THE EXPERT’S VOICE® IN OPEN SOURCE

Pro

Drupal

Development

Learn how to use the content management
framework to create powerful customized web sites

SECOND EDITION

John K. VanDyk

Foreword by Dries Buytaert,
Drupal founder and project lead

Apress:

Pro Drupal
Development

Second Edition

John K. VanDyk

Apress-

Pro Drupal Development, Second Edition
Copyright © 2008 by John K. VanDyk

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-0989-8
ISBN-13 (electronic): 978-1-4302-0990-4
Printed and bound in the United States of America 9 8 7 6 54 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Matt Wade

Technical Reviewer: Robert Douglass

Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,
Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas

Copy Editors: Heather Lang and Damon Larson

Associate Production Director: Kari Brooks-Copony

Production Editor: Laura Esterman

Compositor: Linda Weidemann, Wolf Creek Press

Proofreaders: April Eddy and Linda Siefert

Indexer: John Collin

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

For the Great Architect
and to my incredibly patient wife and children

Contents at a Glance

BOrBWOI.
Aboutthe AUthoro
About the Technical REVIBWET
ACKNOWIBAGMENTSo
INtrOdUCHION XXXii
CHAPTER1 HowDrupal Works................ fil
CHAPTER 2 WritingaModule i3
CHAPTER 3 Hooks, Actions, and Triggers.coviiiiinin...
CHAPTER 4 TheMenuSystem B9
CHAPTER 5 Working with Databases B9
CHAPTER 6 WorkingwithUsers...
CHAPTER 7 WorkingwithNodes ..
CHAPTER8 TheThemeSystem, fieq
CHAPTER 9 WorkingwithBlocks.................... ..., po3
CHAPTER 10 TheFormAPI.....

CHAPTER 11 Manipulating User Input: The Filter System

CHAPTER E Searching and Indexing Content
CHAPTER E Working with Files..................
CHAPTER 14 Working with Taxonomyccooveriiiiii
CHAPTERMIS Caching................coiiiii
CHAPTER Il Sessionsc....cc ...
CHAPTER I UsingjQuery....... ..o
CHAPTER E Localization and Translation
CHAPTERMId XML-RPC......... ..o i
CHAPTER Writing Secure Code.coovueieii
CHAPTER R1 Development Best Practices
CHAPTER R Optimizing Drupal ...
CHAPTER 3 Installation Profilesccoiiiii
APPENDIX A Database Table Reference
APPENDIX B ReSOUICES....... ..ot

Contents

BOrBWOI.
About the AUTNOT . . .o

About the Technical ReVIEWET

ACKNOWIBAgMENTS
INtrOdUCHION XXii
CHAPTER1 HowDrupalWorks... fi
What Is Drupal?....... ... fi

Technology Stackooo i fi

COTE . . 2|

Administrative Interfacel B

MOAUIBS. B

HOOKS. . ..o 7!

TREMES . .. B

NOGBS ... B

BIOCKS . ..o B

FileLayout oo B
ServingaRequest. B

The Web Server'sRole ..., B

The Bootstrap Processccooiiiiiiiiiiiin.. 3]
ProcessingaRequest.................c.o i fid

ThemingtheDatal

SUMMANY. ... e

CHAPTER2 WritingaModule.. i3
Creatingthe Files. K|
ImplementingaHook i ig

Adding Module-Specific Settings oL, iiq

Adding the Data Entry Form............... fi9

Storing Data in a Database Table 2|

Defining Your Own Administration Section.......................... Pa

Presenting a Settings Formtothe User............................. |

Validating User-Submitted Settings

T

CONTENTS

CHAPTER 3

CHAPTER 4

Storing Settings. ...
Using Drupal’s variables Table
Retrieving Stored Values with variable_get()

Further Steps

Hooks, Actions, and Triggers

Understanding Eventsand Triggers................................
Understanding Actions
The Trigger User Interfacecocoiiiint.
Your First Action. ...
Assigningthe Action
Changing Which Triggers an Action Supports
Actions That Support Any Trigger...................ccoii..
Advanced ACtionS i
Using the Contextin Actions,
How the Trigger Module Prepares the Context..................
Establishing the Context.............
Examiningthe Context........... ...
How Actions Are Stored
TheactionsTable............ L
ActionIDs
Calling an Action Directly with actions_do().........................
Defining Your Own Triggers with hook_hook_info()

TheMenuSystem..

Callback Mapping
Mapping URLs to Functions.................... ..ot
Page Callback Argumentsccoiiiiiiiit.

MenuNesting.ooi i

AccessControl.

Title Localization and Customization...............................
Defining a Title Callback.
Title Arguments

WildcardsinMenultems o i
Wildcards and Parameter Replacement........................
Building Paths from Wildcards Using to_arg() Functions

2 B E ==

= =2 2] E] R K] 2 & E E E B EE E S E E

QIREEEEE R EE

CHAPTER 5

CONTENTS
Altering Menu Items from Other Modules........................... B()
Altering Menu Links from Other Modules B2
Kindsof Menultems.............. i i B2
COMMON TASKSttt e B3
Assigning Callbacks Without Adding a Link to the Menu B3
Displaying MenultemsAsTabs B4
Hiding ExistingMenu ltems B
Using menu.module i B
Common MistaKes.cooieii i B
SUMMAY. ... B
Working with Databases Bg
Defining Database Parameters.................................... B9
Understanding the Database Abstraction Layer...................... B9
Connectingtothe Database D1
Performing Simple Queries ¥
Retrieving Query Results ... D4
GettingaSingleValue.................. DA
Getting Multiple Rows............... ... i D4
Getting a Limited Range of Results D4
Getting Results for Paged Display............................. &
The Schema APl
Using Module .install Files D
Creating Tablesco i, L
Using the SchemaModule................................... Pg
Field Type Mapping from Schema to Database P9
Declaring a Specific Column Type with mysql_type............ fog
Maintaining Tables ..., fio3
Deleting Tableson Uninstall. fio4
Changing Existing Schemas with hook_schema_alter(). fiog
Inserts and Updates with drupal_write_record().................... flog
Exposing Queries to Other Modules with hook_db_rewrite_sql(). fiod
Using hook_db_rewrite_sql(). flog
Changing Other Modules’ Queries flog
Connecting to Multiple Databases Within Drupal....................
Usinga Temporary Table................
Writing Your Own Database Driver................................

SUMMANY ... e

B

CONTENTS

CHAPTER 6

CHAPTER 7

Working withUsers..
The Suser Object.
Storing Data in the $user Object.............................
Testing IfaUserlsLloggedIn
Introduction to hOOK_USEer()............ccoveriiiiieenn .
Understanding hook_user(‘view’)............................
The User Registration Process ...,
Using profile.module to Collect User Information...............
The LOgin ProCeSS.ot e
Adding Data to the $user Object at Load Time.................
Providing User Information Categories........................
External LOgino
Simple External Authentication..............................
SUMMANY. ... e
Working withNodes
So What Exactly IsaNode?........................c.iiiiii..
Not EverythinglsaNodecooiiiiiiiii... fr4g
Creatinga Node Module.,
Creatingthe .installFile
Creating the .infoFile f43
Creating the .module File....................coooiiiiiiit..
Providing Information About Our Node Type...................
Modifying the Menu Callback 44
Defining Node-Type-Specific Permissions with hook_perm(). . . . [45
Limiting Access to a Node Type with hook_access()
Customizing the Node Form for Our Node Type................ 24
Adding Filter Format Support.......................... oo
Validating Fields with hook_validate()
Saving Our Data with hook_insert() fiag
Keeping Data Current with hook_update()
Cleaning Up with hook_delete()
Modifying Nodes of Our Type with hook_load()................
The punchline: hook_view()........................cooi...
Manipulating Nodes That Are Not Our Type with
hook_nodeapi()............covveiiii
How Nodes Are Storedooiernii i,

Creating a Node Type with CCK

CHAPTER 8

CHAPTER 9

CONTENTS

Restricting AccesstoNodes
Defining Node Grantsoooiia.. fied
The Node AccesS Process

The Theme System..

fieq
Theme System Componentscoiiiiiiiinn.. fi6g
Template Languages and Theme Engines fieg
ThEMES . . [i67
InstallingaTheme. ...,
Building a PHPTemplate Themeoiiiiii.... fied
Using Existing HTML and CSSFiles fi6g
Creating a .info File for Your Theme.
Understanding Template Files.
The Big Picture.
Overriding Themable ltems
Adding and Manipulating Template Variables.
Variables for All Templates.
page.tpl.php
nodeplphp ...
block.tplphp. f9og
commenttplphp 92
DOXAPLPND oo o3
Other tplphpFiles 93
Multiple Page Templates 93
Advanced Drupal TRemMing.oovviee e o4
The Theme Registry 94

A Detailed Walkthrough of theme()........................... fiod
Defining New Block Regionscoovevveeii... pod

pod

pod

Working with Blocks....................................... po3

WhatIsaBIock? po3
Block Configuration Options po4
Block Placement i P06

ki

CONTENTS

CHAPTER 10

DefiningaBlock.
Understanding How Blocks Are Themed
Using the Block Hook it

BuildingaBlock.

The Form APl

Understanding Form Processing.cooiiiiiint
Initializing the Process L.
SettingaTokenl
SettinganID......... ...
Collecting All Possible Form Element Definitions...............
Looking for a Validation Function
Looking for @ Submit Function...............................
Allowing Modules to Alter the Form Before It's Built............
Buildingthe Forml
Allowing Functions to Alter the Form After It's Built
Checking If the Form Has Been Submitted
Finding a Theme Function forthe Form.......................
Allowing Modules to Modify the Form Before It’s Rendered
Renderingthe Form.........
Validatingthe Form..........
Submittingthe Form
Redirectingthe User il

CONTENTS kiil

Creating Basic FOrmsot D29
Form Properties
FormIDs P32
Fieldsets ...
ThemingForms D36
Specifying Validation and Submission Functions with

hook_forms(). ... P39
Call Order of Theme, Validation, and Submission Functions D40
Writing a Validation Function................................ pad
FormRebuilding. P44
Writing @ Submit Function
Changing Forms with hook_form_alter()...................... p43
Submitting Forms Programmatically with drupal_execute() D46
Multipage Forms

Form APl Properties ...t P52
Properties for the Root of the Form P52
Properties Added to AllElements D54
Properties Allowed in All Elements...........................
Form Elements.o
#ahah Property............ P67

SUMMANY. ... e

CHAPTER 11 Manipulating User Input: The Filter System............ ..

Fiters. ...

Filtersand Input Formats............. D74
InstallingaFilter.............. P79
Know WhentoUseFilters P80

Creatinga Custom Filter. i D82
Implementing hook_filter().
The list Operation. D84
The description Operation D84
The settings Operationcoviiiiiiiini..
The no cache Operation
The prepare Operation
The process Operationccoiiiiiioi...
The default Operation......................................
hook_filter_tips()...........ccooiiii

Protecting Against MaliciousData P83

SUMMANY ... D8I

iy

CONTENTS

CHAPTER 12 Searching and Indexing Content..........................

Building a Custom SearchPageooiit
The Default SearchForm
The Advanced Search Form.................................
Addingtothe Search Form
Using the Search HTML Indexerciiiiiiin...
WhentoUsethelndexer....................................

CHAPTER 13 Worki

ngwithFiles..

How Drupal ServesFilesco o,
PublicFileso
Private Files

PHP Settings. ...

MediaHandling
UploadModule
Other Generic File-Handling Modules.
Images and Image Galleries.ccoiiin...
VideoandAudio..................

File API

Database Schemaco o

CHAPTER 14 Worki

M

ultiple Hierarchical

Viewing Contentby Term..........,
Using ANDand ORINURLScccoiviiiiininns
Specifying Depth for Hierarchical Vocabularies
Automatic RSSFeeds

CONTENTS ki

Storing TAXONOMIBSttt et
Module-Based Vocabulariesooooa.L.
Creating a Module-Based Vocabulary
Providing Custom Pathsfor Terms........................... &E

Keeping Informed of Vocabulary Changes with
hook_taxonomy() 339
CommMONTaSKSo B40
Finding Taxonomy Terms in a Node Object.................... B40
Building Your Own Taxonomy Queries.
Taxonomy Functions. i 342
Retrieving Information About Vocabularies.................... 342
Adding, Modifying, and Deleting Vocabularies................. B4
Retrieving Information About Terms.
Adding, Modifying, and Deleting Terms....................... B44
Retrieving Information About Term Hierarchy.................. B43
Retrieving Information About Term Synonyms.................
Finding Nodes with Certain Terms
Additional RESOUICES B44
B4g

CHAPTER 15 Caching..............

B4d
Knowing WhentoCacheooiiin.L. Bad
How CachingWorks o 350
How Caching Is Used Within Drupal Core
MenuSystem
Filtered Input Formats. 352
Administration Variables and Module Settings................. B52

352

B53

Bed

Bed

B64

CHAPTER 16 S€SSIONS i Beg

USage. . ..o 366

kvl CONTENTS

Session-Related Settings.coo B67
In.htaccess. ... 363
Insettings.php 363
Inbootstrap.inc 363
Requiring COOKIBSooeii i Be6g

StOrAgE Bed

Session Life CYCle B70

Session Conversationscooiiiiiiii
First Visit. ...
Second Visit

R74

CHAPTER 17 UsingjQuery....................... ...

What IS JQUEIY? o
The OldWayo 378
How jQuery Works. B79
UsingaCSSID Selector ...l R79
Usinga CSS Class Selector 380
jQuery Within Drupal.
Your FirstjQuery Codecooveiiiii,
TargetinganElementbyID 384
Method Chaining B34
Adding or RemovingaClasscoinns.
Wrapping Existing Elements
Changing Values of CSSElements Bag
Where to Put JavaScript................l B36
Overridable JavaScripto i Bad
Building a jQuery Voting Widget B93
Building the Module.cooiiiii. Bog
Using Drupal.behaviors.cooviiiiiinnaiin.. ko4
Ways to Extend ThisModule ko4
Compatibility.c kog
NEXE SHBPS .. koj
SUMMAIY ... kog

CONTENTS kil

CHAPTER 18 Localization and Translation.............................. |
Enabling the Locale Module. ko7
User Interface Translation ko7

SHNGS . .o ko7
Translating Strings witht()....................... 408
Replacing Built-In Strings with Custom Strings 410
Starting a New Translation 120
Getting .pot Files for Drupalocoiiin.. 420
Generating .pot Files with Translation Template Extractor. 121
Installing a Language Translation................................. 124
Setting Up a Translation at Install Time....................... 124
Installing a Translation on an Existing Site
Right-to-Left Language Support. ...t 120
Language Negotiation....................
NONE. .. 1238
Path Prefix Only 429
Path Prefix with Language Fallback 131
DomainName Only i, 431
Content Translation................ 132
Introducing the Content Translation Module................... 132
Multilingual Support 437
Multilingual Support with Translation.
Localization- and Translation-Related Files
Additional RESOUICESt
SUMMArY. RE

CHAPTER 19 XML-RPC 139
WhatIs XML-RPC? 139
Prerequisites for XML-RPC 139
XML-RPCClientso Bad

XML-RPC Client Example: Gettingthe Time 140
XML-RPC Client Example: Getting the Name of a State 141
Handling XML-RPC ClientErrors............................. ka3
Casting Parameter Types. ...t
A Simple XML-RPC Server.cooiiiiiiiiiiaae. ..
Mapping Your Method with hook_xmlrpc().................... 140

Automatic Parameter Type Validation with hook_xmirpc()

CONTENTS

CHAPTER 20

Writing SecureCode

Handling UserInput.............co o
Thinking About Data Types
Using check_plain() and t() to Sanitize Output.................
Using filter_xss() to Prevent Cross-Site Scripting Attacks
Using filter_xss_admin()....................... it

Handling URLs Securely......... ...t

Making Queries Secure with db_query()...........................

Keeping Private Data Private with db_rewrite_sql()

Dynamic QUENIESt

Permissions and Page Callbacks

Cross-Site Request Forgeries (CSRF).

File Security
File Permissions.c i
Protected Files
FileUploads
Filenamesand Paths.............

Encoding Mail Headers.
Files for Production Environments

Protecting cron.php. o

SSL SUPPOrt . .

Stand-Alone PHP

AJAX SecUrity.

Form APISecurity o

Protecting the Superuser Account

Usingeval()........ooviiii i

SUMMArY ...

CONTENTS ki

CHAPTER 21 Development Best Practices
Coding Standards
Line Indention.

PHP Opening and Closing Tags...............ccoovvvviinon...
Control Structures 478
FunctionCalls................. i 179
Function Declarations................... 480
FunctionNames............ 130
AITAYS. . . 181
Constants i 181
Global Variables 182
Module Names. ... 182
Filenames 182

PHP Commentscoiiiti e
Documentation Examples. 184
Documenting Constants
Documenting Functions
Documenting Hook Implementations......................... 186
Checking Your Coding Style Programmatically
Using code-style.pl ...
Using the Coder Module............ ...t 489
Finding Your Way Around Code withegrep......................... 189
Taking Advantage of Version Control. kad
Installing CVS-Aware Drupalcoin... kg
Using CVS-Aware Drupal ..., 191
Installinga CVS Client.oiiiiitt. 491
Checking Out Drupal from CVS 191
BranchesandTagsccoviiiiiiiienaiia.. k93
Updating Code with CVS., k9
Tracking Drupal Code Changes.ccove... 199
Resolving CVS Conflictsoooiat. Bod
Cleanly Modifying Core Code................cccvvevvnaen... kod
Creating and Applying Patches................................... bod
CreatingaPatch... Bod

ApplyingaPatch

ko

CONTENTS

CHAPTER 22

MaintainingaModule...........
Getting a Drupal CVS Account. ...,
Checking QOut the Contributions Repository....................
Adding Your Module to the Repository........................
The Initial Commit............
Checking Out Your Module.ocoiiina..
Creating a Projectondrupalorg.............................
CommittingaBug Fix
Viewing the History of aFile.................................
CreatingaBranch
Creating a Drupal-6—Compatible Branch.
Advanced Branching................o o
CreatingaRelease Nodeccoiiiiiiiiin..

Mixing SVN with CVS for Project Management

Testing and Developing Codecoiiiiiinn...
Thedevel Module ...
Displaying Queries. i
Dealing with Time-Consuming Queries.......................
Other Uses for the devel Module.

OptimizingDrupal..

Finding the Bottleneck i
Initial Investigation.
Other Web Server Optimizations.............................
Database Bottlenecks.................... L.

Drupal-Specific Optimizations.
PageCaching................
Bandwidth Optimization...................
Pruning the Sessions Table
Managing the Traffic of Authenticated Users..................
Pruning Error Reporting Logs. ...t
Runningcron
Automatic Throttling

CONTENTS kxi

Architectures b42
Single Server
Separate Database Server.................... ..., B43
Separate Database Server and a Web Server Cluster........... b42

b44
b43

CHAPTER 23 InstallationProfiles.......................

B47
Where Profiles Are Stored
How Installation Profiles Work.t b44
Indicating Which Modulesto Enable.......................... b5
Defining Additional Installation Tasks
Running Additional Installation Tasks.........................
RESOUICES b7(

APPENDIX A Database Table Reference

access (USermodule) ...t
accesslog (statistics module)l
actions (triggermodule)................ . b74
actions_aid (triggermodule) b74
aggregator_category (aggregator module).........................
aggregator_category_feed (aggregator module)....................
aggregator_category_item (aggregator module)....................
aggregator_feed (aggregator module).............................
aggregator_item (aggregator module). b76
authmap (usermodule) b76
batch (batch.inc)
blocks (block module).
blocks_roles (block module) L. b78
book (book module) b78

579

579

579

580

580

cache_block (block module)
cache_filter (filtermodule).
cache_form
CACNE_MEBNU. . ..\ttt e e
CaChe_pPage
cache_update

fodd

CONTENTS

comments (commentmodule)
contact (contactmodule)
files (upload module).
filter_formats (filtermodule),
filters (filter module)
flood (contact module)co
forum (forummodule).
history (node module).................
languages (locale module).. ...
locales_source (locale module). L.
locales_target (locale module),
menu_custom (menumodule)
menu_links (menumodule)..................... ..
MENU_TOULB. . ..ot e e
node (node module)o
node_access (nodemodule)
node_comment_statistics (comment module)......................
node_counter (statistics module)..............
node_revisions (node module) L.
node_type (node module)
openid_association (openid module)
permission (usermodule)
poll (pollmodule). ...
poll_choices (poll module).............oooiii
poll_votes (pollmodule)............l
profile_fields (profile module)l
profile_values (profile module) il
role (usermodule)...... ...
search_dataset (search module)
search_index (searchmodule)t
search_node_links (searchmodule)
search_total (search module)
SBSSIONS ..

APPENDIX B

CONTENTS

upload (upload module)t Bod
url_alias (pathmodule).,
users (User module)oo i
USEIS_TOIES (USEIS) . . .ottt e e o2
variable o2
vocabulary (taxonomy module).................... ... Bo3
vocabulary_node_types (taxonomy module) o3
watchdog (dblog module).................... Bo4

Drupal CVSo
Drupal APIReferenceco i,
Security AdVISOMESoi
UpdatingModuleso
Updating Themes. ...,
Handbooks
FOrUMS .
Mailing ListS. ...
development.......
documentation.............
Arupal-Cvs.
infrastructure

webmasters ...
CVS-applications
consulting
User Groups and Interest Groups
InternetRelay Chat L.
#drupal-support.
#drupal-themes................ .
#drupal-ecommercet
#drupal ...
#drupal-dev ...
#drupal-consultantsl
#Arupal-dojo.

oy

CONTENTS
VIdBOCASES. . . . oot

WebIogs

PlanetDrupal ...

CONTBIBNCES . . . o ot

Contributeo

IND X . .

Foreword

Less than two years ago, I wrote the foreword for the first edition of this book. What was
missing at that time was a developer book for Drupal. By writing the first version of this
book, John VanDyk and Matt Westgate made an incredible contribution to Drupal’s
steady growth. I don’t think I know a single Drupal developer who doesn’'t own a copy

of the first Pro Drupal Development book.

Drupal, through its open source nature, has become much greater than I ever imag-
ined it would. The Drupal developer community has a healthy desire to innovate, to
respond to the ever-changing landscape of web development, and to provide web devel-
opers an almost infinite amount of flexibility. Change is a constant in the Drupal com-
munity and key to our success.

Since the first edition of this book was published, we released Drupal 6, a big step
forward, with new and improved APIs. In fact, Drupal 6 had over 700 individual contribu-
tors who have patches included in the core code. Together, we've made important theme
system improvements, better support for multilingual web sites, an improved menu sys-
tem, form API improvements, JavaScript goodies, and much more. The net result is that
Drupal 6 is an even better web application development platform than Drupal 5.

Probably to John and Matt’s despair (sorry!), all of the chapters of the original edition
of Pro Drupal Development went partially out of date.

Fortunately, the second edition of this book fixes all that. This book covers all of the
capabilities and developer facilities in Drupal 6 and provides deep insight into the inner
workings and design choices behind Drupal 6. Every time we release a new major version
of Drupal, Drupal attracts more users and developers. So, if anything was missing for
Drupal 6, it was this book, and I'm indebted to John for revising and expanding it.

Armed with this book and a copy of Drupal’s source code, you can participate in the
Drupal community and contribute to Drupal’s development. If you have figured out how
to do something better, with fewer lines of code or more elegantly and faster than before,
let us know because we are completely and utterly focused on making Drupal rock even
more. I'd love to review and commit your Drupal core patches, and I'm sure many of the
other maintainers would too.

Dries Buytaert
Drupal founder and project lead

XXV

About the Author

JOHN VANDYK began his work with computers on a black Bell and
Howell Apple II by printing out and poring over the BASIC code for
Little Brick Out in order to increase the paddle width. Later, he
manipulated timing loops in assembly to give Pac-Man a larger time
slice than the ghosts. Before discovering Drupal, John was involved
with the UserLand Frontier community and used Plone before writ-
ing his own content management system (with Matt Westgate) using
Ruby.

John is a senior web architect at Lullabot, a Drupal education and consulting firm.
Before that, John was a systems analyst and adjunct assistant professor in the entomol-
ogy department at Iowa State University of Science and Technology. His master’s thesis
focused on cold tolerance of deer ticks, and his doctoral dissertation was on the effective-
ness of photographically created three-dimensional virtual insects on undergraduate
learning.

John lives with his wife Tina in Ames, lowa. They homeschool their passel of children,
who have become used to bedtime stories like “The Adventures of a Node Revision in the
Land of Multiple Joins.”

Xxvii

About the Technical Reviewer

ROBERT DOUGLASS’s Drupal adventure started in 2003 with the
creation of his personal web site, RobsHouse.net. In 2005, Robert
coauthored the book Building Online Communities with Drupal,
phpBB, and WordPress (Apress). As the first book to be published that
covered Drupal in depth, Building Online Communities has proven
to be a valuable guide to Drupal newcomers and experienced
Drupallers alike.

Robert has been responsible for Drupal’s involvement in the
Google Summer of Code program, has spoken about Drupal at numerous conferences,
has published dozens of Drupal-related articles online, and is the founder of the K6In/
Bonn Drupal users group in Germany.

As senior Drupal advisor at Acquia, Robert is working to make Drupal more accessi-
ble, fun, and productive for a wider range of people and organizations. Robert loves
classical music and open source software dearly and looks to each as a source for moti-
vation and optimism.

XXix

Acknowledgments

First of all, thanks to my family members for their understanding and support during
the writing of this book, especially as a “simple revision” turned into a project as large as
the first edition.

Drupal is essentially a community-based project. This book could not have hap-
pened without the selfless gifts of the many people who write documentation, submit
bug reports, create and review improvements, and generally help Drupal to become what
it is today.

But among the many, I'd like to thank those few who went above and beyond what
could have been expected.

Those include the members of the #drupal Internet Relay Chat channel, who put up
with the constant questioning of how things worked, why things were written a certain
way, and whether a bit of code was brilliant or made no sense at all. Significant contribu-
tions came from Brandon Bergren, @ivind Binde, Larry “Crell” Garfield, Dmitri Gaskin,
Charlie Gordon, Gerhard Killesreiter, Greg Knaddison, Druplicon, Rob Loach, Chad Phillips,
and Oleg Terenchuck. Sincere apologies to the many who contributed but whose names
I have missed here.

A special thanks to Robert Douglass, Kdroly Négyesi, Addison Berry, Angela Byron,
Heine Deelstra, Jeff Eaton, Nathan Haug, Kevin Hemenway, Gdbor Hojtsy, Barry Jaspan,
Earl Miles, and James Walker for their critical review of parts of the manuscript.

Thanks to Joel Coats at Iowa State University for believing that this book was a worth-
while investment of time, and thanks to the amazing team at Lullabot.

Thanks to the Apress team for showing grace when code examples needed to be
changed yet again and for magically turning my drafts into a book.

And of course, thanks to Dries Buytaert for sharing Drupal with the world.

XXXi

Introduction

The journey of a software developer is an interesting one. It starts with taking things
apart and inspecting the isolated components to try to understand the whole system.
Next, you start poking at and hacking the system in an attempt to manipulate its behav-
ior. This is how you learn—by hacking.

You follow that general pattern for some time until you reach a point of confidence
where you can build your own systems from scratch. You might roll your own content
management system, for example, deploy it on multiple sites, and think you're changing
the world.

But there comes a critical point, and it usually happens when you realize that the
maintenance of your system starts to take up more time than building the features, when
you wish that you knew back when you started writing the system what you know now.
You begin to see other systems emerge that can do what your system can do and more.
There’s a community filled with people who are working together to improve the soft-
ware, and you realize that they are, for the most part, smarter than you. And even more,
the software is free.

This is what happened to me, and maybe even you, upon discovering Drupal. It’s a
common journey with a happy ending—hundreds of developers working together on one
simultaneous project. You make friends; you make code; and you are still recognized for
your contributions just as you were when you were flying solo.

This book was written for three levels of understanding. First and most importantly,
there are pretty pictures in the form of diagrams and flowcharts; those looking for the big
picture of how Drupal works will find them quite useful. At the middle level are code
snippets and example modules. This is the hands-on layer, where you get your hands
dirty and dig in. I encourage you to install Drupal, work along with the examples (prefer-
ably with a good debugger) as you go through the book, and get comfortable with Drupal.
The last layer is the book as a whole: the observations, tips, and explanations between
the code and pictures. This provides the glue between the other layers.

If you're new to Drupal, I suggest reading this book in order, as chapters are pre-
requisites for those that follow.

Lastly, you can download this book’s code examples as well as the flowcharts and
diagrams from http://drupalbook.comor http://www.apress.com.

Good luck and welcome to the Drupal community!

XXXiii

http://drupalbook.com
http://www.apress.com

CHAPTER 1

How Drupal Works

In this chapter, I'll give you an overview of Drupal. Details on how each part of the system
works will be provided in later chapters. Here, we'll cover the technology stack on which
Drupal runs, the layout of the files that make up Drupal, and the various conceptual terms
that Drupal uses, such as nodes, hooks, blocks, and themes.

What Is Drupal?

