status column

access table, 573
blocks table, 207, 577
comments table, 582
files table, 314, 583
statusnode table, 590
system table, 598
users table, 601

status command see cvs status command
status component, user object, 117
status operation, hook_search(), 294
status parameter, file_set_status(), 320
status value, hook_block(), 209
status variable, comment.tpl.php, 193
stemming words

search HTML indexer, 300
sticky attribute, nodes, 140
sticky column, node table, 590
Sticky Tag field

checking version of HEAD, 509
creating Drupal-5 compatible branch, 511
using HEAD for Drupal-6 releases, 512

storage key, form_state variable, 250, 252
storing data in database table, 22–27
storing settings, 32–34

retrieving values with variable_get, 34
using variables table, 33

string placeholder, 93
string replacement

effect of placeholder prefixes on, 457
string translation(), 18
stringoverrides module, 412
strings

adding custom language for custom
strings, 413

computing hash value of string of text, 280
exporting translations, 418–420
inserting values into placeholders, 408
replacing built-in strings with custom

strings, 410–420
replacing strings with locale module,

412–418
s placeholder, 26
search interface showing translatable

strings, 416
string overrides in settings.php, 410–412
string translation function, 18

!INDEX656

09898idxfinal 7/30/08 12:43 PM Page 656

translating strings, 71
with t(), 408–409

translation interface, 407
style attribute, HTML, 458
style.css file, 175
styles variable, page.tpl.php, 175, 188
submissions, forms, 253
submit element, form API, 265
submit functions

call order of, 240
configurable actions, 44, 46
looking for, 225
multipage forms, 250
passing data with form_state variable, 243
passing data with form_set_value(), 242
specifying form submit functions, 239
submitting forms programmatically, 247
writing, 245

submit handler
multipage forms, 251, 252
passing data with form_set_value(), 243
splitting up forms into fieldsets, 235

submit property, 225, 265, 228
submit value, hook_user(), 119
submitted variable, comment.tpl.php, 193
submitted variable, node.tpl.php, 190
suffix attribute, 236
suffix property, 256

item element, 267
markup element, 266
rendering forms, 227

suggestion hierarchy, block.tpl.php file, 191
superuser, 3

access control, 145
protecting superuser account, 475

support
drupal-support channel, 608

support mailing list, 607
SVN (Subversion)

mixing with CVS for project management,
518

switch statement, 478, 479
annotate_nodeapi(), 20

switching user, devel module, 521
synchronization

database server and web server, 543–544
rsync program, 543
using shared, mounted file system, 543

synonym parameter
taxonomy_get_synonym_root(), 347

synonyms
retrieving information about term

synonyms, 347
taxonomy, 327
term_synonym table, 336, 600

synonyms key, taxonomy_save_term(), 345
syslog() function, PHP, 538
syslog module, 538
system module, 485
system table, 598
system_check_directory(), 226
system_cron(), 320
system_settings_form(), 18

form using, 294
presenting settings form to user, 30

system_theme_data(), 560

!T
t() function, 18

! placeholder prefix, 456
% placeholder prefix, 456
@ placeholder prefix, 456
availability to installer at runtime, 424
defining title arguments key in menu

items, 73
disabling checks in, 456
effect of placeholder prefixes, 457
inserting values into placeholders, 408
just-in-time translation, 415
locale-specific part of, 408
location of, 437
running implicitly, 408
secure handling of user input, 455–457
storing profiles, 548
translating strings with, 71, 408–409

table names
Drupal-specific SQL syntax, 92

table parameter
cache_clear_all(), 362
cache_get(), 361
cache_set(), 360

table types, 534
tables

see also database table reference
cache table, 350–351
cache_form table, 351
changing table type, 534–535
common values of primary_table aliases,

109
creating annotations table, 24
creating database tables, 23
creating tables, schema API, 96–98
current table definitions, 573
database bottlenecks, 534

!INDEX 657

09898idxfinal 7/30/08 12:43 PM Page 657

db_lock_tables(), 535
db_unlock_tables(), 535
deleting tables on uninstall, 105
maintaining, 103–104
pruning sessions table for optimization,

537
reasons for locking, 534
referring to database tables, 25
storing data in, 22–27
taxonomy, 336
using module .install files, 96
using temporary tables in queries, 112

tablesort_sql(), 298
Table_locks_immediate variable, 534, 535
Table_locks_waited variable, 534, 535
tabs

callbacks displayed as, 84
displaying menu items as, 84–86
line indentation, 477
local tasks and tabbed menus, 86
mistakes implementing menu hook, 87
rendering tabs, 84

tabs variable, page.tpl.php, 188
tab_parent column, menu_router table, 589
tab_root column, menu_router table, 589
tag command see cvs tag command
Tag files, 469
tagging, taxonomy, 327, 328
tags, 494

check/clean HTML using tag whitelist, 454
checking out Drupal using tag name, 496
corresponding release/version numbers,

515
CVS tags, 484
description, 511
hyphens in branch names, 515
opening and closing tags, PHP, 477
relationship between tag name/module

version, 511
relationship between tags/branches, 509

tags/branches/releases/tarballs, 496
tagging and creating releases, 511

tags column, vocabulary table, 603
tags key, taxonomy_save_vocabulary(), 342
tags, taxonomy see terms, taxonomy system
tarballs, 496
targeting objects, 377
Task Manager, Windows

finding bottlenecks, 527
listing processes, 530

tasks
defining additional installation tasks,

551–553
executing periodic tasks, 7

running additional installation tasks,
553–569

creating initial node types, 559
saving information to database, 559
setting Drupal variables, 559
setting themes during installation, 560
submitting forms programmatically,

560
using batch API, 560–570

taxonomy, 327–333
see also terms, taxonomy system;

vocabularies
additional resources, 348
building taxonomy queries, 341
finding terms in node object, 340
kinds of, 331–333
storing, 335–336
tables, 336

taxonomy functions, 342–348
adding/modifying terms, 344
adding/modifying vocabularies, 342
deleting terms, 345
deleting vocabularies, 343
finding nodes with certain terms, 347
retrieving term hierarchy info., 345
retrieving term synonyms info., 347
retrieving terms info., 343
retrieving vocabularies info., 342

taxonomy hook see hook_taxonomy()
taxonomy module, 327

term_data table, 599
term_hierarchy table, 599
term_node table, 599
term_relation table, 599
term_synonym table, 600
trigger_assignments table, 600
vocabulary table, 603
vocabulary_node_types table, 603

taxonomy support, 327
taxonomy variable, node.tpl.php, 189
taxonomy_del_term(), 345
taxonomy_del_vocabulary(), 343
taxonomy_get_children(), 345
taxonomy_get_parents(), 345
taxonomy_get_parents_all(), 345
taxonomy_get_synonyms(), 347
taxonomy_get_synonym_root(), 347
taxonomy_get_term(), 343
taxonomy_get_term_by_name(), 343
taxonomy_get_tree(), 345
taxonomy_get_vocabularies(), 342
taxonomy_node_get_terms(), 340, 344
taxonomy_node_get_terms_by_vocabulary(),