Drupal is used to build web sites. It’s a highly modular, open source web content manage-
ment framework with an emphasis on collaboration. It is extensible, standards-compliant,
and strives for clean code and a small footprint. Drupal ships with basic core functionality,
and additional functionality is gained by enabling built-in or third-party modules. Drupal is
designed to be customized, but customization is done by overriding the core or by adding
modules, not by modifying the code in the core. Drupal’s design also successfully separates
content management from content presentation.

Drupal can be used to build an Internet portal; a personal, departmental, or corporate
web site; an e-commerce site; a resource directory; an online newspaper; an image gallery;
an intranet, to mention only a few possibilities. It can even be used to teach a distance-
learning course.

A dedicated security team strives to keep Drupal secure by responding to threats and
issuing security updates. A nonprofit organization called the Drupal Association supports
Drupal by improving the drupal.org web site infrastructure and organizing Drupal confer-
ences and events. And a thriving online community of users, site administrators, designers,
and web developers work hard to continually improve the software; see http://drupal.org
and http://groups.drupal.org.

Technology Stack

Drupal’s design goals include both being able to run well on inexpensive web hosting
accounts and being able to scale up to massive distributed sites. The former goal means using
the most popular technology, and the latter means careful, tight coding. Drupal’s technology
stack is illustrated in Figure 1-1.

http://drupal.org
http://groups.drupal.org

2

CHAPTER 1 = HOW DRUPAL WORKS

PHP
Language
Database Abstraction Layer
Database MySQL / PostgreSQL / ...
Web Server Apache / lighttpd / IS / ...
Operating System Linux / BSD / Mac OS X / Windows / Solaris / ...

Figure 1-1. Drupal’s technology stack

The operating system is at such a low level in the stack that Drupal does not care much
about it. Drupal runs successfully on any operating system that supports PHP.

The web server most widely used with Drupal is Apache, though other web servers
(including Microsoft IIS) may be used. Because of Drupal’s long history with Apache, Drupal
ships with .htaccess files that secure the Drupal installation. Clean URLs—that is, those
devoid of question marks, ampersands, or other strange characters—are achieved using
Apache’s mod_rewrite component. This is particularly important because when migrating
from another content management system or from static files, the URLs of the content need
not change, and unchanging URIs are cool, according to Tim Berners-Lee (http://www.w3.
org/Provider/Style/URI). Clean URLs are available on other web servers by using the web
server’'s URL rewriting capabilities.

Drupal interfaces with the next layer of the stack (the database) through a lightweight
database abstraction layer. This layer handles sanitation of SQL queries and makes it possi-
ble to use different vendors’ databases without refactoring your code. The most widely
tested databases are MySQL and PostgreSQL, though support for Microsoft SQL Server and
Oracle is increasing.

Drupal is written in PHP. Since PHP is an easy language to learn, there are many PHP
programs written by beginners. The quality of beginner’s code has given PHP a bad reputa-
tion. However, PHP can also be used to write solid code. All core Drupal code adheres to
strict coding standards (http://drupal.org/nodes/318) and undergoes thorough review
through the open source process. For Drupal, the easy learning curve of PHP means that
there is a low barrier to entry for contributors who are just starting out, and the review
process ensures this ease of access comes without sacrificing quality in the end product.
And the feedback beginners receive from the community helps to improve their skills.

Core

A lightweight framework makes up the Drupal core. This is what you get when you download
Drupal from drupal.org. The core is responsible for providing the basic functionality that will
be used to support other parts of the system.

http://www.w3.org/Provider/Style/URI
http://www.w3.org/Provider/Style/URI
http://drupal.org/nodes/318

CHAPTER 1 = HOW DRUPAL WORKS 3

The core includes code that allows the Drupal system to bootstrap when it receives a
request, a library of common functions frequently used with Drupal, and modules that
provide basic functionality like user management, taxonomy, and templating as shown in
Figure 1-2.

' N7 \ 4 ~ 7 N
C?Jif;t User Session URL

Management Management Management Aliasing

\ 7N\ 7 N\ 7N\ /

4 N/ N/ N/ N
Localization Templating Syndication Logging

\ /7 N\ /7 N\ PN /

/7 N

Library of Common Functions

N\, /

Figure 1-2. An overview of the Drupal core (not all core functionality is shown)

Administrative Interface

The administrative interface in Drupal is tightly integrated with the rest of the site and, by
default, uses the same visual theme. The first user, user 1, is the superuser with complete
access to the site. After logging in as user 1, you'll see an Administer link within your user
block (see the “Blocks” section). Click that, and you're inside the Drupal administrative inter-
face. Each user’s block will contain different links depending on his or her access levels for
the site.

Modules

Drupal is a truly modular framework. Functionality is included in modules, which can be
enabled or disabled (some required modules cannot be disabled). Features are added to a
Drupal web site by enabling existing modules, installing modules written by members of the
Drupal community, or writing new modules. In this way, web sites that do not need certain
features can run lean and mean, while those that need more can add as much functionality as
desired. This is shown in Figure 1-3.

CHAPTER 1 = HOW DRUPAL WORKS

/ N N\ ‘)
I : Cust :
mage : : ustom i

Galleries E-commerce AdSense : Module :
: :
1 1
N \ v > & S 3
> N Wl N, N
WYSIWYG Event
Foruma Editing Calendars Workgroups
/ 5N 7/ N\ S

4 N/ N N/ N

Basic :
Contasit " User o Session AlpH!_
Management anagement anagement iasing
\ /7 N\ /7 N\ /7 N\ /
/ N/ N/ N N\
Localization Templating Syndication Logging
\ /\ /\ /\ /
/ N\
Library of Common Functions
\ /

Figure 1-3. Enabling additional modules gives more functionality.

Both the addition of new content types such as recipes, blog posts, or files, and the addi-
tion of new behaviors such as e-mail notification, peer-to-peer publishing, and aggregation
are handled through modules. Drupal makes use of the inversion of control design pattern, in
which modular functionality is called by the framework at the appropriate time. These oppor-
tunities for modules to do their thing are called hooks.

Hooks

Hooks can be thought of as internal Drupal events. They are also called callbacks, though
because they are constructed by function-naming conventions and not by registering with a
listener, they are not truly being called back. Hooks allow modules to “hook into” what is hap-
pening in the rest of Drupal.

Suppose a user logs into your Drupal web site. At the time the user logs in, Drupal fires
the user hook. That means that any function named according to the convention module

CHAPTER 1 = HOW DRUPAL WORKS

name plus hook name will be called. For example, comment_user () in the comment module,
locale_user() in the locale module, node_user() in the node module, and any other similarly
named functions will be called. If you were to write a custom module called spammy.module
and include a function called spammy_user () that sent an e-mail to the user, your function
would be called too, and the hapless user would receive an unsolicited e-mail at every login.

The most common way to tap into Drupal’s core functionality is through the implementa-
tion of hooks in modules.

Tip For more details about the hooks Drupal supports, see the online documentation at http://
api.drupal.org/api/6, and look under Components of Drupal, then “Module system (Drupal hooks).”

Themes

When creating a web page to send to a browser, there are really two main concerns: assem-
bling the appropriate data and marking up the data for the Web. In Drupal, the theme layer is
responsible for creating the HTML (or JSON, XML, etc.) that the browser will receive. Drupal
can use several popular templating approaches, such as Smarty, Template Attribute Language
for PHP (PHPTAL), and PHPTemplate.

The important thing to remember is that Drupal encourages separation of content and
markup.

Drupal allows several ways to customize and override the look and feel of your web site.
The simplest way is by using a cascading style sheet (CSS) to override Drupal’s built-in classes
and IDs. However, if you want to go beyond this and customize the actual HTML output, you'll
find it easy to do. Drupal’s template files consist of standard HTML and PHP. Additionally,
each dynamic part of a Drupal page (such as a box, list, or breadcrumb trail) can be over-
ridden simply by declaring a function with an appropriate name. Then Drupal will use your
function instead to create that part of the page.

Nodes

Content types in Drupal are derived from a single base type referred to as a node. Whether
it'’s a blog entry, a recipe, or even a project task, the underlying data structure is the same.
The genius behind this approach is in its extensibility. Module developers can add features
like ratings, comments, file attachments, geolocation information, and so forth for nodes in
general without worrying about whether the node type is blog, recipe, or so on. The site
administrator can then mix and match functionality by content type. For example, the
administrator may choose to enable comments on blogs but not recipes or enable file
uploads for project tasks only.

Nodes also contain a base set of behavioral properties that all other content types inherit.
Any node can be promoted to the front page of the web site, published or unpublished, or
even searched. And because of this uniform structure, the administrative interface is able to
offer a batch editing screen for working with nodes.

http://api.drupal.org/api/6
http://api.drupal.org/api/6

CHAPTER 1 = HOW DRUPAL WORKS

Blocks

A block is information that can be enabled or disabled in a specific location on your web site’s
template. For example, a block might display the number of current active users on your site. You
might have a block containing links to the most popular content on the site, or a list of upcoming
events. Blocks are typically placed in a template’s sidebar, header, or footer. Blocks can be set to
display on nodes of a certain type, only on the front page, or according to other criteria.

Often blocks are used to present information that is customized to the current user. For
example, the user block only contains links to the administrative areas of the site to which the
current user has access, such as the “My account” page. Regions where blocks may appear (such
as the header, footer, or right or left sidebar) are defined in a site’s theme; placement and visibil-
ity of blocks within those regions is managed through the web-based administrative interface.

File Layout

Understanding the directory structure of a default Drupal installation will teach you several
important best practices such as where downloaded modules and themes should reside and
how to have different Drupal installation profiles. A default Drupal installation has the struc-
ture shown in Figure 1-4.

e —
cron.php includes
e ——
index.php misc
e —
install.php modules
T ——
robots.txt profiles
e —
update.php sites
e —
xmirpc.php scripts
A
themes

Figure 1-4. The default folder structure of a Drupal installation

CHAPTER 1 = HOW DRUPAL WORKS

Details about each element in the folder structure follow:
The includes folder contains libraries of common functions that Drupal uses.

The misc folder stores JavaScript and miscellaneous icons and images available to a stock
Drupal installation.

The modules folder contains the core modules, with each module in its own folder. It is
best not to touch anything in this folder (or any other folder except profiles and sites).
You add extra modules in the sites directory.

The profiles folder contains different installation profiles for a site. If there are other
profiles besides the default profile in this subdirectory, Drupal will ask you which pro-
file you want to install when first installing your Drupal site. The main purpose of an
installation profile is to enable certain core and contributed modules automatically.
An example would be an e-commerce profile that automatically sets up Drupal as an
e-commerce platform.

The scripts folder contains scripts for checking syntax, cleaning up code, running
Drupal from the command line, and handling special cases with cron. This folder is not
used within the Drupal request life cycle; these are shell and Perl utility scripts.

The sites directory (see Figure 1-5) contains your modifications to Drupal in the form
of settings, modules, and themes. When you add modules to Drupal from the con-
tributed modules repository or by writing your own, they go into sites/all/modules.
This keeps all your Drupal modifications within a single folder. Inside the sites direc-
tory will be a subdirectory named default that holds the default configuration file for
your Drupal site—default.settings.php. The Drupal installer will modify these origi-
nal settings based on the information you provide and write a settings.php file for
your site. The default directory is typically copied and renamed to the URL of your

site by the person deploying the site, so your final settings file would be at sites/

www . example.com/settings.php.

The sites/default/files folder doesn’t ship with Drupal by default, but it is needed to
store any files that are uploaded to your site and subsequently served out. Some examples
are the use of a custom logo, enabling user avatars, or uploading other media associated
with your new site. This subdirectory requires read and write permissions by the web
server that Drupal is running behind. Drupal’s installer will create this subdirectory if it
can and will check that the correct permissions have been set.

The themes folder contains the template engines and default themes for Drupal.
Additional themes you download or create should not go here; they go into sites/
all/themes.

cron.php is used for executing periodic tasks, such as pruning database tables and
calculating statistics.

index.php is the main entry point for serving requests.

install.php is the main entry point for the Drupal installer.

http://www.example.com/settings.php

8

CHAPTER 1 = HOW DRUPAL WORKS

update.php updates the database schema after a Drupal version upgrade.

xmlrpc.php receives XML-RPC requests and may be safely deleted from deployments that
do not intend to receive XML-RPC requests.

robots.txt is a default implementation of the robot exclusion standard.

Other files not listed here are documentation files.

v [sites
v [all
v [modules
b [views
README.txt
v [themes
» [mytheme
v [default
default.settings.php
settings.php
v [www.example.com
settings.php

Figure 1-5. The sites folder can store all your Drupal modifications.

Serving a Request

Having a conceptual framework of what happens when a request is received by Drupal is
helpful, so this section provides a quick walk-through. If you want to trace it yourself, use a
good debugger, and start at index. php, which is where Drupal receives most of its requests.
The sequence outlined in this section may seem complex for displaying a simple web page,
but it is rife with flexibility.

The Web Server’s Role

Drupal runs behind a web server, typically Apache. If the web server respects Drupal’s
.htaccess file, some PHP settings are initialized, and the URL is examined. Almost all calls
to Drupal go through index.php. For example, a call to http://example.com/foo/bar under-
goes the following process:

1. Themod rewrite rule in Drupal’s .htaccess file looks at the incoming URL and
separates the base URL from the path. In our example, the path is foo/bar.

2. This path is assigned to the URL query parameter q.
3. The resulting URL is http://example.com/index.php?q=foo/bar.
4. Drupal treats foo/bar as the internal Drupal path, and processing begins in index. php.

As a result of this process, Drupal treats http://example.com/index.php?q=foo/bar and
http://example.com/foo/bar exactly the same way, because internally the path is the same in
both cases. This enables Drupal to use URLs without funny-looking characters in them. These
URLSs are referred to as clean URLs.

http://example.com/foo/bar
http://example.com/index.php?q=foo/bar
http://example.com/index.php?q=foo/bar
http://example.com/foo/bar

CHAPTER 1 = HOW DRUPAL WORKS

In alternate web servers, such as Microsoft IIS, clean URLSs can be achieved using a
Windows Internet Server Application Programming Interface (ISAPI) module such as ISAPI
Rewrite. IIS version 7 and later may support rewriting directly.

The Bootstrap Process

Drupal bootstraps itself on every request by going through a series of bootstrap phases. These
phases are defined in bootstrap.inc and proceed as described in the following sections.

Initialize Configuration

This phase populates Drupal’s internal configuration array and establishes the base URL
($base_url) of the site. The settings.php file is parsed via include_once(), and any variable
or string overrides established there are applied. See the “Variable Overrides” and “String
Overrides” sections of the file sites/all/default/default.settings.php for details.

Early Page Cache

In situations requiring a high level of scalability, a caching system may need to be
invoked before a database connection is even attempted. The early page cache phase lets
you include (with include()) a PHP file containing a function called page cache
fastpath(), which takes over and returns content to the browser. The early page cache

is enabled by setting the page cache_fastpath variable to TRUE, and the file to be included
is defined by setting the cache_inc variable to the file’s path. See the chapter on caching
for an example.

Initialize Database

During the database phase, the type of database is determined, and an initial connection is
made that will be used for database queries.

Hostname/IP-Based Access Control

Drupal allows the banning of hosts on a per-hostname/IP address basis. In the access con-
trol phase, a quick check is made to see if the request is coming from a banned host; if so,
access is denied.

Initialize Session Handling

Drupal takes advantage of PHP’s built-in session handling but overrides some of the han-
dlers with its own to implement database-backed session handling. Sessions are initialized
or reestablished in the session phase. The global $user object representing the current user
is also initialized here, though for efficiency not all properties are available (they are added
by an explicit call to the user load() function when needed).

10

CHAPTER 1 = HOW DRUPAL WORKS

Late Page Cache

In the late page cache phase, Drupal loads enough supporting code to determine whether or
not to serve a page from the page cache. This includes merging settings from the database into
the array that was created during the initialize configuration phase and loading or parsing
module code. If the session indicates that the request was issued by an anonymous user and
page caching is enabled, the page is returned from the cache and execution stops.

Language Determination

At the language determination phase, Drupal’s multilingual support is initialized and a deci-
sion is made as to which language will be used to serve the current page based on site and
user settings. Drupal supports several alternatives for determining language support, such
as path prefix and domain-level language negotiation.

Path

At the path phase, code that handles paths and path aliasing is loaded. This phase enables
human-readable URLs to be resolved and handles internal Drupal path caching and
lookups.

Full

This phase completes the bootstrap process by loading a library of common functions, theme
support, and support for callback mapping, file handling, Unicode, PHP image toolkits, form
creation and processing, mail handling, automatically sortable tables, and result set paging.
Drupal’s custom error handler is set, and all enabled modules are loaded. Finally, Drupal fires
the init hook, so that modules have an opportunity to be notified before official processing of
the request begins.

Once Drupal has completed bootstrapping, all components of the framework are avail-
able. It is time to take the browser’s request and hand it off to the PHP function that will
handle it. The mapping between URLs and functions that handle them is accomplished using
a callback registry that takes care of both URL mapping and access control. Modules register
their callbacks using the menu hook (for more details, see Chapter 4).

When Drupal has determined that there exists a callback to which the URL of the browser
request successfully maps and that the user has permission to access that callback, control is
handed to the callback function.

Processing a Request

The callback function does whatever work is required to process and accumulate data needed
to fulfill the request. For example, if a request for content such as http://example.com/
g=node/3 is received, the URL is mapped to the function node_page view() in node.module.
Further processing will retrieve the data for that node from the database and put it into a data
structure. Then, it’s time for theming.

http://example.com

CHAPTER 1 = HOW DRUPAL WORKS

Theming the Data

Theming involves transforming the data that has been retrieved, manipulated, or created
into HTML (or XML or other output format). Drupal will use the theme the administrator
has selected to give the web page the correct look and feel. The resulting output is then sent
to the web browser (or other HTTP client).

Summary

After reading this chapter, you should understand in general how Drupal works and have an
overview of what happens when Drupal serves a request. The components that make up the
web page serving process will be covered in detail in later chapters.

1

CHAPTER 2

Writing a Module

In many open source applications, you can customize the application by modifying the
source code. While this is one method for getting the behavior you desire, it is generally
frowned upon and considered a last resort in the Drupal community. Customizing code
means that with each update of Drupal, you must perform more work—you must test to see
that your customization still works as expected. Instead, Drupal is designed from the ground
up to be modular and extensible.

Drupal is a very lean framework for building applications and the default installation is
referred to as the Drupal core. Functionality is added to the core by enabling modules, which
are files that contain PHP code. Core modules reside in the modules subdirectory of your
Drupal installation. Take a look at that directory now, and compare it to the list of modules
you see when you navigate to Administer » Site building » Modules on your Drupal site.

In this chapter, we are going to build a module from scratch. As you build the module,
you'll learn about the standards to which modules must adhere. We need a realistic goal, so
let’s focus on the real-world problem of annotation. When looking through the pages of a
Drupal web site, users may comment on content if the administrator has enabled the com-
ment module. But what about making an annotation (a type of note that only the user can
see) to a web page? This might be useful for confidentially reviewing content (I know it seems
contrived, but bear with me).

Creating the Files

The first thing we are going to do is to choose a name for the module. The name “annotate”
seems appropriate—it’s short and descriptive. Next, we need a place to put the module. We
could put it in the modules directory along with the core modules, but that would make main-
tenance more difficult, because we'd have to remember which modules are core modules and
which are ours. Let’s put it in sites/all/modules to keep it separate from the core modules.
Create the sites/all/modules directory if necessary. Create a subdirectory called custom
in sites/all/modules and a subdirectory called annotate in sites/all/modules/custom. This
will keep the custom modules you develop separate from third-party modules you download.
This organization is up to you but can be helpful to orient another developer should you need
to hand off your site. We create a subdirectory and not just a file named annotate.module
because we're going to include other files besides the module file in our module distribution.
For example, we'll need a README . txt file to explain to other users what our module does and
how to use it, and an annotate. info file to provide some information about our module to

Drupal. Ready to begin?
13

14

CHAPTER 2 = WRITING A MODULE

Our annotate. info file follows:

; Id

name = Annotate

description = Allows users to annotate nodes.
core = 6.X

package = Pro Drupal Development

The file is in a simple format that defines keys and values. We start with a concurrent
versions system (CVS) identification tag. If we want to share our module with others by
checking it into Drupal’s contributed modules repository, this value will automatically be
replaced by CVS. Then we provide a name and description for Drupal to display in the
module administration section of the web site. We explicitly define which major version
of Drupal our module is compatible with; in this case, version 6.x. Drupal 6 and later will
not allow incompatible modules to be enabled. Modules are displayed in groups, and the
grouping is determined by the package; thus, if we have three different modules that have
package = Pro Drupal Development, they will display in one group. We could assign
optional values in addition to those listed previously. Here’s an example of a module
that requires PHP 5.2 and the forum and taxonomy modules:

; $1d$

name = Forum confusion

description = Randomly reassigns replies to different discussion threads.
core = 6.x

dependencies[] = forum

dependencies[] = taxonomy

package = "Evil Bob's Forum BonusPak"

php = 5.2

Note You might be wondering why we need a separate . info file. Why not just have a function in our
main module that returns this metadata? Because when the module administration page loads, it would
have to load and parse every single module whether enabled or not, leading to memory use far higher than
normal and possibly over the memory limit assigned to PHP. With . info files, the information can be loaded
quickly and with minimal memory use.

Now we're ready to create the actual module. Create a file named annotate.module inside
your sites/all/modules/custom/annotate subdirectory. Begin the file with an opening PHP
tag and a CVS identification tag, followed by a comment:

<?php
// $1d$

CHAPTER 2 © WRITING A MODULE

@file
Lets users add private annotations to nodes.

Adds a text field when a node is displayed
so that authenticated users may make notes.

First, note the comment style. We begin with /**, and on each succeeding line, we use a
single asterisk indented with one space (*) and */ on a line by itself to end a comment. The
@file token denotes that what follows on the next line is a description of what this file does.
This one-line description is used so that api.module, Drupal’s automated documentation
extractor and formatter, can find out what this file does. After a blank line, we add a longer
description aimed at programmers who will be examining (and no doubt improving) our
code. Note that we intentionally do not use a closing tag (?>); these are optional in PHP and,
if included, can cause problems with trailing whitespace in files (see http://drupal.org/
node/545).

Note Why are we being so picky about how everything is structured? It's because when hundreds of
people from around the world work together on a project, it saves time when everyone does things one
standard way. Details of the coding style required for Drupal can be found in the “Coding standards” section
of the Developing for Drupal Handbook (http://drupal.org/node/318).

Our next order of business is to define some settings so that we can use a web-based form
to choose which node types to annotate. There are two steps to complete. First, we'll define a
path where we can access our settings. Then, we'll create the settings form.

Implementing a Hook

Recall that Drupal is built on a system of hooks, sometimes called callbacks. During the
course of execution, Drupal asks modules if they would like to do something. For example,
when determining which module is responsible for the current request, it asks all modules to
provide the paths that the modules will handle. It does this by making a list of all the modules
and calling the function that has the name of the module plus _menu in each module. When it
encounters the annotate module (which it will early on, since the listing is alphabetical by
default), it calls our annotate_menu() function, which returns an array of menu items. Each
item (we only have one at this point) is keyed by the path, in this case, admin/settings/
annotate. The value of our menu item is an array consisting of keys and values describing
what Drupal should do when this path is requested. We'll cover this in detail in Chapter 4,
which covers Drupal’s menu/callback system. Here’s what we’ll add to our module:

15

http://drupal.org
http://drupal.org/node/318

16

CHAPTER 2 = WRITING A MODULE

/**

* Implementation of hook menu().

*/

function annotate_menu() {

$items['admin/settings/annotate'] = array(

"title' => 'Annotation settings',
"description' => 'Change how annotations behave.',
'page callback' => 'drupal get form',
'page arguments' => array('annotate_admin_settings'),
'access arguments' => array('administer site configuration'),
"type' => MENU NORMAL_ ITEM,
'file' => 'annotate.admin.inc',

)5

return $items;

}

Don’t worry too much about the details at this point. This code says, “When the user goes
to http://example.com/?q=admin/settings/annotate, call the function drupal get form(),
and pass it the form ID annotate_admin_settings. Look for a function describing this form in
the file annotate.admin.inc. Only users with the permission administer site configuration
may view this menu item.” When the time comes to display the form, Drupal will ask us to
provide a form definition (more on that in a minute). When Drupal is finished asking all the
modules for their menu items, it has a menu from which to select the proper function to call
for the path being requested.

Note If you're interested in seeing the function that drives the hook mechanism, see the
module invoke all() functionin includes/module.inc.

You should see now why we call it hook_menu() or the menu hook. Drupal hooks are
always created by appending the name of the hook to the name of your module.

Tip Drupal’s hooks allow modification of almost any aspect of the software. A complete list of supported
hooks and their uses can be found at the Drupal APl documentation site (http://api.drupal.org).

Adding Module-Specific Settings

Drupal has various node types (called content types in the user interface), such as stories and
pages. We will want to restrict the use of annotations to only some node types. To do that, we
need to create a page where we can tell our module which node types we want to annotate.
On that page, we will show a set of check boxes, one for each content type that exists. This will

http://example.com/?q=admin/settings/annotate
http://api.drupal.org

CHAPTER 2 © WRITING A MODULE

let the end user decide which content types get annotations by checking or unchecking the
check boxes (see Figure 2-1). Such a page is an administrative page, and the code that com-
poses it need only be loaded and parsed when needed. Therefore, we will put the code into
a separate file, not in our annotate.module file, which will be loaded and run with each web
request. Since we told Drupal to look for our settings form in the annotate.admin. inc file,
create that file at sites/all/modules/custom/annotate/annotate.admin.inc, and add the fol-
lowing code to it:

<?php
/7 $1d$

/**

* @file

* Administration page callbacks for the annotate module.
*/

/**

* Form builder. Configure annotations.

*

* @ingroup forms

* @see system settings form().

*/

function annotate admin settings() {
// Get an array of node types with internal names as keys and
// "friendly names" as values. E.g.,
// array('page' => 'Page', 'story' => 'Story')
$options = node get types('names');

$form["annotate node types'] = array(
'#type' => 'checkboxes',
"#title' => t('Users may annotate these content types'),
'#options' => $options,
'#default value' => variable get('annotate node types', array('page')),
'#description' => t('A text field will be available on these content types to
make user-specific notes.'),

)s

return system settings form($form);

Forms in Drupal are represented as a nested tree structure; that is, an array of arrays. This
structure describes to Drupal’s form rendering engine how the form is to be represented. For
readability, we place each element of the array on its own line. Each form property is denoted
with a pound sign (#) and acts as an array key. We start by declaring the type of form element
to be checkboxes, which means that multiple check boxes will be built using a keyed array.
We've already got that keyed array in the $options variable.

17

18

CHAPTER 2 © WRITING A MODULE

We set the options to the output of the function node_get types('names'), which conve-
niently returns a keyed array of the node types that are currently available in this Drupal
installation. The output would look something like this:

'page’ => 'Page', 'story' => 'Story'

The keys of the array are Drupal’s internal names for the node types, with the friendly
names (those that will be shown to the user) on the right. If your Drupal installation had a
node type called Savory Recipe, the array might look like this:

'page’ => 'Page', 'savory recipe' => 'Savory Recipe', 'story' => 'Story'

Therefore, in our web form, Drupal will generate check boxes for the page and story
node types.
We give the form element a title by defining the value of the #title property.

Note Any returned text that will be displayed to the user (such as the #title and #description prop-
erties of our form field) is inside a t () function, a function provided by Drupal to facilitate string translation.
By running all text through a string translation function, localization of your module for a different language
will be much easier. We did not do this for our menu item because menu items are translated automatically.

The next directive, #default value, will be the default value for this form element.
Because checkboxes is a multiple form element (i.e., there is more than one check box) the
value for #default value will be an array.

The value of #default_value is worth discussing:

variable_get('annotate_node_types', array('story'))

Drupal allows programmers to store and retrieve any value using a special pair of
functions: variable get() and variable set().The values are stored to the variables
database table and are available anytime while processing a request. Because these vari-
ables are retrieved from the database during every request, it’s not a good idea to store
huge amounts of data this way. But it’s a very convenient system for storing values like
module configuration settings. Note that what we pass to variable get() is a key describ-
ing our value (so we can get it back) and a default value. In this case, the default value is
an array of which node types should allow annotation. We're going to allow annotation of
story node types by default.

Tip When using system_settings form(), the name of the form element (in this case,
annotate_node_types) must match the name of the key used in variable get().

CHAPTER 2 © WRITING A MODULE

Lastly, we provide a description to tell the site administrator a bit about the information
that should go into the field.

Save the files you have created, and go to Administer » Site building » Modules. Your
module should be listed at the end of the list in a group titled Pro Drupal Development (if not,
double-check the syntax in your annotate. info and annotate.module files; make sure they are
in the sites/all/modules/custom directory). Go ahead and enable your new module.

Now that the annotate module is enabled, navigating to Administer » Settings » Anno-
tate should show us the configuration form for annotate.module (see Figure 2-1).