344

!INDEX658

09898idxfinal 7/30/08 12:43 PM Page 658

taxonomy_render_nodes(), 348
taxonomy_save_term(), 344
taxonomy_save_vocabulary(), 342
taxonomy_select_nodes(), 341, 347
taxonomy_term_path(), 338
taxonomy_vocabulary_load(), 342
teaser column, node_revisions table, 592
teaser parameter, hook_view(), 152
teaser parameter, node_view(), 156
teaser variable, node.tpl.php, 190
teaser view, nodes in, 189
teasers, nodes

changes to default length of, 352
technology stack, 1–2
template engines

secure coding with protected files, 469
themes folder, 7

template files, 176–194
adding/manipulating template variables,

182–184
block.tpl.php, 176, 177, 190–192
box.tpl.php, 193
comment.tpl.php, 192–193
defining new block regions, 200
description, 167
drupal_discover_template(), 199
inserting automatically into page.tpl.php,

176, 177
making node properties available to, 199
multiple page templates, 193–194
naming conventions, 176
node.tpl.php, 176, 177, 189–190
other .tpl.php files, 193
overriding, 392
overriding themable items, 179–182
page.tpl.php, 176, 185–188
phptemplate_blockaway_javascript(), 392
portable object (.pot), 420
secure coding with protected files, 469
selecting as template for node, 199
suggestion hierarchy, 191
utilizing instead of theme functions, 196
variables for all templates, 185
viewing fields, Drupal-5, 153

template preprocess function, 195, 196
template.php file

adding/manipulating template variables,
183

overridable JavaScript, 391
phptemplate_blockaway_javascript(), 392
purpose of, 181

template_files variable, page.tpl.php, 188
template_preprocess(), 197
template_preprocess_node(), 198

templating approaches, 5
templating languages, 165–166

file extensions for, 168
temporary (temp) directory, 323
temporary files

location of directory, 311
temporary tables, 112
term parameter, taxonomy_save_term(), 344
terms variable, node.tpl.php, 190
terms, taxonomy system, 327–328

see also taxonomy; vocabularies
abstraction, 327
adding/modifying, 344
automatic RSS feeds, 335
collection of, 328
deleting, 345
finding nodes with, 347
finding in node object, 340
flat list of, 331
form for adding terms, 330
free tagging, 328
hierarchical list of, 331–332
HTML containing, 190
loading into nodes, 340
multiple hierarchical list of, 332–333
parent term, 330
providing custom paths for, 338
related terms, 330
restricting node access based on, 160
retrieving term hierarchy info., 345
retrieving term synonyms info., 347
retrieving terms info., 343
single vs. multiple terms, 329
synonyms, 327
taxonomy_node_get_terms(), 340
using AND and OR in URLs, 333
viewing content by, 333–335
weights, 331

term_access realm, 160
term_data table, taxonomy, 336, 599
term_hierarchy table, taxonomy, 336, 599
term_node table, taxonomy, 336, 341, 599
term_relation table, taxonomy, 336, 599
term_synonym table, taxonomy, 336, 347,

600
testing and developing code, 519–522
text

computing hash value of string of, 280
filters performing text manipulations, 285
filters transforming, 275
HTML text, 455
plain text, 454
rich text, 455

!INDEX 659

09898idxfinal 7/30/08 12:43 PM Page 659

running through filters, 454
secure conversions between types, 454

text data type, 100
text filtering system, life cycle, 281
text parameter

hook_filter(), 284, 285
taxonomy_get_term_by_name(), 343

textarea element, form API, 259
textfield element, form API, 257
textgroup column, locales_source table, 586
theme column, blocks table, 207, 577
theme column, users table, 601
theme component, user object, 116
theme developer module, 200
theme engines, 165–166

choosing template language, 166
directory structures, 166
installing, 165
PHPTemplate theme engine, 165, 169–176

theme files
secure coding with protected files, 469

theme functions, 177–179, 196–199
bringing into scope, 195
building jQuery voting widget, 400
checking if current theme has overridden

any, 181
flow of execution for call to, 179
finding theme function for form, 226
overridable JavaScript, 391
purpose of, 180
rendering forms, 227
telling Drupal which to use, 238
using, 237
utilizing template file instead of, 196
wrapping theme_breadcrumb(), 180

theme hook see hook_theme()
theme layer, .info file

defining regions, 206
theme property, elements, 256
theme property, forms, 238
theme registry, 194–196

building jQuery voting widget, 400
theme system see themes
theme system components

templating languages, 165–166
theme engines, 165–166
themes, 167–168

themes, 167–168
absolute path to directory location of, 186
adding JavaScript via theme’s .info file, 387
advanced Drupal theming, 194
building PHPTemplate theme, 169–176
components, 165–168
creating, 169

creating .info file for, 172–176
using existing HTML and CSS files,

169–171
defining new block regions, 200
description and introduction, 5, 165
downloading preconstructed themes, 167
Drupal theme and plain HTML sites

compared, 167
drupal-themes channel, 608
easy theming of node listings, 185
enable theme developer link, devel block,

519
enabling in administrative interface, 173
enabling multiple themes, 168
finding theme function for form, 226
hook_theme(), 152
installing, 168
list of themable items, 177
making modules and themes throttle-

aware, 541
naming conventions for themable items,

179, 180
overriding themable items, 179–182

with template files, 181–182
with theme functions, 180–181

paths to, 185
relative path to directory location of, 186
setting during installation, 560
template files, 176–194
template variables, adding/manipulating,

182–184
templating approaches, 5
theme layer creating HTML, 5
theming blocks, 208
theming forms, 200, 236–238

markup attribute, 237
prefix attribute, 236
suffix attribute, 236
using theme function, 237
which theme function to use, 238

updating, 606
themes folder, 7, 169

files for production environment, 472
themes mailing list, 607
theme_blocks(), 208
theme_breadcrumb(), 180, 181, 195
theme_default variable, 560
theme_links(), 189
theme_mark(), 192
theme_node(), 178
theme_placeholder(), 456
theme_plusone_widget(), 401, 402
theme_render_template(), 197, 199
theme_textfield(), 227