Home » Administer » Site configuration
Annotation settings
Users may annotate these content types:

™ Page
[Story

A text field will be available on these content types to make user-specific notes.

(Save configuration) (Reset to defaults)

Figure 2-1. The configuration form for annotate.module is generated for us.

In only a few lines of code, we now have a functional configuration form for our module
that will automatically save and remember our settings! OK, one of the lines was pretty long,
but still, this gives you a feeling of the power you can leverage with Drupal.

Adding the Data Entry Form

In order for the user to enter notes about a web page, we're going to need to provide a place for
the notes to be entered. Let’s add a form for notes to annotate.module.
/**
* Implementation of hook nodeapi().
*/
function annotate nodeapi(&$node, $op, $teaser, $page) {
global $user;
switch ($op) {
// The 'view' operation means the node is about to be displayed.
case 'view':
// Abort if the user is an anonymous user (not logged in) or
// if the node is not being displayed on a page by itself
// (for example, it could be in a node listing or search result).
if ($user->uid == 0 || !$page) {
break;
}
// Find out which node types we should annotate.
$types to annotate = variable get('annotate nodetypes', array('page'));

19

20

CHAPTER 2 = WRITING A MODULE

// Abort if this node is not one of the types we should annotate.
if (!in_array($node->type, $types to annotate)) {
break;

}

// Add our form as a content item.

$node->content["annotation form'] = array(
"#value' => drupal get form('annotate entry form', $node),
"#weight' => 10

);

break;

This looks complicated, so let’s walk through it. First, note that we are implementing yet
another Drupal hook. This time it’s the nodeapi hook, and it’s called when Drupal is doing
various activities with a node, so that other modules (like ours) can modify the node before
processing continues. We are given a node through the $node variable. The ampersand in the
first parameter shows that this is actually a reference to the $node object, which is exciting
because it means any modification we make to the $node object here in our module will be
preserved. Since our objective is to append a form, we are glad that we have the ability to
modify the node.

We're also given some information about what is going on in Drupal at the moment our
code is called. The information resides in the $op (operation) parameter and could be insert
(the node is being created), delete (the node is being deleted), or one of many other values.
Currently, we are only interested in modifying the node when it is being prepared to be
viewed; the $op variable will be view in this case. We structure our code using a switch state-
ment, so that we can easily add cases and see what our module will do in each case.

Next, we quickly check for situations in which we don’t want to display the annotation
field. One case is when the user viewing the node is not logged in (notice that we used the
global keyword to bring the $user object into scope so we could test if the current user is
logged in). Another time we want to avoid displaying the form is when the $page parameter
is not TRUE. If the $page parameter is FALSE, this node is not being displayed by itself but is
being displayed in a list, such as in search engine results or a list of recently updated nodes.
We are not interested in adding anything in such cases. We use the break statement to exit
from the switch statement and avoid modifying the page.

Before we add the annotation form to the web page, we need to check whether the
node being processed for viewing is one of the types for which we enabled annotation on
our settings page, so we retrieve the array of node types we saved previously when we
implemented the settings hook. We save it in a variable with the nicely descriptive name
$types_to annotate. As the second parameter of the variable get() call, we still specify a
default array to use in case the site administrator has not yet visited the settings page for
our module to enter settings. The next step is to check if the node we are working with is,
indeed, of a type contained in $types_to_annotate; again, we bail out using the break
statement if it’s a type of node we don’t want to annotate.

CHAPTER 2 © WRITING A MODULE

Our final task is to create the form and add it to the $node object. First, we'll need to define

the form so that we have something to add. We'll do that in annotate.module in a separate
function whose sole responsibility is to define the form:
/**
* Define the form for entering an annotation.
*/
function annotate_entry form($form state, $node) {
// Define a fieldset.
$form['annotate'] = array(
'#type' => 'fieldset’,
"#title' => t('Annotations'),
)s

// Define a textarea inside the fieldset.
$form['annotate']['note'] = array(
'"#type' => 'textarea',
"#title' => t('Notes'),
"#default value' => isset($node->annotation) ? $node->annotation : '',
'#description’ => t('Make your personal annotations about this content here.
Only you (and the site administrator) will be able to see them.")

)s

// For convenience, save the node ID.
$form["annotate']['nid'] = array(
'"#type' => 'value',
"#value' => $node->nid,

)s

// Define a submit function.

$form["annotate']['submit'] = array(
'"#type' => 'submit',
"#value' => t('Update'),

)5

return $form;

The function takes two parameters. The first, $form_state, is passed automatically by

Drupal to all form functions. We'll ignore it for now; for details, see Chapter 10 where the form

APl is discussed in detail. The second parameter is the $node object that we passed into
drupal get form() inside our nodeapi hook implementation previously.
We create the form the same way we did in our annotate_admin_settings() function, by

creating a keyed array—only this time we want to put our text box and Submit button inside a

fieldset so that they are grouped together on the web page. First, we create an array, set #type
to be 'fieldset', and give it a title. Then we create the array that describes the textarea. Note
that the array key of the textarea array is a member of the fieldset array. In other words, we

21

22

CHAPTER 2 = WRITING A MODULE

use $form['annotate']['note’] instead of $form['note']. This way, Drupal can infer that the
textarea element is a member of the fieldset element. We use the ternary operator to prepopu-
late the textarea with an existing annotation or, if no current annotation exists, with an empty
string. Last, we create the submit button and return the array that defines our form.

Back in the annotate_nodeapi() function, we appended the form to the page’s content
by adding a value and weight to the node’s content. The value contains what to display, and
the weight tells Drupal where to display it in relation to other content the node may have.
We want our annotation form to be low on the page, so we assign it a relatively heavy weight
of 10. What we want to display is our form, so we call drupal get form() to change our form
from an array describing how it should be built to the finished HTML form. Note how we
pass the $node object along to our form function; we’ll need that to get any previous annota-
tion and prefill the form with it.

Create and view a Page node in your web browser, and you should see that the form has
been appended with the annotations form (see Figure 2-2).

Annoctations

Notes:

g

Make your personal annotations about this content here. Only you (and the site administrator) will be able to see them.

Figure 2-2. The annotation form as it appears on a Drupal web page

What will happen when we click the Update button? Nothing, because we haven't written
any code to do anything with the form contents yet. Let’s add that now. But before we do, we
have to think about where we're going to store the data that the user enters.

Storing Data in a Database Table

The most common approach for storing data used by a module is to create a separate data-
base table for the module’s data. That keeps the data separate from the Drupal core tables.
When deciding what fields to create for your module, you should ask yourself: What data
needs to be stored? If I make a query against this table, what fields and indices would I need?
And finally, what future plans do I have for my module?

The data we need to store are simply the text of the annotation, the numeric ID of the
node it applies to, and the user ID of the user who wrote the annotation. It might also be use-
ful to save a timestamp, so we could show a list of recently updated annotations ordered by
timestamp. Finally, the main question we'll ask of this table is, “What is the annotation for this
user for this node?” We'll create a compound index on the uid and nid fields to make our most
frequent query as fast as possible. The SQL for our table will look something like the following
statement:

CHAPTER 2 © WRITING A MODULE

CREATE TABLE annotate (
uid int(10) NOT NULL,
nid int(10) NOT NULL,
note longtext NOT NULL,
when int(11) NOT NULL default '0',
PRIMARY KEY (uid, nid),

)5

We could just provide this SQL in a README . txt file with our module, and others who
want to install the module would have to manually add the database tables to their data-
bases. Instead, we're going to take advantage of Drupal’s facilities for having the database
tables created at the same time that your module is enabled. We'll create a special file; the
filename should begin with your module name and end with the suffix .install, so for the
annotate.module, the filename would be annotate.install. Create sites/all/modules/
custom/annotate/annotate.install, and enter the following code:

<?php
// $1d$

/**

* Implementation of hook install().

*/

function annotate install() {
// Use schema API to create database table.
drupal install schema('annotate');

}

/**
* Implementation of hook uninstall().
*/
function annotate uninstall() {
// Use schema API to delete database table.
drupal uninstall schema('annotate');
// Delete our module's variable from the variables table.
variable delete('annotate node types');

}

/**
* Implementation of hook schema().
*/
function annotate schema() {
$schema['annotations'] = array(
"description’ => t('Stores node annotations that users write.'),
'fields' => array(
"nid' => array(

23

24 CHAPTER 2 = WRITING A MODULE

"type' => 'int',
'unsigned' => TRUE,

'not null' => TRUE,

'default' => 0,

"description' => t('The {node}.nid to which the annotation applies."'),

))
"uid' => array(
"type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'default' => 0,
"description' => t('The {user}.uid of the user who created the annotation.')
))
"note’ => array(
"description' => t('The text of the annotation.'),
"type' => "text',
'not null' => TRUE,
'size' => 'big'
))
"created' => array(
"description' => t('A Unix timestamp indicating when the annotation
was created.'),
"type' => 'int',
'not null' => TRUE,

"default’ => 0
))
))
"primary key' => array(
"nid', ‘'uid’
))

)5

return $schema;

}

When the annotate module is first enabled, Drupal looks for an annotate.install file and
runs the annotate_install() function, which reads the schema that is described in our imple-
mentation of the schema hook. We describe the database tables and fields we want Drupal to
create, and it translates them into standard SQL for the database we are using. For more infor-
mation on how this works, see Chapter 5. If everything goes well, the database tables will be
created. Let’s try this now. Because we already enabled the module with no database tables,
we need to reinstall our module with our new .install file. Do that now as follows:

CHAPTER 2 © WRITING A MODULE

1. Disable the module on the Administer » Site building » Modules page.

2. Uninstall the module using the Uninstall tab on the Administer » Site building »
Modules page. This causes Drupal to forget about database tables, if any, that are asso-
ciated with a module.

3. Enable the module. This time Drupal will create the tables while the module is being
enabled.

Tip If you made a typo in your . install file or execution fails for another reason, you can make Drupal
forget about your module and its tables by disabling the module at Administer » Site building » Modules
and by uninstalling the module’s tables using the Uninstall tab. As a last resort, deleting the module’s row
from the system table of the database will do the trick.

After Drupal has created the annotations table to store the data, we’ll have to make some
modifications to our code. For one thing, we'll have to add some code to handle the process-
ing of the data once the user enters an annotation and clicks the Update button. Our function
for form submittal follows:

Vs

* Handle submission of the annotation form and saving

* of the data to the database.

*/
function annotate_entry form submit($form, $form state) {

global $user;

$note = $form state['values']['note'];
$nid = $form state['values']['nid'];

db_query('DELETE FROM {annotations} WHERE nid = %d AND uid = %d"',
$nid, $user->uid);

db_query("INSERT INTO {annotations} (nid, uid, note, created) VALUES
(%d, %d, '%s', %d)", $nid, $user->uid, $note, time());

drupal set message(t('Your annotation has been saved.'));

Since we're allowing only one annotation per user per node, we can safely delete the pre-
vious annotation (if any) and insert our own into the database. There are a few things to notice
about our interactions with the database. First, we don't need to worry about connecting to
the database, because Drupal has already done this for us during its bootstrap sequence. Sec-
ond, whenever we refer to a database table, we put it inside curly brackets. This is so that table
prefixing can be done seamlessly (for more on table prefixing, see the notes in sites/default/
settings.php). And third, we use placeholders in our queries and then provide the variables

25

26

CHAPTER 2 = WRITING A MODULE

to be placed, so that Drupal’s built-in query sanitizing mechanism can do its part to prevent
SQL injection attacks. We use the %d placeholder for integers and '%s' for strings. Then, we use
drupal set message() to stash a message in the user’s session, which Drupal will display as a
notice on the next page the user views. This way, the user gets some feedback.

Finally, we need to change our nodeapi hook code so that if there’s an existing annotation,
it gets pulled from the database and is used to prefill our form. Just before we assign our form
to $node->content, we add the following lines, shown in boldface type:

/**

* Implementation of hook nodeapi().

*/

function annotate nodeapi(&$node, $op, $teaser, $page) {
global $user;
switch ($op) {

// The 'view' operation means the node is about to be displayed.

case 'view':
// Abort if the user is an anonymous user (not logged in) or
// if only the node summary (teaser) is being displayed.
if ($user->uid == 0 || !$page) {
break;
}
// Find out which node types we should annotate.
$types to annotate = variable get('annotate node types', array('page'));

// Abort if this node is not one of the types we should annotate.
if (!in_array($node->type, $types to annotate)) {
break;

}

// Get the current annotation for this node from the database

// and store it in the node object.

$result = db_query('SELECT note FROM {annotations} WHERE nid = %d
AND uid = %d', $node->nid, $user-»uid);

$node->annotation = db_result($result);

// Add our form as a content item.

$node->content["annotation form'] = array(
'#value' => drupal get form('annotate entry form', $node),
"#weight' => 10

)5

break;

case 'delete’:
db_query('DELETE FROM {annotations} WHERE nid = %d', $node->nid);
break;

CHAPTER 2 © WRITING A MODULE

We first query our database table to select the annotation for this user and this node.
Next, we use db_result(), a function that gets only the first field of the first row from the result
set. Since we're only allowing one note per user per node, there should only ever be one row.

We've also added a case for the delete operation of the nodeapi hook, so when a node is
deleted the annotations for that node will be deleted as well.

Test your module. It should be able to save and retrieve annotations. Pat yourself on the
back—you've made a Drupal module from scratch. You're on your way to becoming a core
Drupal developer!

Defining Your Own Administration Section

Drupal has several categories of administrative settings, such as content management and
user management, that appear on the main administration page. If your module needs a cate-
gory of its own, you can create that category easily. In this example, we create a new category
called “Node annotation.” To do so, we modify our module’s menu hook to define the new cat-
egory:
Vioio
* Implementation of hook_menu().
*/
function annotate menu() {
$items['admin/annotate'] = array(
'title' => 'Node annotation',
'description’ => 'Adjust node annotation options.’,
"position’ => 'right’,
'weight' => -5,
'page callback' => 'system_admin_menu_block_page’,
'access arguments' => array('administer site configuration'),
'file' => 'system.admin.inc’,
"file path' => drupal_get_path('module’, 'system'),
)s
$items['admin/annotate/settings'] = array(
'title' => 'Annotation settings',
'description’ => 'Change how annotations behave.',
'page callback' => 'drupal get form',
'page arguments' => array('annotate admin_settings'),
'access arguments' => array('administer site configuration'),
"type' => MENU_NORMAL_ITEM,
'file' => 'annotate.admin.inc’,

)s

return $items;

}

The results of our code changes, namely a new category with our module’s setting link in
it, are shown in Figure 2-3.

27

28

CHAPTER 2 © WRITING A MODULE

Node annotation

Adjust node annotation options.

Annotation settings
Change how annotations behave.

Site configuration

Adjust basic site configuration options.

Actions

Manage the actions defined for your site.
Administration theme

Settings for how your administrative pages should look.
Clean URLs

Enable or disable clean URLs for your site.

Figure 2-3. The link to the annotation module settings now appears as a separate category.

If you're following along at home, you’ll need to clear the menu cache to see the link
appear. You can do this by truncating the cache_menu table or by clicking the “Rebuild menus”
link that the Drupal development module (devel.module) provides or by using the Clear
cached data button at Administer » Site configuration » Performance.

Tip The development module (http://drupal.org/project/devel) was written specifically to
support Drupal development. It gives you quick access to many development functions, such as clearing
the cache, viewing variables, tracking queries, and much more. It's a must-have for serious development.
If you do not have it installed, download it, and place the folder at sites/all/modules/devel, then turn
on the Development block at Administer » Site building » Blocks.

We were able to establish our new category in two steps. First, we added a menu item
that describes the category header. This menu item has a unique path (admin/annotate). We
declare that it should be placed in the right column with a weight of -5, because this places
it just above the “Site configuration” category, which is handiest for the screenshot shown in
Figure 2-3.

The second step was to tell Drupal to nest the actual link to annotation settings inside the
“Node annotation” category. We did this by changing the path of our original menu item, so
that instead of admin/settings/annotate, the path is now admin/annotate/settings. Previ-
ously, the menu item was a child of admin/settings, which is the path to the “Site configura-
tion” category, as shown in Table 2-1. When Drupal rebuilds the menu tree, it looks at the
paths to establish relationships among parent and child items and determines that, because

http://drupal.org/project/devel

CHAPTER 2 © WRITING A MODULE

admin/annotate/settings is a child of admin/annotate, it should be displayed as such. Nest
module menu item paths underneath one of the paths shown in Table 2-1 to make those mod-
ules appear in that category on Drupal’s administration page.

Drupal loads only the files that are necessary to complete a request. This saves on mem-
ory usage. Because our page callback points to a function that is outside the scope of our
module (i.e., the function system _admin_menu_block page() in system.module), we need to tell
Drupal to load the file modules/system/system.admin.inc instead of trying to load sites/all/
modules/custom/annotate/system.admin.inc. We did that by telling Drupal to get the path of
the system module and put the result in the file path key of our menu item.

Of course, this is a contrived example, and in real life, you should have a good reason to
create a new category to avoid confusing the administrator (often yourself!) with too many
categories.

Table 2-1. Paths to Administrative Categories

Path Category
admin/content Content management
admin/build Site building
admin/settings Site configuration
admin/user User management
admin/reports Reports

Presenting a Settings Form to the User

In the annotate module, we gave the administrator the ability to choose which node types
would support annotation (see Figure 2-1). Let’s delve into how this works.

When a site administrator wants to change the settings for the annotate module, we
want to display a form so the administrator can select from the options we present. In our
menu item, we set the page callback to point to the drupal get form() function and set the
page arguments to be an array containing annotate_admin_settings. That means that when
you go to http://example.com/?q=admin/annotate/settings, the call drupal get form
("annotate_admin_settings') will be executed, which essentially tells Drupal to build the
form defined by the function annotate_admin_settings().

Let’s take a look at the function defining the form, which defines a check box for node
types (see Figure 2-1), and add two more options. The function is in sites/all/modules/
custom/annotate/annotate.admin.inc:

/**

* Form builder. Configure annotations.
*

* @ingroup forms

* @see system settings form().

*/

29

http://example.com/?q=admin/annotate/settings

30

CHAPTER 2 = WRITING A MODULE

function annotate admin_settings() {
// Get an array of node types with internal names as keys and
// "friendly names" as values. E.g.,
// array('page' => 'Page', 'story' => 'Story')
$options = node get types('names');

$form["annotate node_types'] = array(
"#type' => 'checkboxes',
"#title' => t('Users may annotate these content types'),
"#options' => $options,
"#default value' => variable get('annotate node types', array('page')),
"#description' => t('A text field will be available on these content types
to make user-specific notes.'),

)5

$form['annotate_deletion'] = array(
'#type' => 'radios’,
"#title' => t('Annotations will be deleted'),
"#description' => t('Select a method for deleting annotations.'),
"#options' => array(
t('Never'),
t('Randomly"),
t('After 30 days')
)s

'#default_value' => variable_get('annotate_deletion', 0) // Default to Never

)5

$form['annotate_limit_per node'] = array(
"#type' => 'textfield',
"#title' => t('Annotations per node'),
"#description' => t('Enter the maximum number of annotations allowed per
node (0 for no limit).'),
'#default_value' => variable_get('annotate_limit_per_node', 1),
'#size' => 3

)H

return system settings form($form);

}

We add a radio button to choose when annotations should be deleted and a text entry
field to limit the number of annotations allowed on a node (implementation of these
enhancements in the module is left as an exercise for you). Rather than managing the process-
ing of our own form, we call system settings form() to let the system module add some
buttons to the form and manage validation and submission of the form. Figure 2-4 shows
what the options form looks like now.

CHAPTER 2 © WRITING A MODULE

Home » Administer » Node annotation

Annotation settings

Users may annotate these content types:
™ Page

(-] Story

A text fleld will be avallable on these content types to make user-specific notes.

Annotations will be deleted:

® Never
(O Randomly
() After 30 days

Select a method for deleting annotations.

Annotations per node:
1
Enter the maximum number of annotations allowed per node (0 for no limit).

(Save configuration) (Reset to defaults)

Figure 2-4. Enhanced options form using check box, radio button, and text field options

Validating User-Submitted Settings

If system_settings form() is taking care of saving the form values for us, how can we check
whether the value entered in the “Annotations per node” field is actually a number? Can we
hook into the form submission process somehow? Of course we can. We just need to define a
validation function in sites/all/modules/custom/annotate/annotate.admin. inc and use it to
set an error if we find anything wrong.
/**
* Validate the annotation configuration form.
*/
function annotate admin settings validate($form, $form state) {
$limit = $form state['values']['annotate limit per node'];
if (lis_numeric($limit)) {
form set error('annotate limit per node', t('Please enter a number.'));
}
}

31

CHAPTER 2 © WRITING A MODULE

Now when Drupal processes the form, it will call back to annotate_admin_settings
validate() for validation. If we determine that a bad value has been entered, we set an error
against the field where the error occurred, and this is reflected on the screen in a warning
message and by highlighting the field containing the error, as shown in Figure 2-5.

Annotation settings
Please enter a number.

Users may annotate these content types:

M Page
(7] Story

A text fleld will be avallable on these content types to make user-specific notes.

Annotations will be deleted:

® Never
(O Randomly
() After 30 days

Select a method for deleting annotations.

Annotations per node:

Enter the maximum number of annotations allowed per node (0 for no limit).

(Save configuration) (Reset to defaults)

Figure 2-5. The validation script has set an error.

How did Drupal know to call our function? We named it in a special way, using the name
of the form definition function (annotate _admin_settings) plus validate. For a full explana-
tion of how Drupal determines which form validation function to call, see Chapter 10.

Storing Settings

In the preceding example, changing the settings and clicking the “Save configuration” button
works. If the “Reset to defaults” button is clicked, the fields are reset to their default values.
The sections that follow describe how this happens.

CHAPTER 2 © WRITING A MODULE

Using Drupal’s variables Table

Let’s look at the “Annotations per node” field first. Its #default value key is set to
variable get('annotate limit per node', 1)

Drupal has a variables table in the database, and key-value pairs can be stored using
variable set($key, $value) and retrieved using variable get($key, $default).So we're
really saying, “Set the default value of the ‘Annotations per node’ field to the value stored in
the variables database table for the variable annotate_limit per node, but if no value can
be found, use the value 1.” So when the “Reset to defaults” button is clicked, Drupal deletes
the current entry for the key annotate _limit per node from the variables table and uses the
default value of 1.

Caution In order for the settings to be stored and retrieved in the variables table without namespace
collisions, always give your form element and your variable key the same name (e.g., annotate limit
per_node in the preceding example). Create the form element/variable key name from your module name
plus a descriptive name, and use that name for both your form element and variable key.

The “Annotations will be deleted” field is a little more complex, since it’s a radio button
field. The #options for this field are the following:

"#options' => array(
t('Never'),
t('Randomly"),
t('After 30 days')

)

When PHP gets an array with no keys, it implicitly inserts numeric keys, so internally the
array is really as follows:

"#options' => array(

[0] => t('Never'),

[1] => t('Randomly"),

[2] => t('After 30 days')
)

When we set the default value for this field, we use
'#default value' => variable get('annotate deletion', 0) // Default to Never

which means, in effect, default to item 0 of the array, which is t ('Never").

33

34

CHAPTER 2 = WRITING A MODULE

Retrieving Stored Values with variable_get()

When your module retrieves settings that have been stored, variable get() should be used:

// Get stored setting of maximum number of annotations per node.
$max = variable get('annotate limit per node', 1);

Note the use of a default value for variable get() here also, in case no stored values are
available (maybe the administrator has not yet visited the settings page).

Further Steps

We'll be sharing this module with the open source community, naturally, so a README. txt file
should be created and placed in the annotations directory alongside the annotate.info,
annotate.module, and annotate. install files. The README. txt file generally contains informa-
tion about who wrote the module and how to install it. Licensing information need not be
included, as all modules uploaded to drupal.org are GPL licensed and the packaging script
on drupal.org will automatically add a LICENSE. txt file. Next, you could upload it to the con-
tributions repository on drupal.org, and create a project page to keep track of feedback from
others in the community.

Summary

After reading this chapter, you should be able to perform the following tasks:
¢ Create a Drupal module from scratch.
e Understand how to hook into Drupal’s code execution.
e Store and retrieve module-specific settings.
 Create and process simple forms using Drupal’s forms APIL.
¢ Store and retrieve data using your module’s database table.
* Create a new administrative category on Drupal’s main administration page.

* Define a form for the site administrator to choose options using check boxes, text input
fields, and radio buttons.

 Validate settings and present an error message if validation fails.

* Understand how Drupal stores and retrieves settings using the built-in persistent vari-
able system.

CHAPTER 3

Hooks, Actions, and Triggers

A common goal when working with Drupal is for something to happen when a certain event
takes place. For example, a site administrator may want to receive an e-mail message when a
message is posted. Or a user should be blocked if certain words appear in a comment. This
chapter describes how to hook into Drupal’s events to have your own code run when those
events take place.

Understanding Events and Triggers

Drupal proceeds through a series of events as it goes about its business. These internal events
are times when modules are allowed to interact with Drupal’s processing. Table 3-1 shows
some of Drupal’s events.

Table 3-1. Examples of Drupal Events

Event Type
Creation of a node Node
Deletion of a node Node
Viewing of a node Node
Creation of a user account User
Updating of a user profile User
Login User
Logout User

Drupal developers refer to these internal events as hooks because when one of the
events occurs, Drupal allows modules to hook into the path of execution at that point.
You've already met some hooks in previous chapters. Typical module development involves
deciding which Drupal event you want to react to, that is, which hooks you want to imple-
ment in your module.

Suppose you have a web site that is just starting out, and you are serving the site from
the computer in your basement. Once the site gets popular, you plan to sell it to a huge cor-
poration and get filthy rich. In the meantime, you'd like to be notified each time a user logs
in. You decide that when a user logs in you want the computer to beep. Because your cat is
sleeping and would find the beeps annoying, you decide to simulate the beep for the time

35

36

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

being with a simple log entry. You quickly write an . info file and place it at sites/all/
modules/custom/beep/beep.info:

; $1d$

name = Beep

description = Simulates a system beep.
package = Pro Drupal Development

core = 6.X

Then it’s time to write sites/all/modules/custom/beep/beep.module:

<?php

// $1d$

Vioio

* @file

* Provide a simulated beep.
*/

function beep beep() {
watchdog('beep', 'Beep!');
}

This writes the message “Beep!” to Drupal’s log. Good enough for now. Next, it’s time to
tell Drupal to beep when a user logs in. We can do that easily by implementing hook user()
in our module and catching the login operation:

/¥

* Implementation of hook user().

*/

function beep user($op, 8$edit, &$account, $category = NULL) {
if ($op == 'login') {

beep beep();

}
}

There; that was easy. How about beeping when new content is added, too? We can do
that by implementing hook_nodeapi() in our module and catching the insert operation:
/**

* Implementation of hook nodeapi().

*/

function hook nodeapi(&$node, $op, $a3 = NULL, $a4 = NULL) {
if ($op == 'insert') {

beep beep();

}
}

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

What if we wanted a beep when a comment is added? Well, we could implement
hook comment () and catch the insert operation, but let’s stop and think for a minute. We're
essentially doing the same thing over and over. Wouldn't it be nice to have a graphical user
interface where we could associate the action of beeping with whatever hook and whatever
operation we'd like? That’s what Drupal’s built-in trigger module does. It allows you to
associate some action with a certain event. In the code, an event is defined as a unique hook-
operation combination, such as “user hook, login operation” or “nodeapi hook, insert
operation.” When each of these operations occurs, trigger.module lets you trigger an action.

To avoid confusion, let’s clarify our terms:

e Event: Used in the generic programming sense, this term is generally understood as
a message sent from one component of a system to other components.

* Hook: This programming technique, used in Drupal, allows modules to “hook into”
the flow of execution.

¢ Operation: This refers to the specific process that is being performed within a hook.
For example, the login operation is an operation of the user hook.

 Trigger: This refers to a specific combination of a hook and an operation with which
one or more actions can be associated. For example, the action of beeping can be
associated with the login operation of the user hook.

Understanding Actions

An action is something that Drupal does. Here are some examples:
e Promoting a node to the front page
* Changing a node from unpublished to published
e Deleting a user
¢ Sending an e-mail

Each of these cases has a clearly defined task. Programmers will notice the similarity
to PHP functions in the preceding list. For example, you could send e-mail by calling the
drupal mail() function in includes/mail.inc. Actions sound similar to functions, because
actions are functions. They are functions that Drupal can introspect and loosely couple with
events (more on that in a moment). Now, let’s examine the trigger module.

The Trigger User Interface

Navigate to Administer » Site building » Modules, and enable the trigger module. Then go
to Administer » Site building » Triggers. You should see an interface similar to the one shown
in Figure 3-1.

37

38

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

Home » Administer » Site building » Triggers

Triggers
Comments Content Cron Taxonomy Users

Triggers are system events, such as when new content is added or when a user logs
in. Trigger module combines these triggers with actions (functional tasks), such as
unpublishing content or e-mailing an administrator. The Actions settings page
contains a list of existing actions and provides the ability to create and configure
additional actions.

Below you can assign actions to run when certain content-related triggers happen.
For example, you could remove a post from the front page when the post is updated.

[more help...]
Trigger: When either saving a new post or updating an existing post

[Choose an action v| Assign |
Choose an action
‘node
Publish post -
Unpublish post j ﬂl

Make post sticky
Make post unsticky

Promote post to front page = .
Remove post from front page J ﬂl
Trigger: After deleting a post
IChoose an action | Assign |

Trigger: When content is viewed by an authenticated user

IChoose an action | Assign |

Figure 3-1. The trigger assignment interface

Notice the tabs across the top. Those correspond to Drupal hooks! In Figure 3-1, we are
looking at the operations for the nodeapi hook. They've all been given nice names; for exam-
ple, the delete operation of the nodeapi hook is labeled “After deleting a post.” So each of the
hook’s operations is shown with the ability to assign an action such as “Promote post to front
page” when that operation happens. Each action that is available is listed in the “Choose an
action” drop-down.

Note Not all actions are available for all triggers, because some actions do not make sense in certain
contexts. For example, you wouldn’t run the “Promote post to front page” action with the trigger “After delet-
ing a post.” Depending on your installation, some triggers may display “No actions available for this trigger.”

Some trigger names and their respective hooks and operations are shown in Table 3-2.

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

Table 3-2. How Hooks, Operations, and Triggers Relate in Drupal 6

Hook Operation Trigger Name

comment insert After saving a new comment

comment update After saving an updated comment

comment delete After deleting a comment

comment view When a comment is being viewed by an authenticated user
cron Tun When cron runs

nodeapi presave When either saving a new post or updating an existing post
nodeapi insert After saving a new post

nodeapi update After saving an updated post

nodeapi delete After deleting a post

nodeapi view When content is viewed by an authenticated user
taxonomy insert After saving a new term to the database

taxonomy update After saving an updated term to the database
taxonomy delete After deleting a term

user insert After a user account has been created

user update After a user’s profile has been updated

user delete After a user has been deleted

user login After a user has logged in

user logout After a user has logged out

user view When a user’s profile is being viewed

Your First Action

What do we need to do in order for our beep function to become a full-fledged action? There

are two steps:

1. Inform Drupal which triggers the action should support.

2. Create your action function.

The first step is accomplished by implementing hook action info().Here’s how it should

look for our beep module:

/%K

* Implementation of hook action info().

*/

39

40

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

function beep action info() {
$info["'beep beep action'] = array(
"type' => 'system',
"description’ => t('Beep annoyingly'),
'configurable' => FALSE,
"hooks' => array(
"nodeapi' => array('view', 'insert', 'update', 'delete'),
"comment' => array('view', 'insert', 'update', 'delete'),
"user' => array('view', 'insert', 'update', 'delete', 'login'),
"taxonomy' => array('insert', 'update', 'delete'),
)J
)s

return $info;

}

The function name is beep_action_info(), because like other hook implementations,
we use our module name (beep) plus the name of the hook (action_info). We'll be return-
ing an array with an entry for each action in our module. We are only writing one action,
so we have only one entry, keyed by the name of the function that will perform the action:
beep_beep action().It’s handy to know when a function is an action while reading through
code, so we append _action to the name of our beep_beep() function to come up with
beep beep action().

Let’s take a closer look at the keys in our array.

 type: This is the kind of action you are writing. Drupal uses this information to cate-
gorize actions in the drop-down select box of the trigger assignment user interface.
Possible types include system, node, user, comment, and taxonomy. A good question to ask
when determining what type of action you are writing is, “What object does this action
work with?” (If the answer is unclear or “lots of different objects!” use the system type.)

e description: This is the friendly name of the action that will be shown in the drop-
down select box of the trigger assignment user interface.

e configurable: This determines whether or not the action takes any parameters.

* hooks: In this array of hooks, each entry must enumerate the operations the action sup-
ports. Drupal uses this information to determine where it is appropriate to list possible
actions in the trigger assignment user interface.

We've described our action to Drupal, so let’s go ahead and write it:
/**
* Simulate a beep. A Drupal action.
*/
function beep beep action() {
beep beep();

}

CHAPTER 3

That wasn'’t too difficult, was it? Before continuing, go ahead and delete beep_user()
and beep nodeapi(), since we'll be using triggers and actions instead of direct hook

implementations.

Assigning the Action

Now, let’s revisit Administer » Site building » Triggers. If you've done everything correctly,
your action should be available in the user interface, as shown in Figure 3-2.

HOOKS, ACTIONS, AND TRIGGERS

Home » Administer » Site building » Triggers

Triggers
Comments Content Cron Taxonomy Users

Triggers are system events, such as when new content is added or when a user logs
in. Trigger module combines these triggers with actions (functional tasks), such as
unpublishing content or e-mailing an administrator. The Actions settings page
contains a list of existing actions and provides the ability to create and configure
additional actions.

Below you can assign actions to run when certain content-related triggers happen.
For example, you could remove a post from the front page when the post is updated.

[more help...]
Trigger: When either saving a new post or updating an existing post

IChoose an action | Assign |
Trigger: After saving a new post

IChoose an action ¥| Assign |

Trigger: After saving an updated post

IChoose an action ¥| Assign |

Trigger: After deleting a post

IChoose an action ¥| Assign |

Trigger: When content is viewed by an authenticated user

EChoose an action | Assign |

Choose an action
system
Beep annoyingly

Figure 3-2. The action should be selectable in the triggers user interface.

Changing Which Triggers an Action Supports

If you modify the values that define which operations this action supports, you should see the
availability change in the user interface. For example, the “Beep” action will be available only
to the “After deleting a post” trigger if you change beep _action_info() as follows:

/**

* Implementation of hook action info().
*/

41

42

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

function beep action info() {
$info['beep beep action'] =
"type' => 'system',
"description’ => t('Beep annoyingly'),
'configurable' => FALSE,
"hooks' => array(
'nodeapi’ => array('delete'),
)
);

array(

return $info;

}

Actions That Support Any Trigger

If you don’t want to restrict your action to a particular trigger or set of triggers, you can declare
that your action supports any trigger:

/**
* Implementation of hook action info().
*/
function beep action info() {
$info['beep beep action'] = array(
"type' => 'system’',
"description' => t('Beep annoyingly'),
'configurable' => FALSE,
"hooks"' => array(
‘any' => TRUE,
)J
);

return $info;

}

Advanced Actions

There are essentially two kinds of actions: actions that take parameters and actions that do
not. The “Beep” action we've been working with does not take any parameters. When the
action is executed, it beeps once and that’s the end of it. But there are many times when
actions need a bit more context. For example, a “Send e-mail” action needs to know to whom
to send the e-mail and what the subject and message are. An action like that requires some
setup in a configuration form and is called an advanced action, also called a configurable
action.

Simple actions take no parameters, do not require a configuration form, and are automat-
ically made available by the system (after visiting Administer » Site building » Modules). You
tell Drupal that the action you are writing is an advanced action by setting the configurable
key to TRUE in your module’s implementation of hook_action_info(), by providing a form to

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

configure the action, and by providing an optional validation handler and a required submit
handler to process the configuration form. The differences between simple and advanced
actions are summarized in Table 3-3.

Table 3-3. Summary of How Simple and Advanced Actions Differ

Simple Action Advanced Action

Parameters No* Required

Configuration form No Required

Availability Automatic Must create instance of action using actions
administration page

Value of configure key in FALSE TRUE

hook_action_info()

* The $object and $context parameters are available if needed.

Let’s create an advanced action that will beep multiple times. We will be able to specify
the number of times that the action will beep using a configuration form.
First, we will need to tell Drupal that this action is configurable. Let’s add an entry for our
new action in the action_info hook implementation of beep.module:
/**
* Implementation of hook action info().
*/
function beep action info() {
$info["beep beep action'] = array(
"type' => 'system',
"description’ => t('Beep annoyingly'),
'configurable' => FALSE,
"hooks" => array(
"nodeapi' => array('delete'),
)s
)s
$info['beep_multiple_beep_action'] = array(
"type' => 'system',
'description’ => t('Beep multiple times'),
'configurable' => TRUE,
"hooks' => array(
‘any' => TRUE,
)5
)s

return $info;

}

43

44 CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

Let’s quickly check if we've done the implementation correctly at Administer » Site con-
figuration » Actions. Sure enough, the action should show up as a choice in the advanced
actions drop-down select box, as shown in Figure 3-3.

Actions available to Drupal:

Action type Description

comment Unpublish comment

node Publish post

node Unpublish post

node Make post sticky

node Make post unsticky

node Promote post to front page
node Remove post from front page
node Save post

user Block current user

user Ban IP address of current user
system Beep annoyingly

Make a new advanced action available

£ Choose an advanced action ' w| Create

|Choose an advanced action
Unpublish comment containing keyword(s)...
Change the author of a post...
|Unpublish post containing keyword(s)...
~ Display a message to the user...
Send e-mail...
Redirect to URL...

BeeB rnultiBIe times... E .

Figure 3-3. The new action appears as a choice.

Now, we need to provide a form so that the administrator can choose how many beeps
are desired. We do this by defining one or more fields using Drupal’s form API. We'll also write
functions for form validation and submission. The names of the functions are based on the
action’s ID as defined in hook_action_info(). The action ID of the action we are currently dis-
cussing is beep_multiple beep action, so convention dictates that we add _form to the form
definition function name to get beep multiple beep action_form. Drupal expects a vali-
dation function named from the action ID plus validate (beep multiple beep action
validate) and a submit function named from the action ID plus _submit (beep multiple
beep action submit).

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

/**
* Form for configurable Drupal action to beep multiple times.
*/
function beep multiple beep action form($context) {
$form['beeps'] = array(
"#type' => 'textfield',
"#title' => t('Number of beeps'),
"#description' => t('Enter the number of times to beep when this action
executes. '),
"#default value' => isset($context['beeps']) ? $context['beeps'] : '1',
'#required' => TRUE,
)s
return $form;

}

function beep multiple beep action validate($form, $form state) {
$beeps = $form state['values']['"beeps'];
if (!is_numeric($beeps)) {
form set error('beeps', t('Please enter a numeric value.'));
}
else if ((int) $beeps > 10) {
form set error('beeps', t('That would be too annoying. Please choose fewer
than 10 beeps.'));
}
}

function beep multiple beep action submit($form, $form state) {
return array(
"beeps' => (int) $form state['values']['beeps']
)s
}

The first function describes the form to Drupal. The only field we define is a single text
field so that the administrator can enter the number of beeps. When the administrator
chooses to add the advanced action “Beep multiple times,” as shown in Figure 3-3, Drupal will
use our form field to present a full action configuration form, as shown in Figure 3-4.

45

46

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

Home » Administer » Site configuration » Actions

Configure an advanced action

An advanced action offers additional configuration options which may be filled out below.
Changing the Description field is recommended, in order to better identify the precise
action taking place. This description will be displayed in modules such as the trigger
module when assigning actions to system events, so it is best if it is as descriptive as
possible (for example, "Send e-mail to Moderation Team" rather than simply "Send
e-mail").

Description:

IBeep multiple times
A unique description for this advanced action. This description will be displayed In the Interface of modules
that Iintegrate with actions, such as Trigger module.

Number of beeps: *
11

Enter the number of times to beep when this action executes.
Save I

Figure 3-4. The action configuration form for the “Beep multiple times” action

Drupal has added a Description field to the action configuration form. The value of this
field is editable and will be used instead of the default description that was defined in the
action_info hook. That makes sense, because we could create one advanced action to beep
two times and give it the description “Beep two times” and another that beeps five times
with the description “Beep five times.” That way, we could tell the difference between the
two advanced actions when assigning actions to a trigger. Advanced actions can thus be
described in a way that makes sense to the administrator.

Tip These two actions, “Beep two times” and “Beep five times,” can be referred to as instances of the
“Beep multiple times” action.

The validation function is like any other form validation function in Drupal (see Chap-
ter 10 for more on form validation). In this case, we check to make sure the user has actually
entered a number and that the number is not excessively large.

The submit function’s return value is special for action configuration forms. It should be
an array keyed by the fields we are interested in. The values in this array will be made available
to the action when it runs. The description is handled automatically, so we only need to return
the field we provided, that is, the number of beeps.

Finally, it is time to write the advanced action itself:

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

Vs
* Configurable action. Beeps a specified number of times.
*/
function beep multiple beep action($object, $context) {

for ($i = 1; $i < $context['beeps']; $i++) {

beep beep();

}

}

You'll notice that the action accepts two parameters, $object and $context. This is in con-
trast to the simple action we wrote earlier, which used no parameters.

Note Simple actions can take the same parameters as configurable actions. Because PHP ignores
parameters that are passed to a function but do not appear in the function’s signature, we could simply
change the function signature of our simple action from beep_beep_action() to beep_beep_action
($object, $context) if we had a need to know something about the current context. All actions are
called with the $object and $context parameters.

Using the Context in Actions

We've established that the function signature for actions is example action($object,
$context). Let’s examine each of those parameters in detail.

* $object: Many actions act on one of Drupal’s built-in objects: nodes, users, tax-
onomy terms, and so on. When an action is executed by trigger.module, the object
that is currently being acted upon is passed along to the action in the $object
parameter. For example, if an action is set to execute when a new node is created,
the $object parameter will contain the node object.

e $context: An action can be called in many different contexts. Actions declare which
triggers they support by defining the hooks key in hook_action_info(). But actions
that support multiple triggers need some way of determining the context in which
they were called. That way, an action can act differently depending on the context.

How the Trigger Module Prepares the Context

Let’s set up a scenario. Suppose you are running a web site that presents controversial issues.
Here’s the business model: users pay to register and may leave only a single comment on the
web site. Once they have posted their comment, they are blocked and must pay again to get
unblocked. Ignoring the economic prospects for such a site, let’s focus on how we could
implement this with triggers and actions. We will need an action that blocks the current user.
Examining user.module, we see that Drupal already provides this action for us:

47

48

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

/**
* Implementation of hook action info().
*/
function user action info() {
return array(

'user_block user action' => array(
"description' => t('Block current user'),
"type' => 'user’,

"configurable' => FALSE,
"hooks' => array(),

))

'user block ip action' => array(
"description' => t('Ban IP address of current user'),
"type' => 'user’,

"configurable' => FALSE,
"hooks' => array(),
))
)
}

However, these actions do not show up on the triggers assignment page, because they do
not declare any supported hooks; the hooks key is just an empty array. If only we could change
that! But we can.

Changing Existing Actions with drupal_alter()

When Drupal runs the action_info hook so that each module can declare the actions it pro-
vides, Drupal also gives modules a chance to modify that information—including information
provided by other modules. Here is how we would make the “Block current user” action avail-
able to the comment insert trigger:

J¥k

* Implementation of hook drupal alter(). Called by Drupal after
* hook_action_info() so modules may modify the action info array.
*
* @param array $info
* The result of calling hook_action_info() on all modules.
*/
function beep action info alter(&$info) {
// Make the "Block current user" action available to the
// comment insert trigger. If other modules have modified the
// array already, we don't stomp on their changes; we just make sure
// the 'insert' operation is present. Otherwise, we assign the
// 'insert' operation.
if (isset($info['user block user action']["hooks']['comment'])) {
array merge($info['user block user action']["hooks']['comment'],
array('insert'));

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

else {
$info['user block user action']['hooks']['comment'] = array('insert');
}
}

The end result is that the “Block current user action” is now assignable, as shown in
Figure 3-5.

Home » Administer » Site building » Triggers

Triggers

| Comments || Content || Cron || Taxonomy || Users |
Triggers are system events, such as when new content is added or when a user logs in.
Trigger module combines these triggers with actions (functional tasks), such as unpublishing

content or e-mailing an administrator. The Actions settings page contains a list of existing
actions and provides the ability to create and configure additional actions.

Below you can assign actions to run when certain comment-related triggers happen. For
example, you could promote a post to the front page when a comment is added.

[more help...]
Trigger: After saving a new comment

{Choose an action iv| Assign I
Choose an action
comment ent
Unpublish comment X
node _Assign |
' Publish post |
1 Unpublish post -
Make post sticky o
| Make post unsticky _ﬂ,

Promote post to front page
* Remove post from front page [wed by an authenticated user
‘ Save post
\user

Block current user [
\system

| Beeﬁ annoxinali

Figure 3-5. Assigning the “Block current user” action to the comment insert trigger

Establishing the Context

Because of the action we have assigned, when a new comment is posted, the current user will
be blocked. Let’s take a closer look at how that happens. We already know that Drupal’s way of
notifying modules that certain events are happening is to fire a hook. In this case, it is the
comment hook. The particular operation that is happening is the insert operation, since a
new comment is being added. The trigger module implements the comment hook. Inside this
hook, it asks the database if there are any actions assigned to this particular trigger. The data-
base gives it information about the “Block current user” action that we assigned. Now the

49

50

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

trigger module gets ready to execute the action, which has the standard action function signa-
ture example action($object, $context).

But we have a problem. The action that is about to be executed is an action of type user,
not comment. It expects the object it receives to be a user object! But here, a user action is
being called in the context of a comment hook. Information about the comment was passed
to the hook, not information about the user. What should we do? What actually happens is
that the trigger module determines that our action is a user action and loads the $user object
that a user action expects. Here is code from modules/trigger/trigger.module that shows
how this happens:

/**

* When an action is called in a context that does not match its type,
* the object that the action expects must be retrieved. For example, when
* an action that works on nodes is called during the comment hook, the
* node object is not available since the comment hook doesn't pass it.
* So here we load the object the action expects.

*

* @param $type

* The type of action that is about to be called.

* @param $comment

* The comment that was passed via the comment hook.

* @return

*

The object expected by the action that is about to be called.
*/
function trigger normalize comment context($type, $comment) {
switch ($type) {
// An action that works with nodes is being called in a comment context.
case 'node':
return node load($comment['nid']);

// An action that works on users is being called in a comment context.
case 'user':
return user load(array('uid' => $comment['uid']));

When the preceding code executes for our user action, the second case matches so the
user object is loaded and then our user action is executed. The information that the comment
hook knows about (for example, the comment’s subject) is passed along to the action in the
$context parameter. Note how the action looks for the user’s ID first in the object and then the
context, and finally falls back to the global $user:

Vak
* Implementation of a Drupal action.

* Blocks the current user.
*/

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

function user block user action(&$object, $context = array()) {
if (isset($object->uid)) {
$uid = $object->uid;
}
elseif (isset($context['uid'])) {
$uid = $context['uid'];

}
else {

global $user;

$uid = $user-»uid;
}

db_query("UPDATE {users} SET status = 0 WHERE uid = %d", $uid);

sess_destroy uid($uid);

watchdog('action', 'Blocked user %name.', array('%name' =>
check_plain($user->name)));

Actions must be somewhat intelligent, because they do not know much about what is
happening when they are called. That is why the best candidates for actions are straightfor-
ward, even atomic. The trigger module always passes the current hook and operation along in
the context. These values are stored in $context["hook'] and $context['op"]. This approach
offers a standardized way to provide information to an action.

Examining the Context

The fact that the hook and operation are available in the context is invaluable. An example of
an action that makes heavy use of this is the “Send e-mail” action. It’s an action of type system
and can be assigned to many different triggers.

The “Send e-mail” action allows certain tokens to be replaced during the composition of
the e-mail. For example, you might want to include the title of a node in the body of the e-mail
or have the author of a node be the recipient of the e-mail. But depending on which trigger the
action is assigned to, the recipient may not be available. For example, if e-mail is sent during
the user hook, no node is available and thus no node author is available to be a recipient. The
“Send e-mail” action in modules/system/system.module spends some time examining the con-
text to determine what is available. Here, it is making sure that it has a node so node-related
substitutions can happen:

Vak
* Implementation of a configurable Drupal action. Sends an e-mail.
*/

function system send_email action($object, $context) {

global $user;

51

52 CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

switch ($context['hook']) {
case 'nodeapi':
// Because this is not an action of type 'node' (it's an action
// of type 'system') the node will not be passed as $object,
// but it will still be available in $context.
$node = $context['node'];
break;
case 'comment':
// The comment hook provides nid, in $context.
$comment = $context['comment'];
$node = node_load($comment->nid);
case 'user':
// Because this is not an action of type 'user' the user
// object is not passed as $object, but it will still be
// available in $context.
$account = $context['account'];
if (isset($context['node'])) {
$node = $context['node'];
}
elseif ($context['recipient'] == '%author') {
// If we don't have a node, we don't have a node author.
watchdog('error', 'Cannot use %author token in this context.');
return;
}
break;
default:
// We are being called directly.
$node = $object;

How Actions Are Stored

Actions are functions that run at a given time. Simple actions do not have configurable param-
eters. For example, the “Beep” action we created simply beeped. It did not need any other
information (though of course $object and $context are available if needed). Contrast this
action with the advanced action we created. The “Beep multiple times” action needed to know
how many times to beep. Other advanced actions, such as the “Send e-mail” action, may need
even more information: whom to send the e-mail to, what the subject of the e-mail should be,
and so on. These parameters must be stored in the database.

The actions Table

When an instance of an advanced action is created by the administrator, the information that
is entered in the configuration form is serialized and saved into the parameters field of the
actions table. A record for the simple “Beep” action would look like this:

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

aid: 'beep beep action'
type: 'system'

callback: 'beep beep action'
parameters:

description: Beep

In contrast, the record for an instance of the “Beep multiple times” action would look
like this:

aid: 2

type: 'system'

callback: 'beep beep action'

parameters: (serialized array containing the beeps parameter with its value, i.e.,
the number of times to beep)

description: Beep three times

Just before an advanced action is executed, the contents of the parameters field are unse-
rialized and included in the $context parameter that is passed to the action. So the number of
beeps in our “Beep multiple times” action instance will be available to beep_multiple_beep_
action() as $context['beeps’].

Action IDs

Notice the difference in the action IDs of the two table records in the previous section. The
action ID of the simple action is the actual function name. But obviously we cannot use the
function name as an identifier for advanced actions, since multiple instances of the same
action are stored. So a numeric action ID (tracked in the actions_aid database table) is used
instead.

The actions execution engine determines whether or not to go through the process of
retrieving stored parameters for an action based on whether or not the action ID is numeric.
If it is not numeric, the action is simply executed and the database is not consulted. This is a
very quick determination; Drupal uses the same approach in index.php to distinguish con-
tent from menu constants.

Calling an Action Directly with actions_do()

The trigger module is only one way to call actions. You might want to write a separate module
that calls actions and prepare the parameters yourself. If so, using actions_do() is the recom-
mended way to call actions. The function signature follows:

actions_do($action_ids, &$object, $context = array(), $al = NULL, $a2 = NULL)
Let’s examine each of these parameters.
e $action_ids: The action(s) to execute, either a single action ID or an array of action IDs

* $object: The object that the action will act upon, if any

53

54 CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

* $context: Associative array containing information the action may wish to use, includ-
ing configured parameters for advanced actions

¢ $a1and $a2: Optional additional parameters that, if passed to actions_do(), will be
passed along to the action

Here’s how we would call our simple "Beep" action using actions_do():

$object = NULL; // $object is a required parameter but unused in this case
actions_do('beep_beep_action', $object);

And here is how we would call the "Beep multiple times" advanced action:

$object = NULL;
actions_do(2, $object);

Or, we could call it and bypass the retrieval of stored parameters like this:

$object = NULL;
$context['beeps'] = 5;
actions do('beep _multiple beep action', $object, $context);

Note Hardcore PHP developers may be wondering, “Why use actions at all? Why not just call the function
directly or just implement a hook? Why bother with stashing parameters in the context, only to retrieve them
again instead of using traditional PHP parameters?” The answer is that by writing actions with a very generic
function signature, code reuse can be delegated to the site administrator. The site administrator, who may
not know PHP, does not have to call on a PHP developer to set up the functionality to send an e-mail when a
new node is added. The site administrator simply wires up the “Send e-mail” action to the trigger that fires
when a new node is saved and never has to call anyone.

Defining Your Own Triggers with hook_hook_info()

How does Drupal know which triggers are available for display on the triggers user interface?
In typical fashion, it lets modules define hooks declaring which hooks the modules imple-
ment. For example, here’s the implementation of hook_hook info() from comment.module. The
implementation of hook_hook_info() is where the trigger descriptions are defined.

¥k

* Implementation of hook hook info().
*/

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

function comment hook info() {
return array(
"comment' => array(
"comment' => array(

"insert' => array(
"runs when' => t('After saving a new comment'),

))

'update’ => array(
"runs when' => t('After saving an updated comment'),

))

"delete’ => array(
"runs when' => t('After deleting a comment")

))

"view' => array(
"runs when' => t('When a comment is being viewed by an

authenticated user')
))
))
))
)s
}

If we had a module called monitoring.module installed that introduced a new hook to
Drupal called the monitoring hook, it might describe its two operations (overheating and
freezing) like this:

/**
* Implementation of hook hook info().
*/
function monitoring hook info() {
return array(
"monitoring’ => array(
"monitoring' => array(
"overheating' => array(
'runs when' => t('When hardware is about to melt down'),
)s
'freezing' => array(
'runs when' => t('When hardware is about to freeze up'),
)s
)s
)s
)s
}

After enabling the monitoring module, Drupal would pick up the new implementation of
hook hook info() and modify the triggers page to include a separate tab for the new hook, as

55

56

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

shown in Figure 3-6. Of course, the module itself would still be responsible for firing the
hooks using module_invoke() ormodule invoke all() and for firing the actions. In this exam-
ple, the module would need to call module invoke all('monitoring', 'overheating').It
would then need to implement hook monitoring($op) and fire the actions with actions do().
See trigger cron() inmodules/trigger/trigger.module for a simple implementation.

Home » Administer » Site building » Triggers

Triggers
Comments Content Cron Monitoring Taxonomy Users
Trigger: When hardware is about to melt down

[Choose an action m (Assign)

Trigger: When hardware is about to freeze up

[Choose an action 18] (‘Assign)

Figure 3-6. The newly defined trigger appears as a tab in the triggers user interface.

Although a module may define multiple new hooks, only the hook that matches the
module name will create a new tab in the triggers interface. In our example, the monitoring
module defined the monitoring hook. If it had also defined a different hook, that hook would
not appear under the monitoring tab, nor would it have a tab of its own. However, a hook that
does not match the module name is still accessible at http://example.com/?q=admin/build/
trigger/hookname.

Adding Triggers to Existing Hooks

Sometimes, you may want to add triggers to an existing hook if your code is adding a new
operation. For example, you might want to add an operation to the nodeapi hook. Suppose
you have written a module that archives old nodes and moves them to a data warehouse. You
could define an entirely new hook for this, and that would be perfectly appropriate. But since
this operation is on a node, you might want to fire an archive operation in the nodeapi hook
instead so that operations on content all appear under the same tab in the triggers interface.
The following code adds an additional trigger:
/**

* Declare a new trigger, to appear in the node tab.

*/
function archiveoffline hook info() {

$info['archiveoffline'] = array(
"nodeapi’ => array(
"archive' => array(
'runs when' => t('When the post is about to be archived'),

http://example.com/?q=admin/build

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

))
)J
)5

return $info;

}

The new trigger is now available at the end of the list of triggers on the triggers adminis-

tration page at Administer » Site building » Triggers, as shown in Figure 3-7.

Home » Administer » Site building » Triggers

Triggers
Archive Offline Comments Content Cron Taxonomy Users

Triggers are system events, such as when new content is added or when a user logs in. Trigger module
combines these triggers with actions (functional tasks), such as unpublishing content or e-mailing an
administrator. The Actions settings page contains a list of existing actions and provides the ability to create
and configure additional actions.

Below you can assign actions to run when certain content-related triggers happen. For example, you could
send an e-mail to an administrator when a post is created or updated.

Trigger: When either saving a new post or updating an existing post

[Choose an action I-G-i (Assign)

Trigger: After saving a new post

[Choose an action I-G-i (Assign)

Trigger: After saving an updated post

[Choose an action l-G-‘ (Assign)

Trigger: After deleting a post

[Choose an action I-G-i (Assign)

Trigger: When content is viewed by an authenticated user

[Choose an action I-G-i (Assign)

Trigger: When the post is about to be archived
[Choose an action '-G-‘ (Assign)

[more help...]

Figure 3-7. The additional trigger (“When the post is about to be archived”) appears in the user

interface.

The first key in the hook_hook_info() implementation is used by Drupal’s menu system
to automatically create a tab on the trigger administration page. Drupal names the tab with
the module’s name as defined in the module’s . info file (see the unused Archive Offline tab in
Figure 3-7). But our new trigger does not need to be placed under its own tab; we placed it
under the Content tab intentionally by adding our own operation to the nodeapi hook. We
can remove the unwanted tab using hook_menu_alter() (see Chapter 4 for more information
on how this hook works). The following code changes the automatically created tab from
type MENU_LOCAL_TASK (which Drupal renders as a tab by default) to type MENU_CALLBACK,

which Drupal does not render:

57

58

CHAPTER 3 © HOOKS, ACTIONS, AND TRIGGERS

/%K

* Implementation of hook menu_alter().

*/

function archiveoffline menu_alter(&$items) {
$items['admin/build/trigger/archiveoffline']['type'] = MENU_CALLBACK;

}

For the archiveoffline menu_alter() function to take effect, you'll need to visit
Administer » Site building » Modules so that menus will be rebuilt.