!INDEX660

09898idxfinal 7/30/08 12:43 PM Page 660

theme_user_profile(), 119
theming data, 11
thread column, comments table, 582
threshold column, users table, 601
threshold component, user object, 116
thresholds

configuring throttle module, 540
throbber icon, type key

progress key, ahah property, 269
throttle column, blocks table, 207, 577
throttle column, system table, 598
throttle module, 539, 540

controlling visibility of blocks, 203
making modules/themes throttle-aware,

541
setting sampling frequency, 541
setting thresholds, 540
tracking blocks to be throttled, 207

throttle_exit(), 355
throttling, 539

automatic throttling, optimization,
539–541

configuring throttle module, 540, 541
making modules and themes throttle-

aware, 541
tid key, taxonomy_save_term(), 345
tid parameter

taxonomy_del_term(), 345
taxonomy_get_children(), 345
taxonomy_get_parents(), 345
taxonomy_get_parents_all(), 345
taxonomy_get_synonyms(), 347
taxonomy_get_term(), 343

tids parameter, taxonomy_select_nodes(),
347

time
datetime data type, 102

time.xmlrpc.com server, 440
timer column, accesslog table, 574
timestamp column, files table, 314
timestamp column, sessions table, 367, 370,

371
timestamp component, user object, 117
timestamps, nodes, 139
timezone column, users table, 601
timezone component, user object, 117
TinyMCE module, 224
tips

hook_filter_tips function, 287–288
title arguments, 71, 73–74
title arguments key, 73, 74
title attribute, nodes, 138
title callback key, 71
title callbacks, 71–73

title column, blocks table, 207, 578
title column, menu_router table, 589
title key

batch set, 565
defining in menu item, 64–65, 71

title property, elements, 256
title property, forms, 18
title variable

box.tpl.php, 193
comment.tpl.php, 193
node.tpl.php, 190
page.tpl.php, 188

title value, hook_block(), 209
title, menu item, 64
title, node, 137
title_arguments column, menu_router table,

589
title_callback column, menu_router table,

589
title_label column, node_type table, 592
title_label value, node_info() hook, 143
tnid attribute, nodes, 140
tnid column, node table, 437
toggleClass method, jQuery, 385
token column, batch table, 577
token property, forms, 253
token validation, forms, 228
tokens

assigning token scores to, 300
indexing HTML and, 301

drupal_get_token(), 468
drupal_valid_token(), 468
setting form tokens, 223

tokenization, 299
top program, UNIX

finding bottlenecks, 527
listing processes, 530

TortoiseCVS, 490
installing CVS client, 491

totalcount column, node_counter table, 591
to_arg(), 79–80
to_arg_functions column, menu_router

table, 588
tpl.php files, 469, 483
translate attribute, nodes, 140
translate column, node table, 437, 590
translate function see t() function
Translate interface screen

Extract page, 423
Overview page, 415
Search now page, 417
Search page, 416

Translate page, Translations of screen, 434,
436

!INDEX 661

09898idxfinal 7/30/08 12:43 PM Page 661

translation column, locales_target table, 586
translation interface, 407–420

replacing built-in strings with custom
strings, 410–420

strings, 407
translating strings with t(), 408–409

translation template extractor module,
421–423

translation.admin.inc file, 437
translation.module file, 437
translations

see also languages; localization
caution with mirrored directory structure,

424
content translation, 432–437
denoting outdated translations, 436, 437
exporting, 418–420

portable object (.po) files, 419
portable object templates (.pot) files,

420
files related to, 437
installing language translations, 424–425
installing translation on existing site, 425
just-in-time translation, 415
language translation, 412
Localization client module, 418
multilingual support with, 433–437
providing translation overview, 437
recognizing installer translations, 424
replacing built-in strings with custom

strings, 410–420
replacing strings with locale module,

412–418
search interface showing translatable

strings, 416
setting up translation at install time, 424
starting new translation, 420–423
string overrides in settings.php, 410–412
translating plurals, 408
translating strings, 71

with t(), 408–409
volunteering to assist with, 420

translations mailing list, 607
Translations of screen

Translate page, 434, 436
tree property, elements, 254
tree property, forms, 235

checkboxes element, 262
trigger module, 37

actions table, 574
actions_aid table, 574
establishing context, 51
how context prepared, 47–49
object parameter, actions, 47

triggers, 35–37
actions supporting any, 42
adding to existing hooks, 56–58
changing triggers supported by action, 41
creating actions, 39
defining with hook_hook_info(), 54–56
relation with hooks/operations, 39
trigger assignment interface, 38
trigger user interface, 41

trigger_assignments table, taxonomy
module, 600

type attribute, nodes, 138
type column

access table, 573
actions table, 574
menu_router table, 589
node table, 589
node_type table, 592
profile_fields table, 595
search_dataset table, 596
search_index table, 596
search_node_links table, 597
system table, 598
vocabulary_node_types table, 603
watchdog table, 604

type flags/keys
beep_action_info(), 40
menu item definition, 67
menu item type flags, 82, 83
MENU_NORMAL_ITEM type, 82
progress key, ahah property, 269

type parameter,
taxonomy_get_vocabularies(), 342

type property, elements, 255
defaulting to markup, 237

type property, forms, 17
default if no type property, 266
rendering forms, 227

typecasting, PHP
casting XML-RPC parameter types, 445

typed variables
secure handling of user input, 454

types
db_type_map(), 99
declaring specific column type, 102–103
field type mapping, schema to database,

99–102
node_type table, node module, 592

!U
u option, cvs diff command, 499
uid attribute, nodes, 139
uid column, files table, 314
uid column, sessions table, 370, 367

!INDEX662

09898idxfinal 7/30/08 12:43 PM Page 662

uid column, users table, 374
uid component, user object, 116

testing if user is logged in, 118
uid parameter, file_space_used(), 325
underscore(_) character

global variable names, 482
module names, 482
prefixing function names, 480

unicode.inc file, 460
unified diffs, 499
uninstall hook see hook_uninstall()
unique index

creating tables, schema API, 98
university_profile_modules(), 550
university_profile_tasks(), 553, 554
Unix timestamp value

expire column, cache table, 351
update command see cvs update command
update functions

maintaining tables, 104
update hook see hook_update()
update index value, hook_nodeapi(), 156
update operation, 39
UPDATE statement, SQL, 93
update value, hook_nodeapi(), 156
update value, hook_user(), 119
update.php file, 8

session usage, 367
updated column, menu_links table, 588
updates, 8

cache_update table, 582
drupal_write_record(), 106

update_index hook see hook_update_index()
upload module

files table, 583
handling media files, 312

upload table, 314, 600
uploading files, 318–321
upload_max_filesize setting, 312
upload_space_used(), 325
URL filter, 277

running before HTML filter, 278
when to use filters, 280

url key
progress key, ahah property, 269

URLs
assigning path to URL query parameter, 8
clean URLs, 2, 8, 9, 59
converting to clickable links, 285
drupal_urlencode(), 460
establishing base URL, 9
getting URLs for files, 321–322
mapping to functions, 59–65
mapping with functions, 10

node_url variable, node.tpl.php, 189
path, 59
PHPSESSID appearing in query string, 369
public and private file security modes, 309
secure coding, 460