Summary

After reading this chapter, you should be able to

Understand how to assign actions to triggers.
Write a simple action.
Write an advanced action and its associated configuration form.

Create and rename instances of advanced actions using the actions administration
page.

Understand what a context is.

Understand how actions can use the context to change their behavior.

Understand how actions are stored, retrieved, and executed.

Define your own hooks and have them displayed as triggers.

CHAPTER 4

The Menu System

Drupal's menu system is complex but powerful. The term “menu system” is somewhat of a
misnomer. It may be better to think of the menu system as having three primary responsibili-
ties: callback mapping, access control, and menu customization. Essential code for the menu
system is in includes/menu.inc, while optional code that enables such features as customizing
menus is in modules/menu.

In this chapter, we'll explore what callback mapping is and how it works, see how to pro-
tect menu items with access control, learn to use menu wildcards, and inventory the various
built-in types of menu items. The chapter finishes up by examining how to override, add, and
delete existing menu items, so you can customize Drupal as nonintrusively as possible.

Callback Mapping

When a web browser makes a request to Drupal, it gives Drupal a URL. From this information,
Drupal must figure out what code to run and how to handle the request. This is commonly
known as routing or dispatching. Drupal trims off the base part of the URL and uses the latter
part, called the path. For example, if the URL is http://example.com/?q=node/3, the Drupal
path is node/3. If you are using Drupal’s clean URLs feature, the URL in your browser would
be http://example.com/node/3 but your web server is quietly rewriting the URL to be http://
example.com/?q=node/3 before Drupal sees it; so Drupal always deals with the same Drupal
path. In the preceding example, the Drupal path is node/3 whether clean URLs are enabled

or not. See “The Web Server’s Role” in Chapter 1 for more detail on how this works.

Mapping URLs to Functions

The general approach taken is as follows: Drupal asks all enabled modules to provide an array
of menu items. Each menu item consists of an array keyed by a path and containing some
information about that path. One of the pieces of information a module must provide is a
page callback. A callback in this context is simply the name of a PHP function that will be run
when the browser requests a certain path. Drupal goes through the following steps when a
request comes in:

59

http://example.com/?q=node/3
http://example.com/node/3
http://example.com/?q=node/3
http://example.com/?q=node/3

60

CHAPTER 4 = THE MENU SYSTEM

1. Establish the Drupal path. If the path is an alias to a real path, Drupal finds the real
path and uses it instead. For example, if an administrator has aliased http://
example.com/?q=about to http://example.com/?qg=node/3 (using the path module,
for example), Drupal uses node/3 as the path.

2. Drupal keeps track of which paths map to which callbacks in the menu_router data-
base table and keeps track of menu items that are links in the menu_1links table. A
check is made to see if the menu_router and menu_links tables need rebuilding, a rare
occurrence that happens after Drupal installation or updating.

3. Figure out which entry in the menu_router table corresponds with the Drupal path and
build a router item describing the callback to be called.

4. Load any objects necessary to pass to the callback.

5. Check whether the user is permitted to access the callback. If not, an “Access denied”
message is returned.

6. Localize the menu item’s title and description for the current language.
7. Load any necessary include files.

8. Call the callback and return the result, which index.php then passes through
theme_page(), resulting in a finished web page.

A visual representation of this process is shown in Figures 4-1 and 4-2.

http://example.com/?q=about
http://example.com/?q=about
http://example.com/?q=node/3

CHAPTER 4 = THE MENU SYSTEM

Is site
online?

Return
MENU_SITE No rNeiiﬂ c}g Yes
_OFFLINE /

Rebuild router
table

v

Update links
table

v

Clear page and
block caches

Get
$router_item

Not found

Return
MENU_NOT
_FOUND

Failed Passed

Return Load .inc file if
MENU_ACCESS Hecessary
_DENIED ¢
Call page
callback with
page arguments

,

Return output

from callback

Figure 4-1. Overview of the menu dispatching process

62 CHAPTER 4 = THE MENU SYSTEM

Clear menu_router

table | Database
Y -
hook_menu()
Collect menu items | » Modules
—
Y b
hook_menu_alter()
Alter menu items |- » Modules
& |

Prepare menu
items for storage

Y

Save in
menu_router table

v

Extract visible
items

Save new visible

items to menu_link »| Database
table

v

Remove orphaned
visible items from
menu_link table

»| Database

Figure 4-2. Overview of the router and link building process

Creating a Menu Item

The place to hook into the process is through the use of the menu hook in your module. This
allows you to define menu items that will be included in the router table. Let’s build an exam-
ple module called menufun.module to experiment with the menu system. We'll map the Drupal
path menufun to the PHP function that we'll write named menufun_hello(). First, we need a
menufun.info file at sites/all/modules/custom/menufun/menufun.info:

CHAPTER 4 = THE MENU SYSTEM 63

; $1d$

name = Menu Fun

description = Learning about the menu system.
package = Pro Drupal Development

core = 6.X

Then we need to create the sites/all/modules/custom/menufun/menufun.module file,
which contains our hook _menu() implementation and the function we want to run:

<?php
// $1d$

/**

* @file

* Use this module to learn about Drupal's menu system.
*/

/**
* Implementation of hook menu().
*/
function menufun_menu() {
$items['menufun'] = array(
'page callback' => "menufun_hello"',
'access callback' => TRUE,
"type' => MENU_CALLBACK,
)s

return $items;

}

/**

* Page callback.

*/

function menufun_hello() {
return t('Hello!");

}

Enabling the module at Administer » Site building » Modules causes the menu item to
be inserted into the router table, so Drupal will now find and run our function when we go to
http://example.com/?q=menufun, as shown in Figure 4-3.

The important thing to notice is that we are defining a path and mapping it to a function.
The path is a Drupal path. We defined the path as the key of our $items array. We are using a
path that is the same as the name of our module. This practice assures a pristine URL name-
space. However, you can define any path.

http://example.com/?q=menufun

64 CHAPTER 4 © THE MENU SYSTEM

M e X thtp:f{example.com,’?q:menumn @'Google

7/
> Drupal 6

jvandyk Home

e My account Hello!
» Create content

» Administer

o Log out

o4 Drupol |

Done © Adblock

Figure 4-3. The menu item has enabled Drupal to find and run the menufun_hello() function.

Defining a Title

The implementation of hook_menu() written previously is as simple as possible. Let’s add a few
keys to make it more like an implementation you'd normally write.

function menufun_menu() {
$items[‘menufun'] = array(
"title' => 'Greeting',
'page callback' => "menufun_hello"',
'access callback' => TRUE,
"type' => MENU_CALLBACK,

)s

return $items;

}

We've given our menu item a title, which is automatically used as the page title when the
page is displayed in the browser (if you want to override the page title during code execution
later on, you can set it by using drupal set title()).After saving these changes, you would
think that refreshing your browser should now display the title we've defined along with
“Hello!” But it doesn’t, because Drupal stores all of the menu items in the menu_router data-
base table, and although our code has changed, the database has not. We have to tell Drupal
to rebuild the menu_router table. There are two easy ways to do this. The easiest is to install the
developer module (http://drupal.org/project/devel), and enable the devel block at Admin-
ister » Site building » Blocks. The devel block contains an item called Rebuild menus.
Clicking this will rebuild the menu_router table. If you don’t have the developer module handy,
simply going to Administer » Site building » Modules will do the trick; as part of the prepara-
tion for displaying that page, Drupal rebuilds the menu tables. From here on, I'll assume that
you know to rebuild the menu after each code change we make.

http://drupal.org/project/devel

CHAPTER 4 © THE MENU SYSTEM

After the rebuild, our page looks like Figure 4-4.

@ - fl} e | @ hup://example.com/2q=menufun v | [(IGl* Google

4
e+ Drupal 6

jvandyk Home

e My account Greeting

» Create content Hello!

» Administer

e Log out "
v

Done © Adblock 4

Figure 4-4. The title of the menu item is shown in the page and browser title bar:

Page Callback Arguments

Sometimes, you may wish to provide more information to the function that is mapped to the
path. First of all, any additional parts of the path are automatically passed along. Let’s change
our function as follows:

function menufun_hello($first name = '', $last name = '') {
return t('Hello @first name @last name',
array('@first name' => $first name, '@last name' => $last name));

Now if we go to http://example.com/?q=menufun/John/Doe, we get the output shown in
Figure 4-5.

ﬁi' = v ﬁ e (X Q http://example.com/?q=menufun/john/Doe vl @'Google

4
e« Drupal 6

jvandvk Home

o My account Greeting

» Create content Hello John Doe

» Administer

o Log out I 3
v

Done © Adbiock

Figure 4-5. Parts of the path are passed along to the callback function.

Notice how each of the extra components of the URL was passed as a parameter to our
callback function.

You can also define page callback arguments inside the menu hook by adding an optional
page arguments key to the $items array. Defining page arguments is useful because you can

65

http://example.com/?q=menufun/John/Doe

CHAPTER 4 © THE MENU SYSTEM

call the same callback from different menu items and provide some hidden context for the
callback through the page arguments. Let’s define some page arguments for our menu item:

function menufun_menu() {
$items["‘menufun'] = array(
"title' => 'Greeting',
'page callback' => 'menufun_hello',
'page arguments' => array('Jane', 'Doe'),
'access callback' => TRUE,
"type' => MENU_CALLBACK,

)s

return $items;

}

The callback arguments you define in page arguments will be passed to the callback
function before (that is, placed first in the list of parameter values that are passed to the call-
back) any arguments generated from the path. The arguments from the URL are still avail-
able; to access them, you would change the function signature of your callback to add
parameters from the URL. So with our revised menu item, the following function signature
would result in $first_name beingJane (from the first item in the page arguments array),
$last_name being Doe (from the second item in the page arguments array), $a being John
(from the URL), and $b being Doe (from the URL).

function menufun_hello($first name = "', $last name = '', $a ="', $b = "") {...}

Let’s test this by putting Jane Doe in the page arguments and John Doe in the URL and
seeing which appears. Going to http://example.com/?g=John/Doe will now yield the results
shown in Figure 4-6 (if you're not getting those results, you forgot to rebuild your menus).

@ hup://example.com/?q=menufun/John/Doe ¥ 1> |G|~ Google

7
e« Drupal 6

jvandyk Home

o' My account Greeting

» Create content Hello Jane Doe

» Administer

o Log out |4
v

Bohé © Adblock

Figure 4-6. Passing and displaying arguments to the callback function

Keys in keyed arrays are ignored in page callback arguments, so you can’t use keys to map
to function parameters; only order is important. Callback arguments are usually variables and
are often used in dynamic menu items.

http://example.com/?q=John/Doe

CHAPTER 4 = THE MENU SYSTEM

Page Callbacks in Other Files

If you don't specify otherwise, Drupal assumes that your page callback can be found in your
module. In Drupal 6, many modules have been split up so that a minimum amount of code is
loaded on each page request. The file key of a menu item is used to specify which file con-
tains the callback function if the function is not already in scope. We used the file key when
writing the annotation module in Chapter 2.

If you define the file key, Drupal looks for that file in your module directory. If you are
pointing to a page callback that is provided by another module and thus is not in your module
directory, you'll need to tell Drupal the file path to use when looking for the file. That is easily
accomplished with the file path key. We did that in “Defining Your Own Administration Sec-
tion” in Chapter 2.

Adding a Link to the Navigation Block

We declared that our menu item was of type MENU_CALLBACK. By changing the type to
MENU_NORMAL_ITEM, we indicate that we don’'t simply want to map the path to a callback
function; we also want Drupal to include it in a menu.

Tip Because MENU NORMAL_ITEM is Drupal’s default menu item type, the type key could be omitted
in the code snippet in this section. | shall omit it in further code examples.

function menufun_menu() {
$items[‘menufun'] = array(
"title' => 'Greeting',
'page callback' => 'menufun_hello’,
'page arguments' => array('Jane', 'Doe'),
'access callback' => TRUE,
"type' => MENU_NORMAL_ITEM,

)5

return $items;

}

The menu item would now show up in the navigation block, as shown in Figure 4-7.

67

68

CHAPTER 4 © THE MENU SYSTEM

v | (|G]* Google

)
e« Drupal 6

jvandvk Home

o Greeting Greeting

o My account Hello Jane Doe
» Create content

» Administer
o Log out H

Done © Adblock

Figure 4-7. The menu item appears in the navigation block.

If we don't like where it is placed, we can move it down by increasing its weight. Weight is
another key in the menu item definition:

function menufun menu() {

$items[‘menufun'] = array(
"title' => 'Greeting',
'page callback' => "menufun_hello"',
'page arguments' => array('Jane', 'Doe'),
'access callback' => TRUE,
'weight' => 5,

)

return $items;

}

The effect of our weight increase is shown in Figure 4-8. Menu items can also be relocated
without changing code by using the menu administration tools, located at Administer » Site
building » Menus (the menu module must be enabled for these tools to appear).

= - ﬁ e | X Q http: / /fexample.com/7q=menufun | [G]' Google

¥

)
e« Drupal 6

jvandyk Home

o My account Greeting

» Create content Hello Jane Doe
o Greeting

» Administer

o Log out l‘

Done © Adblock 4

Figure 4-8. Heavier menu items sink down in the navigation block.

CHAPTER 4 = THE MENU SYSTEM 69

Menu Nesting

So far, we've defined only a single static menu item. Let’s add a second and another callback
to go with it:

function menufun_menu() {

$items[‘menufun'] = array(
'title' => 'Greeting',
'page callback' => 'menufun_hello’,
'access callback' => TRUE,
'weight' => -10,

)5

$items['menufun/farewell'] = array(
"title' => 'Farewell’,
'page callback' => 'menufun_goodbye",
'access callback' => TRUE,

)5

return $items;

}

Vass
* Page callback.

*/

function menufun_hello() {
return t('Hello!");

}

/**

* Page callback.

*/

function menufun_goodbye() {
return t('Goodbye!');

}

Drupal will notice that the path of the second menu item (menufun/farewell) is a child of
the first menu item’s path (menufun). Thus, when rendering (transforming to HTML) the menu,
Drupal will indent the second menu as shown in Figure 4-9. It has also correctly set the bread-
crumb trail at the top of the page to indicate the nesting. Of course, a theme may render
menus or breadcrumb trails however the designer wishes.

70

CHAPTER 4 © THE MENU SYSTEM

p v "_E‘ e ko | @ http://example.com/?q=menufun/farewell |Gl* Google

>
& Drupal 6

jvandyk Home » Greeting
~ Greeting Farewell

o Farewell Goodbye!
o My account
» Create content la
» Administer 73
Done © Adblock y.

Figure 4-9. Nested menu

Access Control

In our examples so far, we've simply set the access callback key of the menu item to TRUE,
meaning that anyone can access our menu. Usually, menu access is controlled by defining
permissions inside the module using hook_perm() and testing those permissions using a func-
tion. The name of the function to use is defined in the access callback key of the menu item
and is typically user access. Let’s define a permission called receive greeting; if a user does not
have a role that has been granted this permission, the user will receive an “Access denied”
message if he or she tries to go to http://example.com/?q=menufun.

[¥*
* Implementation of hook_perm().
*/

function menufun_perm() {
return array('receive greeting');

}
/**
* Implementation of hook menu().
*/
function menufun_menu() {
$items[‘menufun'] = array(
"title' => 'Greeting',
'page callback' => 'menufun_hello’,
'access callback' => 'user_access',
'access arguments' => array('receive greeting'),
'weight' => -10,
)s
$items["menufun/farewell'] = array(
"title' => 'Farewell’,
'page callback' => 'menufun_goodbye',

)5

return $items;

http://example.com/?q=menufun

CHAPTER 4 = THE MENU SYSTEM

In the preceding code, access will be determined by the result of a call to user_access
('receive greeting').In this way, the menu system serves as a gatekeeper determining
which paths may be accessed and which will be denied based on the user’s role.

Tip The user_access() function is the default access callback. If you do not define an access callback,
your access arguments will be passed to user _access() by the menu system.

Child menu items do not inherit access callbacks and access arguments from their par-
ents. The access arguments key must be defined for every menu item. The access callback
key must only be defined if it differs from user_access. The exception to this is any menu
item of type MENU_DEFAULT_LOCAL_TASK, which will inherit the parent access callback and
access arguments, though for clarity it is best to explicitly define these keys even for default
local tasks.

Title Localization and Customization

Drupal supports multiple languages. Translation of strings is done by the t() function. So you
might think that defining a title key in a menu item should look like this:

"title' => t('Greeting') // No! don't use t() in menu item titles or descriptions.

However, menu title strings are stored in the menu_router table as original strings, and the
translation of menu items is deferred until runtime. What'’s really happening is that Drupal has
a default translation function (the t() function) that is being assigned to translate the title.
You'll see later how to change the default translation function to a function of your choosing
and how to pass arguments to that function. The function that does translation is called the
title callback, and any arguments that are passed along are called title arguments.

Defining a Title Callback

If no title callback is defined in the menu item, Drupal will default to using the t() function.
We can make the name of the callback function explicit by specifying it in the title callback
key:

function menufun_menu() {
$items['menufun'] = array(
'title' => 'Greeting',
'title callback' => 't',
'description’ => 'A salutation.’,
'page callback' => "menufun_hello"',
'access arguments' => array('receive greeting'),
)s
}

7

72

CHAPTER 4 = THE MENU SYSTEM

Note The description key is always translated using t (), no matter what the value of the title
callback key. There is no description callback key.

Hmm. What would happen if we specified our own function for the title callback? Let’s
find out:

function menufun menu() {
$items[‘menufun'] = array(
'title' => 'Greeting',
"title callback' => 'menufun_title',
"description’ => 'A salutation.’,
'page callback' => 'menufun_hello',
'access callback' => TRUE,

)s

return $items;

}

Vass
* Page callback.

*/

function menufun_hello() {
return t('Hello!");

}

Vass
* Title callback.
*/
function menufun_title() {
$now = format_date(time());
return t('It is now @time', array('@time' => $now));

}

As shown in Figure 4-10, setting of the menu item title at runtime can be achieved
through the use of a custom title callback. But what if we want to decouple the menu item title
from the title of the page? Easy. We set the page title using drupal set title():

function menufun_title() {
drupal_set_title(t('The page title'));
$now = format date(time());
return t('It is now @time', array('@time' => $now));

}

CHAPTER 4

THE MENU SYSTEM

' Google

/s
o Drupal 6

jvandvk Home

o Itis now Fr - s
01/11/200‘;1-2299 :Eﬁiosl now Fri, 01/11 /2008 - 22:29

o My account

¢ Create content

» Administer

o Log out

| @ Drupal |

Figure 4-10. Title callback setting the title of a menu item

This results in one title for the page and another for the menu item, as shown in

Figure 4-11.

v e (%) fJ} IQ http://example.com,?q=menufun Y]_I.G* | ' Google

”~
e« Drupal 6

jvandvk Home
o Itis now Fri,
01/11/2008 - 22:35
o My account
+ Create content
» Administer
o Log out

The page title
Hello!

L@ Drupal |

Figure 4-11. Separate titles for the menu item and the page

Title Arguments

Drupal’s translation function accepts a string and a keyed array of replacements (for detailed

information on how t () works, see Chapter 18), for example:

t($string, $keyed array);
t('It is now @time', array('@time' => $now));

So if the title key in a menu item is the string that is to be passed through t(), where is
the array of replacements? Good question. That’s what the title arguments key is for:

73

74

CHAPTER 4 © THE MENU SYSTEM

function menufun_menu() {
$items["‘menufun'] = array(
"title' => 'Greeting for Dr. @name',
"title callback' => 't',
"title arguments' => array('@name' => 'Foo'),
'page callback' => 'menufun_hello’,
'access callback' => TRUE,

)5

return $items;

}

During runtime, the translation function runs and the placeholder is filled, as shown in
Figure 4-12.

in gt ﬂ: e x| Iehnp:f;example.com;?q=menufun v | ([G* Google

4
e« Drupal 6

jvandyk
o Greeting for Dr. Foo
o My account

Greeting for Dr. Foo
Hello!

» Create content
» Administer
o Log out

Done © Adblock . A

Figure 4-12. Title arguments are passed to the title callback function.

This kind of substitution has a flaw, though. Because items defined in the menu hook are
saved into the database during the menu building process (see Figure 4-2), any code in title
arguments is executed at menu-building time, not at runtime. If you need to modify your
menu titles at runtime, it is best to define the title callback key; the function defined there
will run at runtime.

Caution The values of the title arguments key must be strings. Integers will be stripped out; thus
"title arguments' => array('@name' => 3) will notwork but 'title arguments' =>
array('@name' => '3") will. This is because integers have special meaning, as you'll see shortly.

CHAPTER 4 = THE MENU SYSTEM

Wildcards in Menu Items

So far, we have been using regular Drupal path names in our menu items, names like menufun
and menufun/farewell. But Drupal often uses paths like user/4/track or node/15/edit where
part of the path is dynamic. Let’s look at how that works.

Basic Wildcards

The % character is a special character in Drupal menu items. It means “any string up to the
next / character.” Here’s a menu item that uses a wildcard:

function menufun_menu() {
$items[‘menufun/%'] = array(
"title' => 'Hi',
'page callback' => 'menufun_hello’',
'access callback' => TRUE,

)5

return $items;

}

This menu item will work for the Drupal paths menufun/hi, menufun/foo/bar, menufun/
123, and menufun/file.html. It will not work for the path menufun; a separate menu item
would have to be written for that path because it consists of only one part, and the wildcard
menufun/% will only match a string with two parts. Note that although % is often used to desig-
nate a number (as in user/%/edit for user/2375/edit) it will match any text in that position.

Note A menu item with a wildcard in its path will no longer show up in navigation menus, even if the
menu item’s type is set to MENU_NORMAL ITEM. It should be obvious why this is: since the path contains a
wildcard, Drupal doesn’t know how to construct the URL for the link. But see “Building Paths from Wildcards
Using to_arg() Functions” later in this chapter to find out how you can tell Drupal what URL to use.

Wildcards and Page Callback Parameters

A wildcard at the end of the menu path does not interfere with the passing of additional parts
of the URL to the page callback, because the wildcard matches only up to the next slash. Con-
tinuing with our example of the menufun/% path, the URL http://example.com/?g=menufun/
foo/Fred would have the string foo matched by the wildcard, and the last portion of the path
(Fred) would be passed as a parameter to the page callback.

75

http://example.com/?q=menufun

CHAPTER 4 © THE MENU SYSTEM

Using the Value of a Wildcard

To use the part of the path that matched, specify the number of the path’s part in the page
arguments key:

function menufun_menu() {
$items["menufun/%/bar/baz'] = array(
"title' => 'Hi',
'page callback' => 'menufun_hello’,
'page arguments' => array(1), // The matched wildcard.
'access callback' => TRUE,

)5

return $items;

}

Vo
* Page callback.
*/
function menufun_hello($a = NULL, $b = NULL) {
return t('Hello. $a is @a and $b is @b', array('@a' => $a, '@"' => $b));
}

The parameters received by our page callback function menufun_hello() will be as shown
in Figure 4-13.

"4

jvandyk Home
° My account Hi
» Create content Hello. $a is foo and $b is boom
» Administer
o Log out
(4
54
Done © Adblock

Figure 4-13. The first parameter is from the matched wildcard, and the second is from the end of
the URL.

The first parameter, $a, is being passed via the page callback. The entry array(1) for the
page callback means, “please pass part 1 of the path, whatever that is.” We start counting at 0,
so part 0 is "menufun’, part 1 is whatever the wildcard matched, part 2 would be 'bar', and so
on. The second parameter, $b, is being passed because of Drupal’s behavior of passing the
portion of the path beyond the Drupal path as a parameter (see “Page Callback Arguments”
earlier in this chapter).

CHAPTER 4 = THE MENU SYSTEM

Wildcards and Parameter Replacement

In practice, parts of a Drupal path are generally used to view or change an object, such as a
node or a user. For example, the path node/%/edit is used to edit a node, and the path user/%
is used to view information about a user by user ID. Let’s take a look at the menu item for the
latter, which can be found in the hook_menu() implementation in modules/user/user.module.
The corresponding URL that this path matches would be something like http://example.com/
?g=user/2375. That’s the URL you would click to see the “My account” page on a Drupal site.

$items['user/%user uid optional'] = array(
"title' => 'My account',
"title callback' => 'user page title',
"title arguments' => array(1),
'page callback' => 'user view',
'page arguments' => array(1),
'access callback' => "user view access',
'access arguments' => array(1),
'file' => 'user pages.inc',

)s

Whoa! What kind of path is user/%user _uid optional?It’s shorthand for this:

1.
2.

Split the path into segments at each occurrence of a slash (/).

In the second segment, match the string after the % and before the next possible slash.
In this case, the string would be user_uid_optional.

. Append load to the string to generate the name of a function. In this case, the name of

the function is user_uid optional load.

. Call the function and pass it, as a parameter, the value of the wildcard in the Drupal

path. So if the URLis http://example.com/?q=user/2375, the Drupal path is user/2375,
and the wildcard matches the second segment, which is 2375. So a call is made to
user _uid optional load('2375").

. The result of this call is then used in place of the wildcard. So when the title callback is

called with the title arguments of array(1), instead of passing part 1 of the Drupal path
(2375), we pass the result of the call to user uid optional load('2375"'), whichisa
user object. Think of it as a portion of the Drupal path being replaced by the object it
represents.

. Note that the page and access callbacks will also use the replacement object. So in the

previous menu item, user view access() will be called for access and user view() will
be called to generate the page content, and both will be passed the user object for user
2375.

Tip Itis easier to think about object replacement in a Drupal path like node/%node/edit if you think
about %node as being a wildcard with an annotation right there in the string. In other words, node/%node/
edit is node/%/edit with the implicit instruction to run node_load() on the wildcard match.

77

http://example.com
http://example.com/?q=user/2375

78

CHAPTER 4 = THE MENU SYSTEM

Passing Additional Arguments to the Load Function

If additional arguments need to be passed to the load function, they can be defined in the load
arguments key. Here’s an example from the node module: the menu item for viewing a node
revision. Both the node ID and the ID of the revision need to be passed to the load function,
which is node_load().

$items['node/%node/revisions/%/view'] = array(
'title' => 'Revisions’',
"load arguments' => array(3),
'page callback' => 'node_show',
"page arguments' => array(1, NULL, TRUE),
"type' => MENU CALLBACK,

);

The menu item specifies array(3) for the load arguments key. This means that in addition
to the wildcard value for the node ID, which is passed automatically to the load function as
outlined previously, a single additional parameter will be passed to the load function, since
array(3) has one member; that is, the integer 3. As you saw in the “Using the Value of a Wild-
card” section, this means that the part of the path in position 3 will be used. The position and
path arguments for the example URL http://example.com/?q=node/56/revisions/4/view are
shown in Table 4-2.

Table 4-2. Position and Arguments for Drupal Path node/%node/revisions/%/view When Viewing
the Page http:/lexample.com/?q=node/56/revisions/4/view

Position Argument Value from URL
0 node node

1 %node 56

2 revisions revisions

3 % 4

4 view view

Thus, defining the load arguments key means that the call node load('56', '4') will be
made instead of node_load('56").

When the page callback runs, the load function will have replaced the value '56' with the
loaded node object, so the page callback call will be node_show($node, NULL, TRUE).

Special, Predefined Load Arguments: %omap and %index

There are two special load arguments. The %map token passes the current Drupal path as an
array. In the preceding example, if %map were passed as a load argument its value would be
array('node', '56', 'revisions', '4', 'view').The values of the map can be manipulated
by the load function if it declares the parameter as a reference. For example, user_category
load($uid, &$map, $index) in modules/user/user.module does this to handle slashes in cate-
gory names.

http://example.com/?q=node/56/revisions/4/view
http://example.com/?q=node/56/revisions/4/view

CHAPTER 4 = THE MENU SYSTEM

The %index token is the position of the wildcard denoting the load function. So for the
preceding example, the token’s value would be 1 because the wildcard is at position 1, as
shown in Table 4-2.

Building Paths from Wildcards Using to_arg() Functions

Recall that I said that Drupal cannot produce a valid link from a Drupal path that contains a
wildcard, like user/% (after all, how would Drupal know what to replace the % with)? That’s not
strictly true. We can define a helper function that produces a replacement for the wildcard that
Drupal can then use when building the link. In the “My account” menu item, the path for the
“My account” link is produced with the following steps:

1. The Drupal path is originally user/%user uid optional.

2. When building the link, Drupal looks for a function with the name user _uid optional
to_arg(). If this function is not defined, Drupal cannot figure out how to build the path
and does not display the link.

3. If the function is found, Drupal uses the result of the function as a replacement for the
wildcard in the link. The user_uid optional to arg() function returns the user ID of
the current user, so if you are user 4, Drupal connects the “My account” link to
http://example.com/?q=user/4.

The use of a to_arg() function is not specific to the execution of a given path. In other
words, the to_arg() function is run during link building on any page, not the specific page
that matches the Drupal path of a menu item. The “My account” link is shown on all pages,
not just when the page http://example.com/?q=user/3 page is being viewed.

Special Cases for Wildcards and to_arg() Functions

The to_arg() function that Drupal will look for when building a link for a menu item is based
on the string following the wildcard in the Drupal path. This can be any string, for example:
/**
* Implementation of hook menu().
*/
function menufun menu() {
$items["menufun/%a_zoo_animal'] = array(
"title' => 'Hi',
'page callback' => 'menufun_hello’,
'page arguments' => array(1),
'access callback' => TRUE,
"type' => MENU NORMAL_ ITEM,
'weight' => -10

)s

79

http://example.com/?q=user/4
http://example.com/?q=user/3

80

CHAPTER 4 = THE MENU SYSTEM

return $items;

}

function a_zoo animal to arg($arg) {
// $arg is '%' since it is a wildcard
// Let's replace it with a zoo animal.
return 'tiger';

}

This causes the link “Hi” to appear in the navigation block. The URL for the link is http://
example.com/?q=menufun/tiger. Normally, you would not replace the wildcard with a static
string as in this simple example. Rather the to_arg() function would produce something
dynamic, like the uid of the current user or the nid of the current node.

Altering Menu Items from Other Modules

When Drupal rebuilds the menu_router table and updates the menu_link tables (for example,
when a new module is enabled), modules are given a chance to change any menu item by
implementing hook _menu_alter(). For example, the “Log off” menu item logs out the cur-
rent user by calling user logout (), which destroys the user’s session and then redirects

the user to the site’s home page. The user logout() function lives in modules/user/
user.pages.inc, so the menu item for the Drupal path has a file key defined. So normally
Drupal loads the file modules/user/user.pages.inc and runs the user logout() page call-
back when a user clicks the “Log out” link from the Navigation block. Let’s change that to
redirect users who are logging out to drupal.org.

Vak

* Implementation of hook_menu_alter().

*

* @param array $items

* Menu items keyed by path.

*/

function menufun_menu_alter(&$items) {
// Replace the page callback to 'user logout' with a call to
// our own page callback.
$items['logout']['page callback'] = "menufun_user logout';
// Drupal no longer has to load the user.pages.inc file
// since it will be calling our menufun_user logout(), which
// is in our module -- and that's already in scope.
unset($items['logout']['file']);

http://example.com/?q=menufun/tiger
http://example.com/?q=menufun/tiger

CHAPTER 4 = THE MENU SYSTEM

/**
* Menu callback; logs the current user out, and redirects to drupal.org.
* This is a modified version of user logout().
*/
function menufun_user logout() {
global $user;

watchdog('menufun', 'Session closed for %name.', array('%name' => $user->name));

// Destroy the current session:

session destroy();

// Run the 'logout' operation of the user hook so modules can respond
// to the logout if they want to.

module invoke all('user', 'logout', NULL, $user);

// Load the anonymous user so the global $user object will be correct
// on any hook exit() implementations.

$user = drupal anonymous user();

drupal goto('http://drupal.org/"');

Before our hook _menu_alter() implementation ran, the menu item for the logout path
looked like this:

array(
"access callback' => 'user is logged in',
'file' => 'user.pages.inc',
'module’ => 'user’,
'page callback' => 'user_logout',
"title' => 'Log out',
'weight' => 10,
)
and after we have altered it, it looks like this:
array(
"access callback' => 'user_is logged in',
‘module’ => 'user',
'page callback' => "menufun_user logout',
"title' => 'Log out',
'weight' => 10,

)

81

http://drupal.org

82

CHAPTER 4 = THE MENU SYSTEM

Altering Menu Links from Other Modules

When Drupal saves a menu item to the menu_link table, modules are given a chance to change
the link by implementing hook_menu_link_alter(). Here is how the “Log out” menu item
could be changed to be titled “Sign off.”

Jkk

* Implementation of hook link alter().

@param $item

Associative array defining a menu link as passed into menu_link save().
@param $menu

Associative array containing the menu router returned from

menu_router build().

EIEE G R R

*/
function menufun menu link alter(8$item, $menu) {
if ($item['link path'] == 'logout') {
$item['link_title'] = 'Sign off';
}
}

This hook should be used to modify the title or weight of a link. If you need to modify
other properties of a menu item, such as the access callback, use hook_menu_alter() instead.

Note The changes made to a menu item in hook_menu_link_alter() are not overrideable by the user
interface that menu.module presents at Administer » Site building » Menus.

Kinds of Menu Items

When you are adding a menu item in the menu hook, one of the possible keys you can use is
the type. If you do not define a type, the default type MENU_ NORMAL ITEM will be used. Drupal
will treat your menu item differently according to the type you assign. Each menu item type is
composed of a series of flags, or attributes. Table 4-2 lists the menu item type flags.

Table 4-2. Menu Item Type Flags

Binary Hexadecimal Decimal Constant

000000000001 0x0001 1 MENU_IS ROOT

000000000010 0x0002 2 MENU_VISIBLE IN TREE
000000000100 0x0004 4 MENU_VISIBLE IN BREADCRUMB
000000001000 0x0008 8 MENU_LINKS TO_PARENT
000000100000 0x0020 32 MENU_MODIFIED BY ADMIN
000001000000 0x0040 64 MENU_CREATED BY ADMIN

000010000000 0x0080 128 MENU_IS LOCAL TASK

CHAPTER 4 = THE MENU SYSTEM

For example, the constant MENU_NORMAL_ITEM has the flags MENU VISIBLE IN TREE and
MENU_VISIBLE IN BREADCRUMB, as shown in Table 4-3. Do you see how the separate flags can be
expressed in a single constant?

Table 4-3. Flags of the Menu Item Type MENU_NORMAL_ITEM

Binary Constant

000000000010 MENU_VISIBLE IN TREE
000000000100 MENU VISIBLE IN BREADCRUMB
000000000110 MENU_NORMAL_ITEM

Therefore, MENU_NORMAL_ITEM has the following flags: 000000000110. Table 4-4 shows the
available menu item types and the flags they express.

Table 4-4. Flags Expressed by Menu Item Types

Menu Flags Menu Type Constants
MENU_ MENU_ MENU_ MENU_
NORMAL ~ MENU_ SUGGESTED_ LOCAL _ DEFAULT _
ITEM CALLBACK ITEM* TASK LOCAL_TASK

MENU_IS ROOT

MENU_VISIBLE IN TREE X

MENU_VISIBLE IN BREADCRUMB X X X

MENU_LINKS TO PARENT X

MENU_MODIFIED BY ADMIN
MENU_CREATED_BY ADMIN
MENU IS LOCAL_ TASK X X

*This constant is created with an additional bitwise OR with 0x0010.

So which constant should you use when defining the type of your menu item? Look at
Table 4-4 and see which flags you want enabled, and use the constant that contains those
flags. For a detailed description of each constant, see the comments in includes/menu.inc.
The most commonly used are MENU_CALLBACK, MENU_LOCAL TASK, and MENU_DEFAULT LOCAL_TASK.
Read on for details.

Common Tasks

This section lays out some typical approaches to common problems confronting developers
when working with menus.

Assigning Callbacks Without Adding a Link to the Menu

Often, you may want to map a URL to a function without creating a visible menu item. For
example, maybe you have a JavaScript function in a web form that needs to get a list of states

83

84

CHAPTER 4 = THE MENU SYSTEM

from Drupal, so you need to wire up a URL to a PHP function but have no need of including
this in any navigation menu. You can do this by assigning the MENU_CALLBACK type to your
menu item, as in the first example in this chapter.

Displaying Menu Items As Tabs

In Drupal’s admittedly obscure menu lingo, a callback that is displayed as a tab is known as

a local task and has the type MENU_LOCAL_TASK or MENU_DEFAULT_LOCAL_TASK. The title of a local
task should be a short verb, such as “add” or “list.” Local tasks usually act on some kind of
object, such as a node, or user. You can think of a local task as being a semantic declaration
about a menu item, which is normally rendered as a tab—similar to the way that the
tag is a semantic declaration and is usually rendered as boldfaced text.

Local tasks must have a parent item in order for the tabs to be rendered. A common prac-
tice is to assign a callback to a root path like milkshake, and then assign local tasks to paths
that extend that path, like milkshake/prepare, milkshake/drink, and so forth. Drupal has built-
in theming support for two levels of tabbed local tasks. (Additional levels are supported by the
underlying system, but your theme would have to provide support for displaying these addi-
tional levels.)

The order in which tabs are rendered is determined by alphabetically sorting on the value
of title for each menu item. If this order is not to your liking, you can add a weight key to
your menu items, and they will be sorted by weight instead.

The following example shows code that results in two main tabs and two subtabs under
the default local task. Create sites/all/modules/custom/milkshake/milkshake.info as follows:

; $1d$

name = Milkshake

description = Demonstrates menu local tasks.
package = Pro Drupal Development

core = 6.X

Then enter the following for sites/all/modules/custom/milkshake/milkshake.module:

<?php
/7 $1d$

/**

* @file

* Use this module to learn about Drupal's menu system,
* specifically how local tasks work.

*/

/**
* Implementation of hook perm().
*/
function milkshake perm() {
return array('list flavors', 'add flavor');

}

CHAPTER 4 = THE MENU SYSTEM 85

/**
* Implementation of hook menu().
*/
function milkshake menu() {
$items['milkshake'] = array(
'title' => 'Milkshake flavors',
'access arguments' => array('list flavors'),
'page callback' => 'milkshake overview',
"type' => MENU_NORMAL_ITEM,
)s
$items['milkshake/list'] = array(
'title' => 'List flavors',
'access arguments' => array('list flavors'),
"type' => MENU DEFAULT LOCAL TASK,
'weight' => 0,
)s
$items['milkshake/add'] = array(
'title' => 'Add flavor',
'access arguments' => array('add flavor'),
'page callback' => 'milkshake add',
"type' => MENU_LOCAL TASK,
'weight' => 1,
)s
$items["'milkshake/list/fruity'] = array(
"title' => 'Fruity flavors',
'access arguments' => array('list flavors'),
'page callback' => 'milkshake list',
'page arguments' => array(2), // Pass 'fruity'.
"type' => MENU_LOCAL TASK,
)s
$items["'milkshake/list/candy'] = array(
"title' => 'Candy flavors',
'access arguments' => array('list flavors'),
'page callback' => 'milkshake list',
'page arguments' => array(2), // Pass 'candy'.
"type' => MENU_LOCAL TASK,
)s

return $items;

}

function milkshake overview() {
$output = t('The following flavors are available...');
// ... more code here
return $output;

}

CHAPTER 4 © THE MENU SYSTEM

function milkshake add() {
return t('A handy form to add flavors might go here...');

}

function milkshake list($type) {
return t('List @type flavors', array('@type' => $type));
}

Figure 4-14 shows the result in the Bluemarine Drupal theme.

: e prrEE—
o B ﬁ:’ e (X |¢ http://example.com/?q=milkshake ¥ | > (|G| * Google Q) s

4
e« Drupal 6

jvandyk Home
N ;‘:e::”;::m Milkshake flavors)
\ it | Listflavors || Add flavor |
o Milkshake flavors Candy flavors Fruity flavors
Y tepaat The following flavors are available...)
v
Done © Adblock .

Figure 4-14. Local tasks and tabbed menus

Note that the title of the page is taken from the parent callback, not from the default local
task. If you want a different title, you can use drupal set title() to setit.

Hiding Existing Menu Items

Existing menu items can be hidden by changing the hidden attribute of their link item. Sup-
pose you want to remove the “Create content” menu item for some reason. Use our old friend
hook _menu_link alter():
/**
* Implementation of hook menu link alter().
*/
function menufun menu link alter(8$item, $menu) {
// Hide the Create content link.
if ($item['link path'] == 'node/add') {
$item["hidden'] = 1;
}
}

CHAPTER 4 = THE MENU SYSTEM

Using menu.module

Enabling Drupal’s menu module provides a handy user interface for the site administrator to
customize existing menus such as the navigation menu or primary/secondary links menus or
to add new menus. When the menu_rebuild() function in includes/menu.inc is run, the data
structure that represents the menu tree is stored in the database. This happens when you
enable or disable modules or otherwise mess with things that affect the composition of the
menu tree. The data is saved into the menu_router table of the database, and the information
about links is stored in the menu_links table.

During the process of building the links for a page, Drupal first builds the tree based on
path information received from modules’ menu hook implementations and stored in the
menu_router table, and then it overlays that information with the menu information from the
database. This behavior is what allows you to use menu.module to change the parent, path, title,
and description of the menu tree—you are not really changing the underlying tree; rather, you
are creating data that is then overlaid on top of it.

Note The menu item type, such as MENU_CALLBACK or DEFAULT LOCAL_TASK, is represented in the
database by its decimal equivalent.

menu.module also adds a section to the node form to add the current post as a menu item
on the fly.

Common Mistakes

You've just implemented the menu hook in your module, but your callbacks aren't firing,
your menus aren’'t showing up, or things just plain aren’t working. Here are a few common
things to check:

* Have yousetan access callback key to a function that is returning FALSE?
* Did you forget to add the line return $items; at the end of your menu hook?

* Did you accidentally make the value of access arguments or page arguments a string
instead of an array?

e Have you cleared your menu cache and rebuilt the menu?

e Ifyou're trying to get menu items to show up as tabs by assigning the type as
MENU_LOCAL_TASK, have you assigned a parent item that has a page callback?

¢ Ifyou're working with local tasks, do you have at least two tabs on a page (this is
required for them to appear)?

87

88

CHAPTER 4 = THE MENU SYSTEM

Summary

After reading this chapter, you should be able to
e Map URLSs to functions in your module or other modules or . inc files.
* Understand how access control works.
¢ Understand how wildcards work in paths.
* Create pages with tabs (local tasks) that map to functions.
* Modify existing menu items and links programmatically.

For further reading, the comments in menu. inc are worth checking out. Also, see http://
drupal.org/node/102338 and http://api.drupal.org/?q=api/group/menu/6.

http://drupal.org/node/102338
http://drupal.org/node/102338
http://api.drupal.org/?q=api/group/menu/6

CHAPTER 5

Working with Databases

Drupal depends on a database to function correctly. Inside Drupal, a lightweight data-
base abstraction layer exists between your code and the database. In this chapter, you'll
learn about how the database abstraction layer works and how to use it. You'll see how
queries can be modified by modules. Then, you’ll look at how to connect to additional
databases (such as a legacy database). Finally, you'll examine how the queries necessary to
create and update database tables can be included in your module’s . install file by using
Drupal’s schema API.

Defining Database Parameters

Drupal knows which database to connect to and what username and password to issue when
establishing the database connection by looking in the settings.php file for your site. This file
typically lives at sites/example.com/settings.php or sites/default/settings.php. The line
that defines the database connection looks like this:

$db_url = 'mysql://username:password@localhost/databasename’;

This example is for connecting to a MySQL database. PostgreSQL users would prefix the
connection string with pgsql instead of mysql. Obviously, the username and password used
here must be valid for your database. They are database credentials, not Drupal credentials,
and they are established when you set up the database account using your database’s tools.
Drupal’s installer asks for the username and password so that it can build the $db_url string
in your settings.php file.

Understanding the Database Abstraction Layer

Working with a database abstraction API is something you will not fully appreciate until you
try to live without one again. Have you ever had a project where you needed to change data-
base systems and you spent days sifting through your code to change database-specific
function calls and queries? With an abstraction layer, you no longer have to keep track of
nuances in function names for different database systems, and as long as your queries are
American National Standards Institute (ANSI) SQL compliant, you will not need to write sepa-
rate queries for different databases. For example, rather than calling mysql_query() or
pg_query(), Drupal uses db_query(), which keeps the business logic database-agnostic.

89

mysql://username:password@localhost/databasename

90

CHAPTER 5 ° WORKING WITH DATABASES

Drupal’s database abstraction layer is lightweight and serves two main purposes. The
first is to keep your code from being tied to any one database. The second is to sanitize
user-submitted data placed into queries to prevent SQL injection attacks. This layer was
built on the principle that writing SQL is more convenient than learning a new abstraction
layer language.

Drupal also has a schema API, which allows you to describe your database schema (that
is, which tables and fields you will be using) to Drupal in a general manner and have Drupal
translate that into specifics for the database you are using. We'll cover that in a bit when we
talk about . install files.

Drupal determines the type of database to connect to by inspecting the $db_url variable
inside your settings.php file. For example, if $db_url begins with mysql, then Drupal will
include includes/database.mysql.inc. If it begins with pgsql, Drupal will include includes/
database.pgsql.inc. This mechanism is shown in Figure 5-1.

As an example, compare the difference in db_fetch _object() between the MySQL and
PostgreSQL abstraction layers:

// From database.mysqli.inc.
function db_fetch object($result) {
if ($result) {
return mysql fetch object($result);
}
}

// From database.pgsql.inc.
function db_fetch object($result) {
if ($result) {
return pg fetch object($result);
}
}

If you use a database that is not yet supported, you can write your own driver by imple-
menting the wrapper functions for your database. For more information, see “Writing Your
Own Database Driver” at the end of this chapter.

CHAPTER 5 © WORKING WITH DATABASES

Bootstrap

database
phase begins

includes/database.inc

db_set_active()

$db_url
in settings.php
begins wit

pgsql mysql

mysqli

includes/database.pgsql.inc includes/database.mysqli.inc includes/database.mysql.inc

includes/database.mysql-common.inc

Figure 5-1. Drupal determines which database file to include by examining $db_url.

Connecting to the Database

Drupal automatically establishes a connection to the database as part of its normal bootstrap
process, so you do not need to worry about doing that.

If you are working outside Drupal itself (for example, you're writing a stand-alone PHP
script or have existing PHP code outside of Drupal that needs access to Drupal’s database),
you would use the following approach.

91

92

CHAPTER 5 ° WORKING WITH DATABASES

// Make Drupal PHP's current directory.
chdir('/full/path/to/your/drupal/installation’);

// Bootstrap Drupal up through the database phase.
include once("'./includes/bootstrap.inc');
drupal bootstrap(DRUPAL BOOTSTRAP_DATABASE);

// Now you can run queries using db query().
$result = db_query('SELECT title FROM {node}');

Caution Drupal is often configured to have multiple folders in the sites directory so that the site can be
moved from staging to production without changing database credentials. For example, you might have
sites/staging.example.com/settings.php with database credentials for your testing database
server and sites/www.example.com/settings.php with database credentials for your production data-
base server. When establishing a database connection as shown in this section, Drupal will always use
sites/default/settings.php, because there is no HTTP request involved.

Performing Simple Queries

Drupal’s db_query() function is used to execute a query to the active database connection.
These queries include SELECT, INSERT, UPDATE, and DELETE.

There is some Drupal-specific syntax you need to know when it comes to writing SQL
statements. First, table names are enclosed within curly brackets so that table names can be
prefixed to give them unique names, if necessary. This convention allows users who are
restricted by their hosting provider in the number of databases they can create to install
Drupal within an existing database and avoid table name collisions by specifying a database
prefix in their settings.php file. Here is an example of a simple query to retrieve the name of
role 2:

$result = db_query('SELECT name FROM {role} WHERE rid = %d', 2);

Notice the use of the %d placeholder. In Drupal, queries are always written using place-
holders, with the actual value following as a parameter. The %d placeholder will automatically
be replaced with the value of the parameter—in this case, 2. Additional placeholders mean
additional parameters:

db_query('SELECT name FROM {role} WHERE rid > %d AND rid != %d', 1, 7);
The preceding line will become the following when it is actually executed by the database:

SELECT FROM role WHERE rid > 1 and rid != 7

http://www.example.com/settings.php

CHAPTER 5 © WORKING WITH DATABASES

User-submitted data must always be passed in as separate parameters so the values can
be sanitized to avoid SQL injection attacks. Drupal uses the printf syntax (see http://
php.net/printf) as placeholders for these values within queries. There are different % modi-
fiers depending on the data type of the user-submitted information.

Table 5-1 lists the database query placeholders and their meaning.

Table 5-1. Database Query Placeholders and Meanings

Placeholder Meaning

%s String

%d Integer

%t Float

%b Binary data; do not enclose in ' '

%% Inserts a literal % sign (e.g., SELECT * FROM {users} WHERE name LIKE '%%%s%%')

The first parameter for db_query() is always the query itself. The remaining parameters
are the dynamic values to validate and insert into the query string. The values can be in an
array, or each value can be its own parameter. The latter is the more common format.

We should note that using this syntax will typecast TRUE, FALSE, and NULL to their decimal
equivalents (0 or 1). In most cases this should not cause problems.

Let’s look at some examples. In these examples, we'll use a database table called joke that
contains three fields: a node ID (integer), a version ID (integer), and a text field containing a
punch line (for more information on the joke module, see Chapter 7).

Let’s start with an easy query. Get all rows of all fields from the table named joke where
the field vid has an integer value that is the same as the value of $node->vid:

db_query('SELECT * FROM {joke} WHERE vid = %d', $node->vid);

Insert a new row into the table named joke. The new row will contain two integers and
a string value. Note the string value’s placeholder is in single quotes; this helps prevent SQL
injection vulnerabilities. Because we have single quotes in the query itself, we use double
quotes to enclose the query:

db_query("INSERT INTO {joke} (nid, vid, punchline) VALUES (%d, %d, '%s')",
$node->nid, $node->vid, $node->punchline);

Change all rows in the table named joke where the field vid has an integer value that is
the same as the value of $node->vid. The rows will be changed by setting the punchline field
equal to the string value contained in $node->punchline:

db_query("UPDATE {joke} SET punchline = '%s' WHERE vid = %d",
$node->punchline, $node->vid);

Delete all rows from the table named joke where the nid column contains an integer
value that is the same as the value of $node->nid:

db_query('DELETE FROM {joke} WHERE nid = %d', $node->nid);

93

http://php.net/printf
http://php.net/printf

94

CHAPTER 5 ° WORKING WITH DATABASES

Retrieving Query Results

There are various ways to retrieve query results depending on whether you need a single row
or the whole result set or whether you are planning to get a range of results for internal use or
for display as a paged result set.

Getting a Single Value

If all you need from the database is a single value, you can use db_result() to retrieve that
value. Here is an example of retrieving the total number of users who have not been blocked
by the administrator (excluding the anonymous user):

$count = db_result(db query('SELECT COUNT(uid) FROM {users} WHERE status = 1
AND uid != 0"));

Getting Multiple Rows

In most cases, you will want to return more than a single field from the database. Here is a
typical iteration pattern for stepping through the result set:

$type = 'blog';
$status = 1; // In the node table, a status of 1 means published.
$sql = "SELECT * FROM {node} WHERE type = '%s' AND status = %d";
$result = db_query(db rewrite sql($sql), $type, $status);
while ($data = db _fetch object($result)) {

$node = node_load($data->nid);

print node view($node, TRUE);
}

The preceding code snippet will print out all published nodes that are of type blog (the
status field in the node table is 0 for unpublished nodes and 1 for published nodes). We will
cover db_rewrite sql() shortly. The db_fetch object() function grabs a row from the result
set as an object. To retrieve the result as an array, use db_fetch array(). The practice of
retrieving rows as objects, as opposed to arrays, is common since most developers prefer its
less verbose syntax.

Getting a Limited Range of Results

As you might guess, running the preceding query on a site with, say, 10,000 blog entries is a
dangerous idea. We'll limit the result of this query to only the ten newest blog entries:

$type = 'blog';
$status = 1; // In the node table, a status of 1 means published.
$sql = "SELECT * FROM {node} n WHERE type = '%s' AND status = %d ORDER BY
n.created DESC";
$result = db_query range(db_rewrite_sql($sql), $type, $status, 0, 10);
while ($data = db _fetch object($result)) {
$node = node_load($data->nid);
print node view($node, TRUE);
}

CHAPTER 5 © WORKING WITH DATABASES

Instead of passing the query to db_query() and using the LIMIT clause, we instead use
db_query range().Why? Because not all databases agree on the format of the LIMIT syntax, so
we need to use db_query range() as a wrapper function.

Note that you pass the variables that will fill placeholders before the range (so the type
and status are passed before 0 and 10 in the example just shown).

Getting Results for Paged Display

We can present these blog entries in a better way: as a page of formatted results with links to
more results. We can do that using Drupal’s pager (see Figure 5-2). Let’s grab all of the blog
entries again, only this time we’ll display them as a paged result, with links to additional pages
of results and “first” and “last” links at the bottom of the page.

$type = 'blog';

$status = 1;

$sql = "SELECT * FROM {node} n WHERE type = '%s' AND status = %d ORDER BY
n.created DESC";

$pager_num = 0; // This is the first pager on this page. We number it o.

$result = pager query(db_rewrite_sql($sql), 10, $pager_num, NULL, $type,
$status);

while ($data = db_fetch object($result)) {
$node = node load($data->nid);
print node view($node, TRUE);

}

// Add links to remaining pages of results.

print theme('pager', NULL, 10, $pager_num);

Although pager query() is not really part of the database abstraction layer, it is good to
know when you need to create a paged result set with navigation. A call to theme('pager"') at
the end will display the navigation links to the other pages. You don't need to pass the total
number of results to theme('pager'), because the number of results is remembered internally
from the pager query() call.

« first | < previous 1 B 3|4||5||6||7((8(9|... next>||last »

Figure 5-2. Drupal’s pager gives built-in navigation through a result set.

The Schema API

Drupal supports multiple databases (MySQL, PostreSQL, etc.) through its database abstrac-
tion layer. Each module that wants to have a database table describes that table to Drupal
using a schema definition. Drupal then translates the definition into syntax that is appropriate
for the database.

95

96 CHAPTER 5 ° WORKING WITH DATABASES

Using Module .install Files

As shown in Chapter 2, when you write a module that needs to create one or more database
tables for storage, the instructions to create and maintain the table structure go into an
.install file that is distributed with the module.

Creating Tables

The install hook usually hands off the installation of the database tables to drupal
install schema(), which gets the schema definition from the module’s schema hook and
modifies the database, as shown in Figure 5-3. Then the install hook does any other neces-
sary installation chores. Here’s an example from the modules/book/book.install file
showing the handoff to drupal install schema().Because the book module deals with the
book node type, it creates that node type after the database installation is complete.

/**
* Implementation of hook install().
*/
function book install() {
// Create tables.
drupal install schema('book");

// Add the node type.
_book_install type create();
}

The schema is defined in the following general way:

$schema['tablename'] = array(
// Table description.
"description' => t('Description of what the table is used for.'),
'fields' => array(
// Field definition.
'field1' => array(
"type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
‘default’ => o0,
"description' => t('Description of what this field is used for.'),

)s
)s

// Index declarations.
'primary key' => array('field1"),

)s

CHAPTER 5 © WORKING WITH DATABASES 97

Module's install
hook begins

Call
drupal_install_schema()

Get schema definition
from schema hook
in .install file

Iterate through tables
defined in schema

} Database-specific -

table creation

Translate schema to <
database-specific SQL Database

Figure 5-3. The schema definition is used to create the database tables.

Let’s take a look at the schema definition for Drupal’s book table, found in modules/
book/book.install
/**
* Implementation of hook schema().
*/
function book schema() {
$schema['book'] = array(
"description' => t('Stores book outline information. Uniquely connects each node
in the outline to a link in {menu_links}'),
'fields' => array(
"'mlid" => array(
"type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'default' => 0,
"description' => t("The book page's {menu_links}.mlid."),

)s

98 CHAPTER 5 ° WORKING WITH DATABASES

"nid' => array(

"type' => 'int',

'unsigned' => TRUE,

'not null' => TRUE,

'default' => 0,

"description' => t("The book page's {node}.nid."),
))
'bid' => array(

"type' => 'int',

'unsigned' => TRUE,

'not null' => TRUE,

'default' => 0,

"description' => t("The book ID is the {book}.nid of the top-level page."),

))
))
"primary key' => array('mlid'),
"unique keys' => array(
"nid' => array('nid"),
))
"indexes' => array(
'bid' => array('bid"),
))
)s

return $schema;

}

This schema definition describes the book table, which has three fields of type int. It
also has a primary key, a unique index (which means all entries in that field are unique)
and a regular index. Notice that when a field from another table is referred to in the field
description curly brackets are used. That enables the schema module (see the next section)
to build handy hyperlinks to table descriptions.

Using the Schema Module

At this point, you may be thinking, “What a pain! Building these big descriptive arrays to tell
Drupal about my tables is going to be sheer drudgery.” But do not fret. Simply download the
schema module from http://drupal.org/project/schema and enable it on your site. Going to
Administer » Site building » Schema will give you the ability to see a schema definition for
any database table by clicking the Inspect tab. So if you have used SQL to create your table,
you can get the schema definition by using the schema module, then copy and paste it into
your .install file.

Tip You should rarely have to write a schema from scratch. Instead, use your existing table(s) and the
schema module’s Inspect tab to have the schema module build the schema for you.

http://drupal.org/project/schema

CHAPTER 5 © WORKING WITH DATABASES

The schema module also allows you to view the schema of any module. For example,
Figure 5-4 shows the schema module’s display of the book module’s schema. Note how the
table names that were in curly brackets in the table and field descriptions have been turned
into helpful links.

Home » Administer » Site building » Schema
Schema

Compare Describe Inspect SQL Show

This page describes the Drupal database schema. Click on a table name to see that table's description and
fields. Table names within a table or field description are hyperlinks to that table's description.