with db_query(), 463, 464
secure handling of user input, 455
separating base URL from the path, 8
syntax checks not ensuring safety of, 460
URL based session management, 369
using AND and OR in URLs, 333
valid_url(), 460

url_alias table, 296, 601
user account

reacting to operations on, 118
user groups, 608
user hook see hook_user()
user input, secure coding, 453–460

check_plain function, 455–457
data types, 453–455
filter_xss function, 458–459
filter_xss_admin(), 459
preventing XSS attacks, 458–459
t() function, 455–457

user interface translation see translation
interface

User management category, 29
user module

access table, 573
authmap table, 576
how trigger module prepares context, 47
permission table, 593
role table, 596
users table, 601

user object, 115–118
account parameter, hook_user() and, 119
adding data at load time, 126–129
anonymous users, 115
components of, 116
description, 115, 119
initialize session handling phase, 9
modifying, 118
session life cycle, 370
storing data, 374

for anonymous users, 374
in user object, 117

testing if user is logged in, 118
using sessions to instantiate, 372

user object, hook_user(), 119
user profile page

implementing hook_user(‘view’), 120
removing blog profile item from, 121

user registration form, 123
user variable, template files, 185

!INDEX 663

09898idxfinal 7/30/08 12:43 PM Page 663

user/username searches, 292
user-specific visibility settings, blocks, 205
userapproval module, 217
UserLand Software, 441
users

see also anonymous users
adding pending users block, 217
categories, 119
displaying blocks to logged-in users, 218
examples of Drupal events, 35
external authentication, 130–134
external logins, 129–134
hook_user function, 118–121
identifying current user, 115
login history tracking user logins, 129
login process, 124–129
nodes compared, 140
optimizing authenticated user traffic, 537
presenting settings form to, 29–31
profile module, 123
providing user information categories, 129
redirecting, 228
session conversations, 372–373
switching, 521
testing if user is logged in, 118
user registration process, 121–124
users_roles table, 602
validating user-submitted settings, 31–32

users table, 601
components for user object, 116
deleting all rows from, 371
external authentication, 134
no user matching session user ID, 371
storing data in user object, 117
user login process, 124

users_roles table, 602
user_access(), 71
user_authenticate_finalize(), 369
user_autocomplete(), 258
user_block_seconds_online variable, 540
user_external_login_register(), 134
user_is_anonymous(), 118
user_is_logged_in(), 118
user_limit parameter, file_validate_size(), 321
user_load(), 126
user_login_authenticate_validate(), 132
user_login_final_validate(), 132
user_login_name_validate(), 132
user_logout(), 80
user_profile_item type

understanding hook_user(‘view’), 120
user_register(), 223
user_save(), 374, 117
user_search(), 292

user_validate_picture(), 319
use_trans_sid value, sessions, 369

!V
validate hook see hook_validate()
validate property

looking for form validation function, 225
submit element, 265

validate value, hook_nodeapi(), 155
validate value, hook_user(), 119
validation

automatic parameter type validation,
447–448

built-in validation, 228
element-specific validation, 228
file_validate_image_resolution(), 319
form API security, 474
highlighting form elements that fail, 240
HTML for validation errors, 187
looking for form validation function, 225
token validation, 228
user login process, 124
user_login_authenticate_validate(), 132
user_login_final_validate(), 132
user_login_name_validate(), 132
user_validate_picture(), 319
validating fields, 149
validating forms, 227–228
validating user-submitted settings, 31–32
validation callbacks, 228

validation functions
call order of validation/submit functions,

240
configurable actions, 44, 46
element-specific validation, 243–244
file_save_upload(), 320–321
form_set_error(), 241
passing data with form_state variable, 243
passing data with form_set_value(),

242–243
passing data with, 241–243
specifying, 239
writing, 240–244

validator functions
validation callbacks, 228

validators parameter, file_save_upload(), 319
valid_url(), 460
value element, form API, 256, 262

form API security, 474
value property, submit element, 265
values

profile_values table, profile module, 595
storing and retrieving values, 18

varchar data type, 99

!INDEX664

09898idxfinal 7/30/08 12:43 PM Page 664

variable editor link, devel block, 520
variable table, 602
variables

caching, 352
global variables, 482
setting Drupal variables, 559
typed variables, 454
variable editor link, 520

variables column, watchdog table, 604
variables table, 33

caching, 351, 352
variables variable, 184, 199
variable_del(), 554
variable_get()

adding data entry form, 20
file_directory_path() as wrapper for, 315
retrieving settings from variables table, 33
retrieving stored values with, 34
settings operation, hook_filter(), 285
storing and caching variables, 352
storing and retrieving values, 18

variable_set()
building blocks, 213
creating initial node types, 559
running additional installation tasks, 554
setting Drupal variables, 559
settings operation, hook_filter(), 285
storing and caching variables, 352
storing and retrieving values, 18
storing settings in variables table, 33

var_dump(), 428
printing out debug messages, 522

version column, locales_source table, 586
version control, 490–500

see also CVS (Concurrent Versions System)
mixing SVN with CVS, 518
new versions creating branch within CVS,

493
node_revisions table, node module, 591
tags and branches, 493–497

version numbers
corresponding tag names, 515

versions, schema, 104
vid attribute, nodes, 138

node revisions, 341
vid column, upload table, 314
vid key

taxonomy_save_term(), 344
taxonomy_save_vocabulary(), 343

vid parameter
only property passed from node, 344
taxonomy_del_vocabulary(), 343
taxonomy_get_children(), 345

taxonomy_get_tree(), 345
taxonomy_vocabulary_load(), 342

video files, 313
videocasts, 609
view hook see hook_view()
view operation, 39
view value

hook_access(), 146
hook_block(), 210, 213, 216
hook_nodeapi(), 156
hook_user(), 119–121

viewing preferences
session usage, 367

vim editor, 505
visibility column

blocks table, 207, 577
profile_fields table, 595

visibility settings, blocks, 205
vmstat tool, Unix

finding bottlenecks, 528
vocabularies, 328–331

see also taxonomy; terms, taxonomy
system

adding/modifying, 342
associating with node types, 328
controlled vocabularies, 328
deleting, 343
form for adding, 329
free tagging, 328
keeping informed of changes, 339–340
module-based vocabularies, 337–340
required vocabularies, 328
retrieving information about, 342

term hierarchy, 345
specifying depth for hierarchical, 334–335

vocabulary parameter,
taxonomy_save_vocabulary(), 342

vocabulary table, taxonomy, 336, 603
module-based vocabularies, 337

vocabulary_node_types table, taxonomy,
336, 603

votes
poll_votes table, 594

voting widget, jQuery
building, 393–405
comparison with/without CSS, 395

!W
watchdog function

error reporting severity levels, 537
optimizing error reporting logs, 538
running t() implicitly, 408

!INDEX 665

09898idxfinal 7/30/08 12:43 PM Page 665

watchdog table, 604
removing watchdog entries, 539

web browsers see browsers
web crawlers

storing session information, 367
using sessions against, 370, 371

web pages
annotation form on, 22
cache_page table, 351, 581
caching, 352–358
controlling pieces of content in, 189
database bottlenecks, 533
early page cache phase, 9
enforcing IDs unique on, 253
entering notes about, 19
functions overriding parts of, 5
investigating page serving performance,

528
late page cache phase, 10
page caching for optimization, 536

web server cluster
separate database server architecture,

542–544
file uploads and synchronization,

543–544
load balancing, 542

web server optimization
Apache web server, 530–531
finding bottlenecks

CPU usage, 527
CPU usage, 528–529
RAM, 527
RAM on web server, 529–530

lighttpd web server, 531
web servers

see also server architectures; servers
Drupal’s technology stack, 2
serving requests, 8

web services
XML-RPC getting state name example, 441

web sites
adding content to, 275

allowing users to add content to, 140
blocks, 203–219
caching, 349
creating .pot files for entire site, 423
customizing/overriding, 5
deploying on multiple subdomains, 373
Drupal theme and plain HTML sites

compared, 167
getting locked out of Drupal site, 173
installation profiles, 7
installing translation on existing site, 425
linking to front page of, 186

session conversations, 372–373
text of site mission, 187
tracking browser visiting, 365

web-based extractor
creating .pot files for modules, 422

weblogs, 609
webmasters mailing list, 607
weight column

blocks table, 207, 577
contact table, 583
filters table, 584
languages table, 585
menu_links table, 587
menu_router table, 589
profile_fields table, 595
system table, 598
term_data table, 599
trigger_assignments table, 600
upload table, 600
vocabulary table, 603

weight element, form API, 263
building jQuery voting widget, 402

weight key
menu item definition, 68
order of tab rendering, 84
taxonomy_save_term(), 344
taxonomy_save_vocabulary(), 343

weight property, elements, 256
weight value, hook_block(), 209
weightcolumn, upload table, 314
weights, taxonomy, 331
while loop, 478
wildcard parameter, cache_clear_all(), 362
wildcards, menu items, 75–80

% character, 75
building paths from wildcards, 79–80
page callback arguments, 75
parameter replacement, 77–79
using value of wildcard, 76

window.onload event, jQuery, 383
word column, search_index table, 596
word column, search_total table, 597
word splitting

search HTML indexer, 300
word stemming

search HTML indexer, 300
wrap method, jQuery, 386
wrapper key, ahah property, 267
wrapping elements, jQuery, 385
writing modules

adding data entry form, 19–27
adding module-specific settings, 16–19
annotate.info file, 13–14
annotate.module file, 14–15

!INDEX666

09898idxfinal 7/30/08 12:43 PM Page 666

creating files, 13–15
implementing hooks, 15–16
README.txt file, 34

!X
XCache, 528
Xdebug PHP Extension, 522
XML-RPC

built-in methods, 449–451
camel casing, 446
default type, 442
description, 439
getting array of data types, 450
getting description of method, 450
getting list of available methods, 449
mapping external method to PHP

function, 447
prerequisites for, 439
remotehello.module, 446
security, 439
sending XML-RPC calls, 440

with parameter, 441
shorthand for function naming, 447
specification web site, 440

XML-RPC clients, 440–445
call syntax errors, 444–445
casting parameter types, 445
getting state name example, 441–442, 444
getting time example, 440–441
handling errors, 442–445
HTTP errors, 443
making XML-RPC client call, 442
network errors, 443

XML-RPC endpoint, 439
XML-RPC methods

getCapabilities method, 450
getCurrentTime method, 440
getStateName method, 442
listMethods method, 449
methodHelp method, 448, 450

methodSignature method, 448, 450
multiCall method, 451

XML-RPC request life cycle, 447, 448
XML-RPC servers, 445–448

method describing capabilities of, 450
setting up server, 445

xmlc
shorthand for function naming, 447

xmlrpc function
sending XML-RPC calls, 440

with parameter, 441
XML-RPC getting time example, 441

xmlrpc hook see hook_xmlrpc()
xmlrpc.php file, 8, 439, 472
xmlrpc_error(), 447
xmls

shorthand for function naming, 447
xmls_remotehello_hello(), 446
XPath selectors, jQuery, 379
XSS (Cross Site Scripting) attacks, 458

aggregator_filter_xss(), 459
filter_xss(), 454
filter_xss() preventing, 458–459
filter_xss_admin(), 459
filter_xss_bad_protocol(), 460
HTML filter, 277

xtmpl files, 469

!Y
YSlow tool

finding bottlenecks, 528

!Z
z6 flag, cvs command, 503
zebra variable, template files, 185

block_zebra variable, block.tpl.php, 192
Zend Platform, 528
Zend Studio IDE, 522, 524
zlib extension, PHP, 536

!INDEX 667

09898idxfinal 7/30/08 12:43 PM Page 667

09898idxfinal 7/30/08 12:43 PM Page 668

09898idxfinal 7/30/08 12:43 PM Page 669

Offer valid through 2/25/09.

09898idxfinal 7/30/08 12:43 PM Page 670

	Prelims
	Contents at a Glance
	Contents
	Foreword
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	How Drupal Works
	What Is Drupal?
	Technology Stack
	Core
	Administrative Interface
	Modules
	Hooks
	Themes
	Nodes
	Blocks
	File Layout
	Serving a Request
	The Web Server’s Role
	The Bootstrap Process
	Initialize Configuration
	Early Page Cache
	Initialize Database
	Hostname/IP-Based Access Control
	Initialize Session Handling
	Late Page Cache
	Language Determination
	Path
	Full

	Processing a Request
	Theming the Data

	Summary

	Writing a Module
	Creating the Files
	Implementing a Hook
	Adding Module-Specific Settings
	Adding the Data Entry Form
	Storing Data in a Database Table

	Defining Your Own Administration Section
	Presenting a Settings Form to the User
	Validating User-Submitted Settings
	Storing Settings
	Using Drupal’s variables Table
	Retrieving Stored Values with variable_get()

	Further Steps
	Summary

	Hooks, Actions, and Triggers
	Understanding Events and Triggers
	Understanding Actions
	The Trigger User Interface
	Your First Action
	Assigning the Action
	Changing Which Triggers an Action Supports
	Actions That Support Any Trigger
	Advanced Actions

	Using the Context in Actions
	How the Trigger Module Prepares the Context
	Changing Existing Actions with drupal_alter()

	Establishing the Context

	Examining the Context
	How Actions Are Stored
	The actions Table
	Action IDs

	Calling an Action Directly with actions_do()
	Defining Your Own Triggers with hook_hook_info()
	Adding Triggers to Existing Hooks
	Summary