» access

» actions

» actions_aid
» authmap

» batch

» blocks

» blocks_roles

v book

Stores book outline information. Uniquely connects each node in the outline to a link in menu_links
Name Type[:Size] Null? Default

mlid int, unsigned NO 0
The book page's menu_links.mlid.

nid int, unsigned NO 0
The book page's node.nid.

bid int, unsigned NO 0

The book ID is the book.nid of the top-level page.

Figure 5-4. The schema module displays the schema of the book module.

Field Type Mapping from Schema to Database

The field type that is declared in the schema definition maps to a native field type in the
database. For example, an integer field with the declared size of tiny becomes a TINYINT
field in MySQL but a smallint field in PostgreSQL. The actual map can be viewed in the
db_type map() function of the database driver file, such as includes/database.pgsql.php
(see Table 5-2, later in this chapter).

Textual

Textual fields contain text.

Varchar

The varchar, or variable length character field, is the most frequently used field type for stor-
ing text less than 256 characters in length. A maximum length, in characters, is defined by the

99

100

CHAPTER 5 ° WORKING WITH DATABASES

length key. MySQL varchar field lengths are 0-255 characters (MySQL 5.0.2 and earlier) and
0-65,535 characters (MySQL 5.0.3 and later); PostgreSQL varchar field lengths may be larger.

$field['fieldname'] = array(

"type' => 'varchar', // Required.
'length' => 255, // Required.
‘not null' => TRUE, // Defaults to FALSE.

"default’ => 'chocolate', // See below.
"description’ => t('Always state the purpose of your field.'),

)5

If the default key has not been set and the not null key has been set to FALSE, the default
will be set to NULL.

Char

Char fields are fixed-length character fields. The length of the field, in characters, is defined by
the length key. MySQL char field lengths are 0-255 characters.

$field['fieldname'] = array(

"type' => 'char’, // Required.
"length' => 64, // Required.
"not null' => TRUE, // Defaults to FALSE.

"default' => 'strawberry', // See below.
"description’ => t('Always state the purpose of your field.'),

);

If the default key has not been set and the not null key has been set to FALSE, the default
will be set to NULL.

Text

Text fields are used for textual data that can be quite large. For example, the body field of the
node_revisions table (where node body text is stored) is of this type. Default values may not
be used for text fields.

$field['fieldname'] = array(
"type' => 'text', // Required.
'size' => 'small', // tiny | small | normal | medium | big
'not null' => TRUE, // Defaults to FALSE.
"description' => t('Always state the purpose of your field.'),

)5

Numerical

Numerical data types are used for storing numbers and include the integer, serial, float, and
numeric types.

CHAPTER 5 © WORKING WITH DATABASES

Integer

This field type is used for storing integers, such as node IDs. If the unsigned key is TRUE, nega-
tive integers will not be allowed.

$field['fieldname'] = array(
"type' => 'int', // Required.
"unsigned' => TRUE, // Defaults to FALSE.
'size' => 'small', // tiny | small | medium | normal | big
‘not null' => TRUE, // Defaults to FALSE.
"description' => t('Always state the purpose of your field.'),

)s

Serial

A serial field keeps a number that increments. For example, when a node is added, the nid
field of the node table is incremented. This is done by inserting a row and calling db_last_
insert_id().If a row is added by another thread between the insertion of a row and the
retrieval of the last ID, the correct ID is still returned because it is tracked on a per-connection
basis. A serial field must be indexed; it is usually indexed as the primary key.

$field['fieldname'] = array(
"type' => 'serial', // Required.
'unsigned' => TRUE, // Defaults to FALSE. Serial numbers are usually positive.
'size' => 'small', // tiny | small | medium | normal | big
"not null' => TRUE, // Defaults to FALSE. Typically TRUE for serial fields.
"description’ => t('Always state the purpose of your field.'),

)5

Float

Floating point numbers are stored using the float data type. There is typically no difference
between the tiny, small, medium, and normal sizes for a floating point number; in contrast,
the big size specifies a double-precision field.

$field['fieldname'] = array(
"type' => 'float', // Required.
"unsigned' => TRUE, // Defaults to FALSE.
'size' => 'mormal', // tiny | small | medium | normal | big
'not null' => TRUE, // Defaults to FALSE.
"description' => t('Always state the purpose of your field.'),

);

Numeric

The numeric data type allows you to specify the precision and scale of a number. Precision
is the total number of significant digits in the number; scale is the total number of digits to
the right of the decimal point. For example, 123.45 has a precision of 5 and a scale of 2. The
size key is not used. At the time of this writing, numeric fields are not used in the schema of
the Drupal core.

101

102

CHAPTER 5 ° WORKING WITH DATABASES

$field['fieldname'] = array(
"type' => "numeric', // Required.
'unsigned' => TRUE, // Defaults to FALSE.
"precision’ => 5, // Significant digits.
'scale' => 2, // Digits to the right of the decimal.
‘not null' => TRUE, // Defaults to FALSE.
"description' => t('Always state the purpose of your field.'),

)5

Date and Time: Datetime

The Drupal core does not use this data type, preferring to use Unix timestamps in integer
fields. The datetime format is a combined format containing both the date and the time.

$field['fieldname'] = array(
"type' => 'datetime’, // Required.
"not null' => TRUE, // Defaults to FALSE.
"description’ => t('Always state the purpose of your field.'),

);

Binary: Blob

The binary large object data (blob) type is used to store binary data (for example, Drupal’s
cache table to store the cached data). Binary data may include music, images, or video. Two
sizes are available, normal and big.

$field['fieldname'] = array(
"type' => 'blob', // Required.
"size' => 'normal' // normal | big
'not null' => TRUE, // Defaults to FALSE.
"description' => t('Always state the purpose of your field.'),

)5

Declaring a Specific Column Type with mysql_type

If you know the exact column type for your database engine, you can set the mysql_type (or
pgsql type) key in your schema definition. This will override the type and size keys for that
database engine. For example, MySQL has a field type called TINYBLOB for small binary large
objects. To specify that Drupal should use TINYBLOB if it is running on MySQL but fall back to
using the regular BLOB type if it is running on a different database engine, the field could be
declared like so:

$field['fieldname'] = array(
'mysql_type' > 'TINYBLOB', // MySOL will use this.
"type' => 'blob', // Other databases will use this.
'size' => 'normal’, // Other databases will use this.
"not null' => TRUE,
"description' => t('Wee little blobs.")

)5

CHAPTER 5 © WORKING WITH DATABASES

The native types for MySQL and PostgreSQL are shown in Table 5-2.

Table 5-2. How Type and Size Keys in Schema Definitions Map to Native Database Types

Schema Definition Native Database Field Type
Type Size MySQL PostgreSQL
varchar normal VARCHAR varchar
char normal CHAR character
text tiny TINYTEXT text
text small TINYTEXT text
text medium MEDIUMTEXT text
text big LONGTEXT text
text normal TEXT text
serial tiny TINYINT serial
serial small SMALLINT serial
serial medium MEDIUMINT serial
serial big BIGINT bigserial
serial normal INT serial
int tiny TINYINT smallint
int small SMALLINT smallint
int medium MEDIUMINT int
int big BIGINT bigint
int normal INT int
float tiny FLOAT real
float small FLOAT real
float medium FLOAT real
float big DOUBLE double precision
float normal FLOAT real
numeric normal DECIMAL numeric
blob big LONGBLOB bytea
blob normal BLOB bytea
datetime normal DATETIME timestamp
Maintaining Tables

When you create a new version of a module, you might have to change the database schema.
Perhaps you've added a column or added an index to a column. You can't just drop and re-
create the table, because the table contains data. Here’s how to ensure that the database is

changed smoothly:

103

104

CHAPTER 5 ° WORKING WITH DATABASES

1. Update the hook_schema() implementation in your .install file so that new users who
install your module will have the new schema installed. The schema definition in your
.install file will always be the latest schema for your module’s tables and fields.

2. Give existing users an upgrade path by writing an update function. Update func-
tions are named sequentially, starting with a number that is based on the Drupal
version. For example, the first update function for Drupal 6 would be modulename _
update 6000() and the second would be modulename_update 6001(). Here’s an exam-
ple from modules/comment/comment.install where an index was added to the parent
ID (pid) column of the comments table:

/**

* Add index to parent ID field.

*/

function comment update 6003() {
$ret = array(); // Query results will be collected here.
// $ret will be modified by reference.
db_add_index($ret, 'comments', 'pid', array('pid'));
return $ret;

}

This function will be run when the user runs http://example.com/update.php after
upgrading the module.

Caution Because the schema definition found in your hook_schema () implementation changes every
time you want a new table, field, or index, your update functions should never use the schema definition
found there. Think of your hook _schema () implementation as being in the present and your update func-
tions as being in the past. See http://drupal.org/node/150220.

A full list of functions for dealing with schemas can be found at http://api.drupal.org/
api/group/schemaapi/é.

Tip Drupal keeps track of which schema version a module is currently using. This information is in the
system table. After the update shown in this section has run, the row for the comment module will have a
schema_version value of 6003.To make Drupal forget, use the Reinstall Modules option of the devel mod-
ule, or delete the module’s row from the system table.

Deleting Tables on Uninstall

When a module is disabled, any data that the module has stored in the database is left
untouched, in case the administrator has a change of heart and reenables the module. The

http://example.com/update.php
http://drupal.org/node/150220
http://api.drupal.org

CHAPTER 5 © WORKING WITH DATABASES

Administer » Site building » Modules page has an Uninstall tab that removes the data from
the database. If you want to enable the deletion of your module’s tables on this page,
implement the uninstall hook in your module’s . install file. You might want to delete any
variables you've defined at the same time. Here’s an example for the annotation module we
wrote in Chapter 2:

/**

* Implementation of hook uninstall().
*/

function annotate uninstall() {

// Use schema API to delete database table.
drupal uninstall schema('annotate');

// Clean up our entry in the variables table.
variable del('annotate nodetypes');

}

Changing Existing Schemas with hook_schema_alter()

Generally modules create and use their own tables. But what if your module wants to alter an
existing table? Suppose your module absolutely has to add a column to the node table. The
simple way would be to go to your database and add the column. But then Drupal’s schema
definitions, which should reflect the actual database table, would be inconsistent. There is a
better way: hook_schema_alter().

Caution hook schema_alter() is new to Drupal, and there is still some debate over what the best
practices are for using this hook. Check http://api.drupal.org/api/group/hooks/6 for further details.

Suppose you have a module that marks nodes in some way, and for performance reasons,
you are dead set on using the existing node table instead of using your own table and joining it
using node IDs. Your module will have to do two things: alter the node table during your mod-
ule’s installation and modify the schema so that it actually reflects what is in the database. The
former is accomplished with hook_install(), the latter with hook schema_alter().Assuming
your module is called markednode.module, your markednode.install file would include the fol-
lowing functions:

/**
* Implementation of hook install().
*/
function markednode install() {
$field = array(
"type' => 'int',
'unsigned' => TRUE,
‘not null' => TRUE,
'default' => 0,

105

http://api.drupal.org/api/group/hooks/6

106 CHAPTER 5 ° WORKING WITH DATABASES

'initial' => 0, // Sets initial value for preexisting nodes.
"description' => t('Whether the node has been marked by the
markednode module.'),

)5

// Create a regular index called 'marked' on the field named 'marked'.
$keys['indexes'] = array(
"marked’ => array('marked")

)5

$ret = array(); // Results of the SQL calls will be stored here.
db_add field($ret, 'node', 'marked', $field, $keys);
}

Vi
* Implementation of hook schema alter(). We alter $schema by reference.
*

* @param $schema
* The system-wide schema collected by drupal get schema().
*/
function markednode schema alter(8$schema) {
// Add field to existing schema.
$schema['node']['fields']['marked'] = array(
"type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
'default' => 0,
"description' => t('Whether the node has been marked by the
markednode module.'),
)s
}

Inserts and Updates with drupal_write_record()

A common problem for programmers is handling inserts of new database rows and updates to
existing rows. The code typically tests whether the operation is an insert or an update, then
performs the appropriate operation.

Because each table that Drupal uses is described using a schema, Drupal knows what
fields a table has and what the default values are for each field. By passing a keyed array of
fields and values to drupal write record(), you can let Drupal generate and execute the SQL
instead of writing it by hand.

Suppose you have a table that keeps track of your collection of giant bunnies. The schema
hook for your module which describes the table looks like this:

CHAPTER 5 © WORKING WITH DATABASES

/**
* Implementation of hook schema().
*/
function bunny schema() {
$schema['bunnies'] = array(
"description' => t('Stores information about giant rabbits.'),
'fields' => array(
'bid' => array(
"type' => 'serial’,
'unsigned' => TRUE,
'not null' => TRUE,
"description' => t("Primary key: A unique ID for each bunny."),
))
"name’ => array(
"type' => 'varchar',
"length' => 64,
'not null' => TRUE,
"description' => t("Each bunny gets a name."),
))
"tons' => array(
"type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
"description' => t('The weight of the bunny to the nearest ton.'),
))
))
"primary key' => array('bid'),
"indexes' => array(
"tons' => array('tons'),
))
)

return $schema;

}

Inserting a new record is easy, as is updating a record:

$table = 'bunnies';

$record = new stdClass();
$record->name = t('Bortha');
$record->tons = 2;

drupal write record($table, $record);

// The new bunny ID, $record->bid, was set by drupal write record()
// since $record is passed by reference.
watchdog('bunny', 'Added bunny with id %id.', array('%id' => $record->bid));

107

108 CHAPTER 5 ° WORKING WITH DATABASES

// Change our mind about the name.

$record->name = t('Bertha');

// Now update the record in the database.

// For updates we pass in the name of the table's primary key.
drupal write record($table, $record, 'bid');

watchdog('bunny', 'Updated bunny with id %id.', array('%id' => $record->bid));

Array syntax is also supported, though if $record is an array drupal write record() will
convert the array to an object internally.

Exposing Queries to Other Modules with
hook_db_rewrite_sql()

This hook is used to modify queries created elsewhere in Drupal so that you do not have to
hack modules directly. If you are sending a query to db_query() and you believe others may
want to modify it, you should wrap it in the function db_rewrite sql() to make the query
accessible to other developers. When such a query is executed, it first checks for all modules
that implement hook _db_rewrite sql() and gives them a chance to modify the query. For
example, the node module modifies queries for listings of nodes to exclude nodes that are
protected by node access rules.

Caution If you execute a node listing query (i.e., you are querying the node table for some subset of
nodes) and you fail to wrap your query in db_rewrite sql(), the node access rules will be bypassed
because the node module will not have a chance to modify the query to exclude protected nodes. This may
lead to nodes being shown to users who should not be allowed to see them.

If you are not the one issuing queries, but you want your module to have a chance to
modify others’ queries, implement hook_db_rewrite sql() in your module.
Table 5-3 summarizes the two ways to use SQL rewriting.

Table 5-3. Using the db_rewrite_sql() Function vs.Using the hook_db_rewrite_sql() Hook

Name When to Use

db_rewrite sql() When issuing node listing queries or other queries that you want others
to be able to modify

hook db_rewrite sql() When you want to modify queries that other modules have issued

Using hook_db_rewrite_sql()
Here's the function signature for hook db_rewrite sql():

function hook db rewrite sql($query, $primary table = 'n', $primary field = 'nid',
$args = array())

CHAPTER 5 © WORKING WITH DATABASES

The parameters are as follows:
e $query: This is the SQL query available to be rewritten.

e $primary_table: This is the name or alias of the table that has the primary key field
for this query. Example values are n for the node table or ¢ for the comment table (e.g.,
for SELECT nid FROM {node} n, the value would be n). Common values are shown in
Table 5-4.

e $primary field: This is the name of the primary field in the query. Example values are
nid, tid, vid, and cid (e.g., if you are querying to get a list of node IDs, the primary field
would be nid).

* $args: This array of arguments is passed along to each module’s implementation of
hook _db_rewrite sql().

Table 5-4. Common Values of $primary_table Aliases

Table Alias
blocks b
comments c
forum f
node n
menu m
term data t
vocabulary v

Changing Other Modules’ Queries

Let’s take a look at an implementation of the hook db_rewrite sql().The following example
takes advantage of the moderate column in the node table to rewrite node queries. After we've
modified the query, nodes that are in the moderated state (i.e., the moderate column is 1) will
be hidden from users who do not have the “administer content” permission.
Vi
* Implementation of hook_db_rewrite sql().
*/
function moderate db_rewrite sql($query, $primary table, $primary field, $args) {
switch ($primary_field) {
case 'nid':
// Run only if the user does not already have full access.
if (luser access('administer content')) {
$array = array();

109

110

CHAPTER 5

if

}

WORKING WITH DATABASES

($primary table == 'n") {

// Node table is already present;

// just add a WHERE to hide moderated nodes.
$array['where'] = "(n.moderate = 0)";

// Test if node table is present but alias is not 'n'.
elseif (preg match('@{node} ([A-Za-z_]+)@', $query, $match)) {

}

$node_table alias = $match[1];

// Add a JOIN so that the moderate column will be available.
$array['join'] = "LEFT JOIN {node} n ON $node table alias.nid = n.nid";

// Add a WHERE to hide moderated nodes.
$array['where'] = "($node_table alias.moderate = 0)";

return $array;

Notice that we are inspecting any query where nid is the primary key and inserting addi-
tional information into those queries. Let’s take a look at this in action.
Here's the original query before moderate _db rewrite sql():

SELECT * FROM {node} n WHERE n.type = 'blog' AND n.status

n
[N

Here’s the query after moderate_db_rewrite sql():

SELECT * FROM {node} n WHERE n.type = 'blog' AND n.status

1 AND n.moderate = 0

After moderate db_rewrite sql() was called, it appended AND n.moderate = O to the
incoming query. Other uses of this hook usually relate to restricting access to viewing nodes,
vocabularies, terms, or comments.

db_rewrite sql() islimited in the SQL syntax it can understand. When joining tables you
need to use the JOIN syntax rather than joining tables within the FROM clause.

The following is incorrect:

SELECT * FROM {node} AS n, {comment} AS c WHERE n.nid = c.nid

This is correct:

SELECT * FROM {node} n INNER JOIN {comment} c ON n.nid = c.nid

CHAPTER 5 © WORKING WITH DATABASES

Connecting to Multiple Databases Within Drupal

While the database abstraction layer makes remembering function names easier, it also adds
built-in security to queries. Sometimes, we need to connect to third-party or legacy databases,
and it would be great to use Drupal’s database API for this need as well and get the security
benefits. The good news is that we can! For example, your module can open a connection to
anon-Drupal database and retrieve data.

In the settings.php file, $db_url can be either a string (as it usually is) or an array com-
posed of multiple database connection strings. Here’s the default syntax, specifying a single
connection string:

$db_url = 'mysql://username:password@localhost/databasename’;

When using an array, the key is a shortcut name you will refer to while activating the
database connection, and the value is the connection string itself. Here’s an example where
we specify two connection strings, default and legacy:

$db_url['default'] = 'mysql://user:password@localhost/drupal6’;

$db_url['legacy'] = "mysql://user:password@localhost/legacydatabase’;

Note The database that is used for your Drupal site should always be keyed as default.

When you need to connect to one of the other databases in Drupal, you activate it by its
key name and switch back to the default connection when finished:

// Get some information from a non-Drupal database.
db_set active('legacy');
$result = db_query("SELECT * FROM ldap user WHERE uid = %d", $user->uid);

// Switch back to the default connection when finished.
db_set active('default');

Note Make sure to always switch back to the default connection, so Drupal can cleanly finish the request
life cycle and write to its own tables.

Because the database abstraction layer is designed to use identical function names for
each database, multiple kinds of database back-ends (e.g., both MySQL and PostgreSQL)
cannot be used simultaneously. However, see http://drupal.org/node/19522 for more
information on how to allow both MySQL and PostgreSQL connections from within the
same site.

111

mysql://username:password@localhost/databasename
mysql://user:password@localhost/drupal6
mysql://user:password@localhost/legacydatabase
http://drupal.org/node/19522

112

CHAPTER 5 ° WORKING WITH DATABASES

Using a Temporary Table

If you are doing a lot of processing, you may need to create a temporary table during the
course of the request. You can do that using db_query temporary() with a call of the follow-
ing form:

$result = db_query temporary($sql, $arguments, $temporary table name);

You can then query the temporary table using the temporary table name. It is good prac-
tice to build the temporary table name from “temp” plus the name of your module plus a
specific name.

$final result = db_query('SELECT foo FROM temp mymodule nids');

Notice how the temporary tables never require curly brackets for table prefixing, as a
temporary table is short-lived and does not go through the table prefixing process. In con-
trast, names of permanent tables are always surrounded by curly brackets to support table
prefixing.

Note Temporary tables are not used in the Drupal core, and the database user that Drupal is using to
connect to the database may not have permission to create temporary tables. Thus, module authors should
not assume that everyone running Drupal will have this permission.

Writing Your Own Database Driver

Suppose we want to write a database abstraction layer for a new, futuristic database system
named DNAbase that uses molecular computing to increase performance. Rather than start
from scratch, we’ll copy an existing abstraction layer and modify it. We'll use the PostgreSQL
implementation, since the MySQL driver is split up into includes/database.mysql-common.inc
and a separate file for the mysql and mysqli drivers.

First, we make a copy of includes/database.pgsql.inc and rename it as includes/
database.dnabase.inc. Then we change the logic inside each wrapper function to map to
DNAbase’s functionality instead of PostgreSQLs functionality. When all is said and done, we
have the following functions declared in our file:

_db_query($query, $debug = 0)

db_add field(&$ret, $table, $field, $spec, $new_keys = array())
db_add_index(&$ret, $table, $name, $fields)

db_add primary key(8$ret, $table, $fields)

db_add_unique key(&$ret, $table, $name, $fields)

db_affected rows()

db_change field(&$ret, $table, $field, $field new, $spec, $new keys = array())
db_check_setup()

CHAPTER 5

db_column_exists($table, $column)
db_connect($url)
db_create table sql($name, $table)
db_decode blob($data)

db_distinct field($table, $field, $query)
db_drop field(8$ret, $table, $field)
db_drop_index(8$ret, $table, $name)
db_drop primary key(&$ret, $table)
db_drop table(8$ret, $table)
db_drop_unique key(8$ret, $table, $name)
db_encode_blob($data)

db_error()

db_escape string($text)

db_fetch array($result)

db_fetch object($result)
db_field set default(&$ret, $table, $field, $default)
db_field set no default(8$ret, $table, $field)
db last insert id($table, $field)

db_lock table($table)

db_query range($query)

db_query temporary($query)
db_query($query)

db_rename_table(&$ret, $table, $new name)
db_result($result)

db_status_report()

db_table exists($table)

db_type map()

db_unlock tables()

db_version()

WORKING WITH DATABASES

We test the system by connecting to the DNAbase database within Drupal by updating

$db_url in settings.php. It looks something like this:

$db_url = 'dnabase://john:secret@localhost/mydnadatabase’;

where john is the username; secret is the password; and mydnadatabase is the name of the
database to which we will connect. You'll also want to create a test module that calls these

functions directly to ensure that they work as expected.

Summary

After reading this chapter, you should be able to
e Understand Drupal’s database abstraction layer.

¢ Perform basic queries.

113

114 CHAPTER 5 ° WORKING WITH DATABASES

* Get single and multiple results from the database.

* Get alimited range of results.

e Use the pager.

e Understand Drupal’s schema APIL

» Write queries so other developers can modify them.

¢ Cleanly modify the queries from other modules.

e Connect to multiple databases, including legacy databases.

e Write an abstraction layer driver.

CHAPTER 6

Working with Users

Users are the reason for using Drupal. Drupal can help users create, collaborate, communi-
cate, and form an online community. In this chapter, we look behind the scenes and see how
users are authenticated, logged in, and represented internally. We start with an examination of
what the $user object is and how it’s constructed. Then we walk through the process of user
registration, user login, and user authentication. We finish by examining how Drupal ties in
with external authentication systems such as Lightweight Directory Access Protocol (LDAP)
and Pubcookie.

The $user Object

Drupal requires that the user have cookies enabled in order to log in; a user with cookies
turned off can still interact with Drupal as an anonymous user.

During the session phase of the bootstrap process, Drupal creates a global $user object
that represents the identity of the current user. If the user is not logged in (and so does not
have a session cookie), then he or she is treated as an anonymous user. The code that creates
an anonymous user looks like this (and lives in includes/bootstrap.inc):

function drupal anonymous user($session = "") {
$user = new stdClass();
$user->uid = 0;
$user->hostname = ip address();
$user->roles = array();
$user->roles[DRUPAL_ANONYMOUS RID] = 'anonymous user';
$user->session = $session;
$user->cache = 0;
return $user;

On the other hand, if the user is currently logged in, the $user object is created by joining
the users table and sessions table on the user’s ID. Values of all fields in both tables are placed
into the $user object.

Note The user’s ID is an integer that is assigned when the user registers or the user account is created
by the administrator. This ID is the primary key of the users table.

115

116 CHAPTER 6 © WORKING WITH USERS

The $user object is easily inspected by adding global $user; print r($user); to
index.php. The following is what a $user object generally looks like for a logged-in user:

stdClass Object (

[uid] => 2

[name] => Joe Example

[pass] => 7701e9e11ac326e€98a3191cd386a114b
[mail] => joe@example.com

[mode] =0

[sort] =0

[threshold] => 0

[theme] => bluemarine

[signature] => Drupal rocks!

[created] => 1201383973

[access] => 1201384439

[login] => 1201383989

[status] =1

[timezone] => -21600

[language] =>

[picture] => sites/default/files/pictures/picture-1.jpg
[init] => joe@example.com

[data] =>

[roles] => Array ([2] => authenticated user)
[sid] => fq5vvn5ajvj4sihli3z14ltsqes
[hostname] => 127.0.0.1

[timestamp] => 1201383994

[cache] =0

[session] => user overview filter|a:0:{}

In the $user object just displayed, italicized field names denote that the origin of the data
is the sessions table. The components of the $user object are explained in Table 6-1.

Table 6-1. Components of the $user Object

Component Description

Provided by the users Table

uid The user ID of this user. This is the primary key of the users table and is
unique to this Drupal installation.

name The user’s username, typed by the user when logging in.

pass An MD5 hash of the user’s password, which is compared when the user
logs in. Since the actual passwords aren'’t saved, they can only be reset
and not restored.

mail The user’s current e-mail address.

mode, sort, and threshold User-specific comment viewing preferences.

theme If multiple themes are enabled, the user’s chosen theme. If a user’s

theme is uninstalled, Drupal will revert to the site’s default theme.

mailto:joe@example.com
mailto:joe@example.com

CHAPTER 6 © WORKING WITH USERS

Gomponent Description

signature The signature the user entered on his or her account page. Used when
the user adds a comment and only visible when the comment module
is enabled.

created A Unix timestamp of when this user account was created.

access A Unix timestamp denoting the user’s last access time.

login A Unix timestamp denoting the user’s last successful login.

status Contains 1 if the user is in good standing or 0 if the user has been
blocked.

timezone The number of seconds that the user’s time zone is offset from GMT.

language The user’s default language. Empty unless multiple languages are
enabled on a site and the user has chosen a language by editing
account preferences.

picture The path to the image file the user has associated with the account.

init The initial e-mail address the user provided when registering.

data Arbitrary data can be stored here by modules (see the next section,

“Storing Data in the $user Object”).
Provided by the user_roles Table
roles The roles currently assigned to this user.

Provided by the sessions Table

sid The session ID assigned to this user session by PHP.

hostname The IP address from which the user is viewing the current page.

timestamp A Unix timestamp representing time at which the user’s browser last
received a completed page.

cache A timestamp used for per-user caching (see includes/cache.inc).

session Arbitrary, transitory data stored for the duration of the user’s session

can be stored here by modules.

Storing Data in the $user Object

The users table contains a field called data that holds extra information in a serialized array. If
you add your own data to the $user object, it will be stored in this field by user_save():

// Add user's disposition.

global $user;

$extra data = array('disposition' => t('Grumpy'));
user_save($user, $extra data);

The $user object now has a permanent attribute:

global $user;
print $user->disposition;

Grumpy

117

118

CHAPTER 6 © WORKING WITH USERS

While this approach is convenient, it creates additional overhead when the user logs in
and the $user object is instantiated, since any data stored in this way must be unserialized.
Thus, throwing large amounts of data willy-nilly into the $user object can create a perform-
ance bottleneck. An alternate and preferred method, in which attributes are added to the
$user object when the object is loaded, is discussed shortly in the section titled “Adding Data
to the $user Object at Load Time.”

Testing If a User Is Logged In

During a request, the standard way of testing if a user is logged in is to test whether
$user->uid is 0. Drupal has a convenience function called user_is logged in() for this pur-
pose (there is a corresponding user_is_anonymous () function):

if (user_is logged in()) {
$output = t('User is logged in.');
else {
$output = t('User is an anonymous user.');

}

Introduction to hook_user()

Implementing hook_user() gives your modules a chance to react to the different operations
performed on a user account and to modify the $user object. Let’s examine the function
signature:

function hook user($op, &$edit, &$account, $category = NULL)

The $op parameter is used to describe the current operation being performed on the user
account and can have many different values:

e after update: This is called after the $user object has been saved to the database.