	The Menu System
	Callback Mapping
	Mapping URLs to Functions
	Creating a Menu Item
	Defining a Title

	Page Callback Arguments
	Page Callbacks in Other Files
	Adding a Link to the Navigation Block

	Menu Nesting
	Access Control
	Title Localization and Customization
	Defining a Title Callback
	Title Arguments

	Wildcards in Menu Items
	Unknown
	Basic Wildcards
	Wildcards and Page Callback Parameters
	Using the Value of a Wildcard

	Wildcards and Parameter Replacement
	Passing Additional Arguments to the Load Function
	Special, Predefined Load Arguments: %map and %index

	Building Paths from Wildcards Using to_arg() Functions
	Special Cases for Wildcards and to_arg() Functions

	Altering Menu Items from Other Modules
	Altering Menu Links from Other Modules
	Kinds of Menu Items
	Common Tasks
	Assigning Callbacks Without Adding a Link to the Menu
	Displaying Menu Items As Tabs
	Hiding Existing Menu Items

	Using menu.module
	Common Mistakes
	Summary

	Working with Databases
	Defining Database Parameters
	Understanding the Database Abstraction Layer
	Connecting to the Database
	Performing Simple Queries
	Retrieving Query Results
	Getting a Single Value
	Getting Multiple Rows
	Getting a Limited Range of Results
	Getting Results for Paged Display

	The Schema API
	Using Module .install Files
	Creating Tables
	Using the Schema Module
	Field Type Mapping from Schema to Database
	Textual
	Numerical
	Date and Time: Datetime
	Binary: Blob

	Declaring a Specific Column Type with mysql_type
	Maintaining Tables
	Deleting Tables on Uninstall
	Changing Existing Schemas with hook_schema_alter()

	Inserts and Updates with drupal_write_record()
	Exposing Queries to Other Modules with hook_db_rewrite_sql()
	Using hook_db_rewrite_sql()
	Changing Other Modules’ Queries

	Connecting to Multiple Databases Within Drupal
	Using a Temporary Table
	Writing Your Own Database Driver
	Summary

	Working with Users
	The $user Object
	Storing Data in the $user Object
	Testing If a User Is Logged In

	Introduction to hook_user()
	Understanding hook_user(‘view’)

	The User Registration Process
	Using profile.module to Collect User Information

	The Login Process
	Adding Data to the $user Object at Load Time
	Providing User Information Categories

	External Login
	Simple External Authentication

	Summary

	Working with Nodes
	So What Exactly Is a Node?
	Not Everything Is a Node
	Creating a Node Module
	Creating the .install File
	Creating the .info File
	Creating the .module File
	Providing Information About Our Node Type
	Modifying the Menu Callback
	Defining Node-Type–Specific Permissions with hook_perm()
	Limiting Access to a Node Type with hook_access()
	Customizing the Node Form for Our Node Type
	Adding Filter Format Support
	Validating Fields with hook_validate()
	Saving Our Data with hook_insert()
	Keeping Data Current with hook_update()
	Cleaning Up with hook_delete()
	Modifying Nodes of Our Type with hook_load()
	The punchline: hook_view()
	Manipulating Nodes That Are Not Our Type with hook_nodeapi()

	How Nodes Are Stored
	Creating a Node Type with CCK
	Restricting Access to Nodes
	Defining Node Grants
	What Is a Realm?
	What Is a Grant ID?

	The Node Access Process

	Summary

	The Theme System
	Theme System Components
	Template Languages and Theme Engines
	Themes

	Installing a Theme
	Building a PHPTemplate Theme
	Using Existing HTML and CSS Files
	Creating a .info File for Your Theme

	Understanding Template Files
	The Big Picture
	Introducing the theme() Function
	An Overview of How theme() Works

	Overriding Themable Items
	Overriding with Theme Functions
	Overriding with Template Files

	Adding and Manipulating Template Variables
	Variables for All Templates
	page.tpl.php
	node.tpl.php
	block.tpl.php
	comment.tpl.php
	box.tpl.php
	Other .tpl.php Files
	Multiple Page Templates

	Advanced Drupal Theming
	The Theme Registry
	How the Registry Is Built

	A Detailed Walkthrough of theme()
	Defining New Block Regions
	Theming Drupal’s Forms
	Using the Theme Developer Module

	Summary

	Working with Blocks
	What Is a Block?
	Block Configuration Options
	Block Placement
	Defining a Block
	Understanding How Blocks Are Themed
	Using the Block Hook
	Parameter List

	Building a Block
	Bonus Example: Adding a Pending Users Block

	Enabling a Block When a Module Is Installed
	Block Visibility Examples
	Displaying a Block to Logged-In Users Only
	Displaying a Block to Anonymous Users Only

	Summary

	The Form API
	Understanding Form Processing
	Initializing the Process
	Setting a Token
	Setting an ID
	Collecting All Possible Form Element Definitions
	Looking for a Validation Function
	Looking for a Submit Function
	Allowing Modules to Alter the Form Before It’s Built
	Building the Form
	Allowing Functions to Alter the Form After It’s Built
	Checking If the Form Has Been Submitted
	Finding a Theme Function for the Form
	Allowing Modules to Modify the Form Before It’s Rendered
	Rendering the Form
	Validating the Form
	Token Validation
	Built-in Validation
	Element-Specific Validation
	Validation Callbacks

	Submitting the Form
	Redirecting the User

	Creating Basic Forms
	Form Properties
	Form IDs
	Fieldsets
	Theming Forms
	Using #prefix, #suffix, and #markup
	Using a Theme Function
	Telling Drupal Which Theme Function to Use

	Specifying Validation and Submission Functions with hook_forms()
	Call Order of Theme,Validation, and Submission Functions
	Writing a Validation Function
	Passing Data Along from Validation Functions
	Element-Specific Validation

	Form Rebuilding
	Writing a Submit Function
	Changing Forms with hook_form_alter()
	Altering Any Form
	Altering a Specific Form

	Submitting Forms Programmatically with drupal_execute()
	Multipage Forms

	Form API Properties
	Properties for the Root of the Form
	#parameters
	#programmed
	#build_id
	#token
	#id
	#action
	#method
	#redirect
	#pre_render
	#post_render
	#cache

	Properties Added to All Elements
	#description
	#required
	#tree
	#post
	#parents
	#attributes

	Properties Allowed in All Elements
	#type
	#access
	#process
	#after_build
	#theme
	#prefix
	#suffix
	#title
	#weight
	#default_value

	Form Elements
	Textfield
	Password
	Password with Confirmation
	Textarea
	Select
	Radio Buttons
	Check Boxes
	Value
	Hidden
	Date
	Weight
	File Upload
	Fieldset
	Submit
	Button
	Image Button
	Markup
	Item

	#ahah Property

	Summary

	Manipulating User Input: The Filter System
	Filters
	Filters and Input Formats
	Installing a Filter
	Know When to Use Filters

	Creating a Custom Filter
	Implementing hook_filter()
	The list Operation
	The description Operation
	The settings Operation
	The no cache Operation
	The prepare Operation
	The process Operation
	The default Operation
	Helper Function

	hook_filter_tips()

	Protecting Against Malicious Data
	Summary

	Searching and Indexing Content
	Building a Custom Search Page
	The Default Search Form
	The Advanced Search Form
	Adding to the Search Form
	Introducing hook_search()
	Formatting Search Results with hook_search_page()
	Making Path Aliases Searchable

	Using the Search HTML Indexer
	When to Use the Indexer
	How the Indexer Works
	Adding Metadata to Nodes: hook_nodeapi(‘update_index’)
	Indexing Content That Isn’t a Node: hook_update_index()

	Summary

	Working with Files
	How Drupal Serves Files
	Public Files
	Private Files

	PHP Settings
	Media Handling
	Upload Module
	Other Generic File-Handling Modules
	Images and Image Galleries
	Video and Audio

	File API
	Database Schema
	Common Tasks and Functions
	Finding the File System Path
	Saving Data to a File
	Copying and Moving Files
	Checking Directories, Paths, and Locations
	Uploading Files
	Getting the URL for a File
	Finding Files in a Directory
	Finding the Temp Directory
	Neutralizing Dangerous Files
	Checking Disk Space

	Authentication Hooks for Downloading

	Summary

	Working with Taxonomy
	What Is Taxonomy?
	Terms
	A Level of Abstraction
	Synonyms

	Vocabularies
	Required Vocabularies
	Controlled Vocabularies
	Tags
	Single vs. Multiple Terms
	Parents
	Related Terms
	Weights

	Kinds of Taxonomy
	Flat
	Hierarchical
	Multiple Hierarchical

	Viewing Content by Term
	Using AND and OR in URLs
	Specifying Depth for Hierarchical Vocabularies
	Automatic RSS Feeds

	Storing Taxonomies
	Module-Based Vocabularies
	Creating a Module-Based Vocabulary
	Providing Custom Paths for Terms
	Keeping Informed of Vocabulary Changes with hook_taxonomy()

	Common Tasks
	Finding Taxonomy Terms in a Node Object
	Building Your Own Taxonomy Queries
	Using taxonomy_select_nodes()

	Taxonomy Functions
	Retrieving Information About Vocabularies
	taxonomy_ vocabulary_load($vid)
	taxonomy_get_vocabularies($type)

	Adding, Modifying, and Deleting Vocabularies
	taxonomy_save_vocabulary(&$vocabulary)
	taxonomy_del_vocabulary($vid)

	Retrieving Information About Terms
	taxonomy_get_term($tid)
	taxonomy_get_term_by_name($text)
	taxonomy_node_get_terms($node, $key)
	taxonomy_node_get_terms_by_vocabulary($node, $vid, $key)

	Adding, Modifying, and Deleting Terms
	taxonomy_save_term(&$term)
	taxonomy_del_term($tid)

	Retrieving Information About Term Hierarchy
	taxonomy_get_parents($tid, $key)
	taxonomy_get_parents_all($tid)
	taxonomy_get_children($tid, $vid, $key)
	taxonomy_get_tree($vid, $parent, $depth, $max_depth)

	Retrieving Information About Term Synonyms
	taxonomy_get_synonyms($tid)
	taxonomy_get_synonym_root($synonym)

	Finding Nodes with Certain Terms
	taxonomy_select_nodes($tids, $operator, $depth, $pager, $order)
	taxonomy_render_nodes($result)

	Additional Resources
	Summary

	Caching
	Knowing When to Cache
	How Caching Works
	How Caching Is Used Within Drupal Core
	Menu System
	Filtered Input Formats
	Administration Variables and Module Settings
	Pages
	Disabled
	Normal
	Aggressive
	Minimum Cache Lifetime
	fastpath: The Hidden Cache Setting

	Blocks
	Per-Request Caching with Static Variables
	Using the Cache API
	Caching Data with cache_set()
	Retrieving Cached Data with cache_get()
	Clearing Caches

	Summary

	Sessions
	What Are Sessions?
	Usage
	Session-Related Settings
	In .htaccess
	In settings.php
	In bootstrap.inc
	Requiring Cookies

	Storage
	Session Life Cycle
	Session Conversations
	First Visit
	Second Visit
	User with an Account

	Common Tasks
	Changing the Length of Time Before a Cookie Expires
	Changing the Name of the Session
	Storing Data in the Session

	Summary

	Using jQuery
	What Is jQuery?
	The Old Way
	How jQuery Works
	Using a CSS ID Selector
	Using a CSS Class Selector

	jQuery Within Drupal
	Your First jQuery Code
	Targeting an Element by ID
	Method Chaining
	Adding or Removing a Class
	Wrapping Existing Elements
	Changing Values of CSS Elements
	Where to Put JavaScript
	Adding JavaScript via a Theme .info File
	A Module That Uses jQuery

	Overridable JavaScript

	Building a jQuery Voting Widget
	Building the Module
	Using Drupal.behaviors
	Ways to Extend This Module
	Compatibility

	Next Steps
	Summary

	Localization and Translation
	Enabling the Locale Module
	User Interface Translation
	Strings
	Translating Strings with t()
	Replacing Built-In Strings with Custom Strings
	String Overrides in settings.php
	Replacing Strings with the Locale Module
	Exporting Your Translation

	Starting a New Translation
	Getting .pot Files for Drupal
	Generating .pot Files with Translation Template Extractor
	Creating a .pot File for Your Module
	Creating .pot Files for an Entire Site

	Installing a Language Translation
	Setting Up a Translation at Install Time
	Installing a Translation on an Existing Site

	Right-to-Left Language Support
	Language Negotiation
	None
	User-Preferred Language
	The Global $language Object

	Path Prefix Only
	Path Prefix with Language Fallback
	Domain Name Only

	Content Translation
	Introducing the Content Translation Module
	Multilingual Support
	Multilingual Support with Translation

	Localizationand Translation-Related Files
	Additional Resources
	Summary

	XML-RPC
	What Is XML-RPC?
	Prerequisites for XML-RPC
	XML-RPC Clients
	XML-RPC Client Example: Getting the Time
	XML-RPC Client Example: Getting the Name of a State
	Handling XML-RPC Client Errors
	Network Errors
	HTTP Errors
	Call Syntax Errors

	Casting Parameter Types

	A Simple XML-RPC Server
	Mapping Your Method with hook_xmlrpc()
	Automatic Parameter Type Validation with hook_xmlrpc()

	Built-In XML-RPC Methods
	system.listMethods
	system.methodSignature
	system.methodHelp
	system.getCapabilities
	system.multiCall

	Summary

	Writing Secure Code
	Handling User Input
	Thinking About Data Types
	Plain Text
	HTML Text
	Rich Text
	URL

	Using check_plain() and t() to Sanitize Output
	Using filter_xss() to Prevent Cross-Site Scripting Attacks
	Using filter_xss_admin()

	Handling URLs Securely
	Making Queries Secure with db_query()
	Keeping Private Data Private with db_rewrite_sql()
	Dynamic Queries
	Permissions and Page Callbacks
	Cross-Site Request Forgeries (CSRF)
	File Security
	File Permissions
	Protected Files
	File Uploads
	Filenames and Paths

	Encoding Mail Headers
	Files for Production Environments

	Protecting cron.php
	SSL Support
	Stand-Alone PHP
	AJAX Security
	Form API Security
	Protecting the Superuser Account
	Using eval()
	Summary

	Development Best Practices
	Coding Standards
	Line Indention
	PHP Opening and Closing Tags
	Control Structures
	Function Calls
	Function Declarations
	Function Names
	Arrays
	Constants
	Global Variables
	Module Names
	Filenames

	PHP Comments
	Documentation Examples
	Documenting Constants
	Documenting Functions
	Documenting Hook Implementations

	Checking Your Coding Style Programmatically
	Using code-style.pl
	Using the Coder Module

	Finding Your Way Around Code with egrep
	Taking Advantage of Version Control
	Installing CVS-Aware Drupal
	Using CVS-Aware Drupal
	Installing a CVS Client
	Checking Out Drupal from CVS
	Branches and Tags
	Branches in Drupal Core
	Tags in Drupal Core
	The -dev Suffix
	Checking Out Drupal Using a Tag or Branch Name

	Updating Code with CVS
	Tracking Drupal Code Changes
	Resolving CVS Conflicts
	Cleanly Modifying Core Code

	Creating and Applying Patches
	Creating a Patch
	Applying a Patch

	Maintaining a Module
	Getting a Drupal CVS Account
	Checking Out the Contributions Repository
	Adding Your Module to the Repository
	The Initial Commit
	Checking Out Your Module
	Creating a Project on drupal.org
	Committing a Bug Fix
	Viewing the History of a File
	Creating a Branch
	Creating a DRUPAL-5–Compatible Branch
	Tagging and Creating a Release

	Creating a DRUPAL-6–Compatible Branch
	Using HEAD for Releases
	Creating a DRUPAL-6 Branch

	Advanced Branching
	Creating a Release Node

	Mixing SVN with CVS for Project Management
	Testing and Developing Code
	The devel Module
	Displaying Queries
	Dealing with Time-Consuming Queries
	Other Uses for the devel Module

	The Module Builder Module
	Application Profiling and Debugging
	Summary

	Optimizing Drupal
	Finding the Bottleneck
	Initial Investigation
	Web Server Running Out of CPU
	Web Server Running Out of RAM

	Other Web Server Optimizations
	Apache Optimizations
	Other Web Servers

	Database Bottlenecks
	Enabling MySQL’s Query Cache
	Identifying Expensive Queries
	Identifying Expensive Pages
	Identifying Expensive Code
	Optimizing Tables
	Caching Queries Manually
	Changing the Table Type from MyISAM to InnoDB
	Memcached

	Drupal-Specific Optimizations
	Page Caching
	Bandwidth Optimization
	Pruning the Sessions Table
	Managing the Traffic of Authenticated Users
	Pruning Error Reporting Logs
	Severity Levels
	Logging to the Database
	Logging to Syslog

	Running cron
	Automatic Throttling
	Enabling the Throttle Module
	Configuring the Throttle Module
	Making Modules and Themes Throttle-Aware

	Architectures
	Single Server
	Separate Database Server
	Separate Database Server and a Web Server Cluster
	Load Balancing
	File Uploads and Synchronization

	Multiple Database Servers
	Database Replication
	Database Partitioning

	Summary

	Installation Profiles
	Where Profiles Are Stored
	How Installation Profiles Work
	Indicating Which Modules to Enable
	Defining Additional Installation Tasks
	Running Additional Installation Tasks
	Setting Drupal Variables
	Creating Initial Node Types
	Saving Information to the Database
	Submitting Forms Programmatically
	Setting a Theme During Installation
	Using the Batch API

	Resources

	Summary

	Database Table Reference
	access (user module)
	accesslog (statistics module)
	actions (trigger module)
	actions_aid (trigger module)
	aggregator_category (aggregator module)
	aggregator_category_feed (aggregator module)
	aggregator_category_item (aggregator module)
	aggregator_feed (aggregator module)
	aggregator_item (aggregator module)
	authmap (user module)
	batch (batch.inc)
	blocks (block module)
	blocks_roles (block module)
	book (book module)
	boxes (block module)
	cache
	cache_block (block module)
	cache_filter (filter module)
	cache_form
	cache_menu
	cache_page
	cache_update
	comments (comment module)
	contact (contact module)
	files (upload module)
	filter_formats (filter module)
	filters (filter module)
	flood (contact module)
	forum (forum module)
	history (node module)
	languages (locale module)
	locales_source (locale module)
	locales_target (locale module)
	menu_custom (menu module)
	menu_links (menu module)
	menu_router
	node (node module)
	node_access (node module)
	node_comment_statistics (comment module)
	node_counter (statistics module)
	node_revisions (node module)
	node_type (node module)
	openid_association (openid module)
	permission (user module)
	poll (poll module)
	poll_choices (poll module)
	poll_votes (poll module)
	profile_fields (profile module)
	profile_values (profile module)
	role (user module)
	search_dataset (search module)
	search_index (search module)
	search_node_links (search module)
	search_total (search module)
	sessions
	system
	term_data (taxonomy module)
	term_hierarchy (taxonomy module)
	term_node (taxonomy module)
	term_relation (taxonomy module)
	term_synonym (taxonomy module)
	trigger_assignments (trigger module)
	upload (upload module)
	url_alias (path module)
	users (user module)
	users_roles (users)
	variable
	vocabulary (taxonomy module)
	vocabulary_node_types (taxonomy module)
	watchdog (dblog module)

	Resources
	Code
	Drupal CVS
	Drupal API Reference
	Security Advisories
	Updating Modules
	Updating Themes

	Handbooks
	Forums
	Mailing Lists
	development
	documentation
	drupal-cvs
	infrastructure
	support
	themes
	translations
	webmasters
	CVS-applications
	consulting

	User Groups and Interest Groups
	Internet Relay Chat
	#drupal-support
	#drupal-themes
	#drupal-ecommerce
	#drupal
	#drupal-dev
	#drupal-consultants
	#drupal-dojo

	Videocasts
	Weblogs
	Planet Drupal

	Conferences
	Contribute

	Index