* categories: This returns an array of categories that appear as Drupal menu local tasks
(typically rendered as clickable tabs) when the user edits the user account. These are
actually Drupal menu items. See profile categories() in profile.module for a sample
implementation.

o delete: A user has just been deleted from the database. This is an opportunity for the
module to remove information related to the user from the database.

e form: Inject additional form field elements to the user edit form being displayed.

e insert: The row for the new user account has been inserted into the database;
$user->data is about to be saved and roles assigned. After that, the finished $user
object will be loaded.

CHAPTER 6 © WORKING WITH USERS

* load: The user account was successfully loaded. The module may add additional infor-
mation into the $user object (passed to the user hook by reference as the $account
parameter).

e login: The user has successfully logged in.
* logout: The user just logged out and his or her session has been destroyed.

* register: The user account registration form is about to be displayed. The module may
add additional form elements to the form.

e submit: The user edit form has been submitted. Modify the account information before
itis sent to user_save().

* update: The existing user account is about to be saved to the database.

e validate: The user account has been modified. The module should validate its custom
data and raise any necessary errors.

e view: The user’s account information is being displayed. The module should return its
custom additions to the display as a structured element of $user->content. The view
operation ultimately calls theme_user profile() to format the user profile page (more
details on this shortly).

The $edit parameter is an array of the form values submitted when a user account is
being created or updated. Notice that it’s passed by reference, so any changes you make will
actually change the form values.

The $account object (which is really a $user object) is also passed by reference, so any
changes you make will actually change the $user information.

The $category parameter is the active user account category being edited. Think of
categories as separate groups of information that relate to the user. For example, if you go
to your “My account” page while logged in to drupal.org and click the Edit tab, you'll see
separate categories for account settings, personal information, newsletter subscriptions,
and so on.

Caution Don’t confuse the $account parameter within hook _user () with the global $user object. The
$account parameter is the user object for the account currently being manipulated. The global $user object
is the user currently logged in. Often, but not always, they are the same.

Understanding hook_user(‘view’)

hook user('view") is used by modules to add information to user profile pages (e.g., what you
see at http://example.com/?q=user/1; see Figure 6-1).

119

http://example.com/?q=user/1

120 CHAPTER 6 © WORKING WITH USERS

Home

jvandyk
View Edit
History
Member for
2 weeks 2 days

Blog
View recent blog entries

Figure 6-1. The user profile page, with the blog module and the user module implementing
hook_user(‘view’) to add additional information

Let’s examine how the blog module added its information to this page:

/**
* Implementation of hook user().
*/
function blog user($op, 8$edit, &$user) {
if ($op == 'view' 8& user access('create blog entries', $user)) {
$user->content['summary']['blog'] = array(

"#type' => 'user profile item',

"#title' => t('Blog'),

"#value' => 1(t('View recent blog entries'), "blog/$user->uid",
array('title' => t("Read @username's latest blog entries.",
array('@username’ => $user->name)))),

"#attributes' => array('class' => 'blog'),

);
}
}

The view operation stashes some information into $user->content. User profile infor-
mation is organized into categories, with each category representing a page of information
about a user. In Figure 6-1, there is just one category, called History. The outer array
should be keyed by category name. In the preceding example, the name of the key is
summary, which corresponds to the History category (admittedly, it would make more sense
to name the key and the category the same thing). The interior array(s) should have a
unique textual key (blog in this case) and have #type, #title, #value, and #attributes
elements. The type user_profile item points Drupal’s theming layer to modules/user/
user-profile-item.tpl.php. By comparing the code snippet with Figure 6-1, you can see
how these elements are rendered. Figure 6-2 shows the contents of the $user->content
array, which became the page shown in Figure 6-1.

CHAPTER 6 © WORKING WITH USERS

Ed content = Array [2]
[+ E3 summary = Array [8]
= B3 #attributes = Array [1]
@ class = (string:11) user-member
@ #title = (string:7) History
@ #type = (string:21) user_profile_category
@ #ueight = (int) 5
= B3 blog = Array [4]
=+ B3 #attributes = Array [1]
@ class = (string:4) blog
@ s#title = (string:4) Blog
@ #type = (string:17) user_profile_item
@ #value = (string:51) View recent blog entries</ax»
=+ Ed member_for = Array [3]
@ s#title = {string:101 Member for
@ #type = (string:17) user_profile_item
@ #value = (string:14) 2 weeks 5 days

Figure 6-2. The structure of $user->content

Your module may also implement hook_profile alter() to manipulate the profile items
in the $user->content array before they are themed. The following is an example of simply
removing the blog profile item from the user profile page. The function is named as if it were
in the hypothetical hide.module:

Vaki
* Implementation of hook profile alter().
*/
function hide profile alter(&$account) {
unset($account->content['summary']['blog']);

}

The User Registration Process

By default, user registration on a Drupal site requires nothing more than a username and a
valid e-mail address. Modules can add their own fields to the user registration form by imple-
menting the user hook. Let’s write a module called legalagree.module that provides a quick
way to make your site play well in today’s litigious society.

First, create a folder at sites/all/modules/custom/legalagree, and add the following files
(see Listings 6-1 and 6-2) to the legalagree directory. Then, enable the module via
Administer » Site building » Modules.

Listing 6-1. legalagree.info

; Id

name = Legal Agreement

description = Displays a dubious legal agreement during user registration.
package = Pro Drupal Development

core = 6.X

121

122 CHAPTER 6 © WORKING WITH USERS

Listing 6-2. legalagree.module

<?php
/7 $1d$

/**

* @file

* Support for dubious legal agreement during user registration.
*/

/**
* Implementation of hook user().
*/
function legalagree user($op, &$edit, 8$user, $category = NULL) {
switch($op) {
// User is registering.
case 'register':
// Add a fieldset containing radio buttons to the
// user registration form.
$fields['legal agreement'] = array(
'#type' => 'fieldset’,
"#title' => t('Legal Agreement')
)
$fields['legal agreement']['decision'] = array(

'#type' => 'radios’,

'#description’ => t('By registering at %site-name, you agree that
at any time, we (or our surly, brutish henchmen) may enter your place of
residence and smash your belongings with a ball-peen hammer.',
array('%site-name' => variable get('site name', 'drupal'))),

'#default _value' => o,

"#options' => array(t('I disagree'), t('I agree'))

)

return $fields;

// Field values for registration are being checked.
case 'validate':
// Make sure the user selected radio button 1 ('I agree').
// The validate op is reused when a user updates information on
// the "My account' page, so we use isset() to test whether we are
// on the registration page where the decision field is present.
if (isset($edit['decision']) 8& $edit['decision'] != "1'") {
form set error('decision', t('You must agree to the Legal Agreement
before registration can be completed.'));

}

break;

CHAPTER 6 © WORKING WITH USERS

// New user has just been inserted into the database.
case 'insert':
// Record information for future lawsuit.
watchdog('user', t('User %user agreed to legal terms',
array('%user' => $user->name)));
break;

The user hook gets called during the creation of the registration form, during the valida-
tion of that form, and after the user record has been inserted into the database. Our brief
module will result in a registration form similar to the one shown in Figure 6-3.

User account
Create new account Log in Request new password
Account information

Username: *

|Joe Example
Spaces are allowed; punctuation is not allowed except for periods, hyphens, and underscores.

E-mail address: *

hoe@example.com

A valid e-mail address. All e-mails from the system will be sent to this address. The e-mail address is not
made public and will only be used if you wish to receive a new password or wish to receive certain news or
notifications by e-mail.

Legal Agreement

" 1 disagree
@ I agree

By registering at Ben's Noodle Emporium, you agree that at any time, we {or our surly, brutish henchmen}
may enter your place of residence and smash your belongings with a ball-peen hammer.

Create new account |

Figure 6-3. A modified user registration form

Using profile.module to Collect User Information

If you plan to extend the user registration form to collect information about users, you would
do well to try out profile.module before writing your own module. It allows you to create arbi-
trary forms to collect data, define whether or not the information is required and/or collected
on the user registration form, and designate whether the information is public or private.
Additionally, it allows the administrator to define pages so that users can be viewed by their
profile choices using a URL constructed from site URL plus profile/ plus name of profile
field plus value.

123

124

CHAPTER 6 © WORKING WITH USERS

For example, if you define a textual profile field named profile color, you could view
all the users who chose black for their favorite color at http://example.com/?q=profile/
profile color/black. Or suppose you are creating a conference web site and are responsi-
ble for planning dinner for attendees. You could define a check box profile field named
profile vegetarian and view all users who are vegetarians at http://example.com/
?q=profile/profile vegetarian (note that for check box fields, the value is implicit and
thus ignored; that is, there is no value appended to the URL like the value black was for the
profile color field).

As a real-world example, the list of users at http://drupal.org who attended the 2008
Drupal conference in Boston, Massachusetts, can be viewed at http://drupal.org/
profile/conference-boston-2008 (in this case, the name of the field is not prefixed with
profile).

Tip Automatic creation of profile summary pages works only if the field Page title is filled out in the
profile field settings and is not available for textarea, URL, or date fields.

The Login Process

The login process begins when a user fills out the login form (typically at http://example.com/
?g=user or displayed in a block) and clicks the “Log in” button.

The validation routines of the login form check whether the username has been blocked,
whether an access rule has denied access, and whether the user has entered an incorrect user-
name or password. The user is duly notified of any of these conditions.

Note Drupal has both local and external authentication. Examples of external authentication systems
include OpenlID, LDAP, Pubcookie, and others. One type of external authentication is distributed authentica-
tion, where users from one Drupal site are permitted to log on to another Drupal site (see the site_network
module at http://drupal.org/project/site network).

Drupal attempts to log in a user locally by searching for a row in the users table with the
matching username and password hash. A successful login results in the firing of two user
hooks (load and login), which your modules can implement, as shown in Figure 6-4.

http://example.com/?q=profile
http://example.com
http://drupal.org
http://drupal.org
http://example.com
http://drupal.org/project/site_network

user_login_name_validate()

Yes

CHAPTER 6 © WORKING WITH USERS

POST from
login form

Username
blocked?

Username denied

Y

Set form error

user_login_authenticate_validate()

Failed
user_authenticate()

user_authenticate_finalize()

Y

user_login_final_validate() Sorry,
unrecognized
username or

password

user_login_submit()

Figure 6-4. Path of execution for a local user login

by access control?

Load user based on Loaded

name, password, status

v

Invoke
user hook;
$op = load'

v

Update login
timestamp in
users table

Y

Invoke
user hook;
$op = 'login’

Y

Regenerate
session

\J
Redirect to
user/arg(1) or
page user
logged in from

125

126

CHAPTER 6 © WORKING WITH USERS

Adding Data to the $user Object at Load Time

The load operation of the user hook is fired when a $user object is successfully loaded from
the database in response to a call to user_load(). This happens when a user logs in, when
authorship information is being retrieved for a node, and at several other points.

Note Because invoking the user hook is expensive, user load() is not called when the current $user
object is instantiated for a request (see the earlier “The $user Object” section). If you are writing your own
module, always call user load() before calling a function that expects a fully loaded $usexr object, unless
you are sure this has already happened.

Let’s write a module named loginhistory that keeps a history of when the user logged in.
We'll display the number of times the user has logged in on the user’s “My account” page.
Create a folder named loginhistory in sites/all/modules/custom/, and add the files in
Listings 6-3 through 6-5. First up is sites/all/modules/custom/loginhistory.info.

Listing 6-3. loginhistory.info
; $1d$

name = Login History

description = Keeps track of user logins.
package = Pro Drupal Development

core = 6.X

We need an . install file to create the database table to store the login information, so we
create sites/all/modules/custom/loginhistory.install.

Listing 6-4. loginhistory.install

<?php
/7 $1d$

/**
* Implementation of hook install().
*/
function loginhistory install() {
// Create tables.
drupal install schema('loginhistory');

}

CHAPTER 6 © WORKING WITH USERS 127

/**
* Implementation of hook uninstall().
*/
function loginhistory uninstall() {
// Remove tables.
drupal uninstall schema('loginhistory');

}

/¥k
* Implementation of hook schema().
*/
function loginhistory schema() {
$schema['login history'] = array(
"description' => t('Stores information about user logins.'),
'fields' => array(
'uid' => array(
"type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
"description' => t('The {user}.uid of the user logging in."),
))
"login' => array(
"type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
"description' => t('Unix timestamp denoting time of login.'),
))
))
"index' => array('uid'),

)5

return $schema;

}

Listing 6-5. loginhistory.module

<?php
// $1d$

Vak

* @file

* Keeps track of user logins.
*/

128 CHAPTER 6 © WORKING WITH USERS

/**
* Implementation of hook user().
*/
function loginhistory user($op, &$edit, &$account, $category = NULL) {
switch($op) {
// Successful login.
case 'login':
// Record timestamp in database.
db_query("INSERT INTO {login history} (uid, login) VALUES (%d, %d)",
$account->uid, $account->login);
break;

// $user object has been created and is given to us as $account parameter.
case 'load':
// Add the number of times user has logged in.
$account->loginhistory count = db _result(db _query("SELECT COUNT(login) AS
count FROM {login history} WHERE uid = %d", $account->uid));
break;

// 'My account' page is being created.
case 'view':
// Add a field displaying number of logins.
$account->content[' summary']['login history'] = array(
"#type' => 'user profile item',
"#title' => t('Number of Logins'),
"#value' => $account->loginhistory count,
"#attributes' => array('class' => 'login-history'),
"#weight' => 10,
);

break;

After installing this module, each successful user login will fire the login operation of the
user hook, which the module will respond to by inserting a record into the login_history
table in the database. When the $user object is loaded, the user load hook will be fired, and the
module will add the current number of logins for that user to $account->loginhistory count.
And when the user views the “My account” page, the login count will be displayed, as shown
in Figure 6-5.

CHAPTER 6 © WORKING WITH USERS

Home

jvandyk
View Edit
History

Blog
View recent blog entries

Member for
2 weeks 5 days

Number of Logins
3

Figure 6-5. Login history tracking user logins

Note It's always a good idea to prefix any properties you are adding to objects like $user or $node
with the name of your module to avoid namespace collisions. That’s why the example used
$account->loginhistory count instead of $account->count.

Although we presented the extra information that we added to the $user object on the
“My account” page, remember that because the $user object is global, any other module
can access it. I leave it as a useful exercise for the reader to modify the preceding module to
provide a nicely formatted list of past logins as a block in a sidebar for security purposes
(“Hey! I didn’t log in this morning at 3:00 a.m.!”).

Providing User Information Categories

If you have an account on http://drupal.org, you can see the effects of providing categories
of user information by logging in and clicking the “My account” link, and then selecting the
Edit tab. In addition to editing your account information, such as your password, you can pro-
vide information about yourself in several other categories. At the time of this writing, http://
drupal.org supported editing of CVS information, Drupal involvement, personal information,
work information, and preferences for receiving newsletters.

You can add information categories like these by using profile.module or by responding
to the categories operation of the user hook; see the implementation in profile.module.

External Login

Sometimes, you may not want to use Drupal’s local users table. For example, maybe you
already have a table of users in another database or in LDAP. Drupal makes it easy to integrate
external authentication into the login process.

129

http://drupal.org
http://drupal.org
http://drupal.org

130 CHAPTER 6 © WORKING WITH USERS

Simple External Authentication

Let’s implement a very simple external authentication module to illustrate how external
authentication works. Suppose your company only hires people named Dave, and usernames
are assigned based on first and last names. This module authenticates anyone whose user-
name begins with the string dave, so the users davebrown, davesmith, and davejones will all
successfully log in. Our approach will be to use form_alter() to alter the user login validation
handler so that it runs our own validation handler. Here is sites/all/modules/custom/
authdave/authdave. info:

; Id

name = Authenticate Daves

description = External authentication for all Daves.
package = Pro Drupal Development

core = 6.X

And here is the actual authdave.module:

<?php
// $1d$

/x*
* Implementation of hook form alter().
* We replace the local login validation handler with our own.
*/
function authdave form alter(8$form, $form state, $form id) {
// In this simple example we authenticate on username only,
// so password is not a required field. But we leave it in
// in case another module needs it.
if ($form_id == 'user login' || $form id == 'user login block") {
$form['pass']['#required'] = FALSE;

// If the user login form is being submitted, add our validation handler.
if (isset($form state['post']['name'])) {
// Find the local validation function's entry so we can replace it.
$array key = array search('user login authenticate validate',
$form['#validate']);

if ($array_key === FALSE) {
// Could not find it. Some other module must have run form alter().
// We will simply add our validation just before the final validator.
$final validator = array pop($form['#validate']);
$form['#validate'][] = 'authdave login validate';
$form['#validate'][] = $final validator;

CHAPTER 6 © WORKING WITH USERS

else {
// Found the local validation function. Replace with ours.
$form['#validate'][$array key] = 'authdave login validate';
}
}
}
}

Vi
* Form validation handler.
*/
function authdave login validate($form, &$form state) {
global $user;
if (lempty($user->uid)) {
// Another module has already handled authentication.
return;
}
// Call our custom authentication function.
if (lauthdave authenticate($form state['values'])) {
// Authentication failed; username did not begin with 'dave'.
form set error('name', t('Unrecognized username.'));
}
}

/**
* Custom authentication function. This could be much more complicated,
* checking an external database, LDAP, etc.
*/
function authdave authenticate($form values) {
global $authdave authenticated;
$username = $form values['name'];
if (substr(drupal strtolower($username), 0, 4) == 'dave') {
// Log user in, or register new user if not already present.
user_external login register($username, 'authdave');

// Write session, update timestamp, run user 'login' hook.

user authenticate finalize($form state['values']);

// Use a global variable to save the fact that we did authentication.
// (See use of this global in hook user() implementation of next

// code listing.)

$authdave_authenticated = TRUE;

return TRUE;

131

132 CHAPTER 6 © WORKING WITH USERS

else {
// Not a Dave.
return FALSE;
}
}

Figure 6-4 shows Drupal’s local login process. It consists of three form validation
handlers:

e user login name validate(): Set a form error if the username has been blocked or if
access rules (Administer » User management » Access rules) deny the username or
host.

e user login authenticate validate(): Setaform error if a search of the users table for
a user with this username, password, and a status setting of 1 (that is, unblocked) fails.

e user login final validate():If the user has not been successfully loaded, set the error
“Sorry, unrecognized username or password. Have you forgotten your password?” and
write a watchdog entry: “Login attempt failed for user”.

In the authdave module (see Figure 6-6), we simply swap out the second validation han-
dler for our own. Compare Figure 6-6 with Figure 6-4, which shows the local user login
process.

user_login_name_validate()

Yes

CHAPTER 6 © WORKING WITH USERS

POST from
login form

Username
blocked?

Username denied

Y

Set form error

authdave_authenticate_validate()

authdave_authenticate()

user_authenticate_finalize()

Y

by access control?

Username begins
with 'dave'?

Y

Handle external user
(see Figure 6-7)

Y

Update login
timestamp in
users table

Y

Invoke
user hook;
$op = 'login’

username

Unrecognized Y

Regenerate

user_login_final_validate()

user_login_submit()

session

Y

Redirect to
user/arg(1) or
page user
logged in from

Figure 6-6. Path of execution for external login with a second validation handler provided by the

authdave module (compare with Figure 6-4)

133

134

CHAPTER 6 © WORKING WITH USERS

The function user_external login register() is a helper function that registers the user
if this is the first login and then logs the user in. The path of execution is shown in Figure 6-7
for a hypothetical user davejones logging in for the first time.

If the username begins with “dave” and this is the first time this user has logged in, a row
in the users table does not exist for this user, so one will be created. However, no e-mail
address has been provided like it was for Drupal’s default local user registration, so a module
this simple is not a real solution if your site relies on sending e-mail to users. You'll want to set
the mail column of the users table so you will have an e-mail address associated with the user.
To do this, you can have your module respond to the insert operation of the user hook, which
is fired whenever a new user is inserted:

/**
* Implementation of hook user().
*/
function authdave user($op, &$edit, &$account, $category = NULL) {
switch($op) {

case 'insert':

// New user was just added; if we did authentication,

// look up e-mail address of user in a legacy database.

global $authdave authenticated;

if ($authdave authenticated) {
$email = mycompany email lookup($account->name);
// Set e-mail address in the users table for this user.
db_query("UPDATE {users} SET mail = '%s' WHERE uid = %d", $email,

$account->uid);

}

break;

Savvy readers will notice that there is no way for the code running under the insert oper-
ation to tell whether the user is locally or externally authenticated, so we've cleverly saved a
global indicating that our module did authentication. We could also have queried the authmap
table like so:

db_query("SELECT uid FROM {authmap} WHERE uid = %d AND module = '%s'",
$account->uid, 'authdave');

All users who were added via external authentication will have a row in the authmap table
as well as the users table. However, in this case the authentication and the user hook run dur-
ing the same request, so a global variable is a good alternative to a database query.

user_external_login()

Not found; new user

A

Initialize Suser (uses
random password)

Load user based
on username

CHAPTER 6

user_save()

v

WORKING WITH USERS

Found existing user

\

Invoke user hook;
$op = 'load'

v

Set $user->authname_authdave
to username

v

global $user
successfully
loaded; return

INSERT INTO users (name, pass, init, status, access, created) VALUES ('davejones’,
'302f5a77a3fdd160a72b7cfababf6f40', 'davejones’, 1, 1201796338, 1201796442)

A

4

Assign Suser->uid

from inserted row

v

Load user based on uid

v

$op =

Invoke user hook;

'load'

v

$op =

Invoke user hook;
'insert'

v

Serialize and save
$user->data

v

on

Load user based

uid

v

$op =

Invoke user hook;

'load’

v

INSERT INTO authmap (authname, uid, module) VALUES ('davejones', 5, 'authdave')

Figure 6-7. Detail of the external user login/registration process

135

136

CHAPTER 6 © WORKING WITH USERS

Summary

After reading this chapter, you should be able to

Understand how users are represented internally in Drupal.
Understand how to store information associated with a user in several ways.

Hook into the user registration process to obtain more information from a registering
user.

Hook into the user login process to run your own code at user login time.
Understand how external user authentication works.

Implement your own external authentication module.

For more information on external authentication, see the openid.module (part of the
Drupal core) or the contributed pubcookie.module.

CHAPTER 7

Working with Nodes

This chapter will introduce nodes and node types. I'll show you how to create a node type in
two different ways. I'll first show you the programmatic solution by writing a module that uses
Drupal hooks. This approach allows for a greater degree of control and flexibility when defin-
ing what the node can and can’t do. Then I'll show you how to build a node type from within
the Drupal administrative interface and briefly discuss the Content Construction Kit (CCK),
which is slowly making its way into the Drupal core distribution. Finally, we'll investigate
Drupal’s node access control mechanism.

Tip Developers often use the terms node and node type. In Drupal’s user interface, they are referred to as
posts and content types, respectively, in an effort to use terms that will resonate with site administrators.

So What Exactly Is a Node?

One of the first questions asked by those new to Drupal development is, “What is a node?”

A node is a piece of content. Drupal assigns each piece of content an ID number called a node
ID (abbreviated in the code as $nid). Generally each node has a title also, to allow an adminis-
trator to view a list of nodes by title.

Note If you're familiar with object orientation, think of a node type as a class and an individual node as
an object instance. However, Drupal’s code is not 100 percent object oriented, and there’s good reason for
this (see http://api.drupal.org/api/HEAD/file/developer/topics/oop.html). Future versions of
Drupal promise to become more object oriented when the need is justified, since PHP 4 (with its poor object
support) will no longer be supported.

There are many different kinds of nodes, or node types. Some common node types are
“blog entry,” “poll,” and “book page.” Often the term content type is used as a synonym for
node type, although a node type is really a more abstract concept and can be thought of as a
derivation of a base node, as Figure 7-1 represents.

137

http://api.drupal.org/api/HEAD/file/developer/topics/oop.html

138

CHAPTER 7 © WORKING WITH NODES

The beauty of all content types being nodes is that they're based on the same underlying
data structure. For developers, this means that for many operations you can treat all content
the same programmatically. It’s easy to perform batch operations on nodes, and you also get
a lot of functionality for custom content types out of the box. Searching, creating, editing, and
managing content are supported natively by Drupal because of the underlying node data
structure and behavior. This uniformity is apparent to end users too. The forms for creating,
editing, and deleting nodes have a similar look and feel, leading to a consistent and thus
easier-to-use interface.

node

ID

title

body

\J A \ A
poll forum blog

node.ID node.ID node.ID
node.title node.title node.title
node.body node.body node.body
runtime taxonomy
active
allowvotes

Figure 7-1. Node types are derived from a basic node and may add fields.

Node types extend the base node, usually by adding their own data attributes. A node of
type poll stores voting options such as the duration of the poll, whether the poll is currently
active and whether the user is allowed to vote. A node of type forum loads the taxonomy term
for each node so it will know where it fits in the forums defined by the administrator. blog
nodes, on the other hand, don’'t add any other data. Instead, they just add different views into
the data by creating blogs for each user and RSS feeds for each blog. All nodes have the follow-
ing attributes stored within the node and node_revisions database table:

e nid: Aunique ID for the node.

e vid: A unique revision ID for the node, needed because Drupal can store content revi-
sions for each node. The vid is unique across all nodes and node revisions.

* type: Every node has a node type; for example, blog, story, article, image, and so on.

* language: The language for the node. Out of the box, this column is empty, indicating
language-neutral nodes.

e title: Ashort 255-character string used as the node’s title, unless the node type
declares that it does not have a title, indicated by a 0 in the has_title field of the
node_type table.

CHAPTER 7 © WORKING WITH NODES 139

e uid: The user ID of the author. By default, nodes have a single author.

¢ status: A value of 0 means unpublished; that is, content is hidden from those who don’t
have the “administer nodes” permission. A value of 1 means the node is published and
the content is visible to those users with the “access content” permission. The display
of a published node may be vetoed by Drupal’s node-level access control system (see
the “Limiting Access to a Node Type with hook_access()” and “Restricting Access to
Nodes” sections later in this chapter). A published node will be indexed by the search
module if the search module is enabled.

* created: A Unix timestamp of when the node was created.

* changed: A Unix timestamp of when the node was last modified. If you're using the
node revisions system, the same value is used for the timestamp field in the
node_revisions table.

e comment: An integer field describing the status of the node’s comments, with three
possible values:

e 0: Comments have been disabled for the current node. This is the default value for
existing nodes when the comment module is disabled. In the user interface of the
node editing form’s “Comment settings” section, this is referred to as Disabled.

¢ 1: No more comments are allowed for the current node. In the user interface of the
node editing form’s “Comment settings” section, this is referred to as “Read only.”

e 2: Comments can be viewed, and users can create new comments. Controlling who
can create comments and how comments appear visually is the responsibility of
),

the comment module. In the user interface of the node editing form’s “Comment
settings” section, this is referred to as Read/Write.

e promote: An integer field to determine whether to show the node on the front page, with
two values:

¢ 1: Promoted to the front page. The node is promoted to the default front page of
your site. The node will still appear at its normal page, for example, http://
example.com/?g=node/3. It should be noted here that, because you can change
which page is considered the front page of your site at Administer » Site con-
figuration » Site information, “front page” can be a misnomer. It’s actually more
accurate to say the http://example.com/?qg=node page will contain all nodes
whose promote field is 1. The URL http://example.com/?q=node is the front page by
default.

¢ 0: Node isn't shown on http://example.com/?q=node.

* moderate: An integer field where a 0 value means moderation is disabled and a value
of 1 enables moderation. And now the caveat: there is no interface in the core Drupal
installation for this field. In other words, you can change the value back and forth, and
it does absolutely nothing by default. So it’s up to the developer to program any func-
tionality he or she desires into this field. Contributed modules, such as http://
drupal.org/project/modr8 and http://drupal.org/project/revision moderation,
use this field.

http://example.com/?q=node/3
http://example.com/?q=node/3
http://example.com/?q=node
http://example.com/?q=node
http://example.com/?q=node
http://drupal.org/project/modr8
http://drupal.org/project/modr8
http://drupal.org/project/revision_moderation

140

CHAPTER 7 © WORKING WITH NODES

* sticky: When Drupal displays a listing of nodes on a page, the default behavior is to
list first those nodes marked as sticky, and then list the remaining unsticky nodes in
the list by date created. In other words, sticky nodes stick to the top of node listings.
A value of 1 means sticky, and a value of 0 means, well, unsticky. You can have multi-
ple sticky nodes within the same list.

¢ tnid: When a node serves as the translated version of another node, the nid of the
source node being translated is stored here. For example, if node 3 is in English and
node 5 is the same content as node 3 but in Swedish, the tnid field of node 5 will be 3.

e translate: A value of 1 indicates that the translation needs to be updated; a value of 0
means translation is up to date.

If you're using the node revisions system, Drupal will create a revision of the content as
well as track who made the last edit.

Not Everything Is a Node

Users, blocks, and comments are not nodes. Each of these specialized data structures has its
own hook system geared towards its intended purpose. Nodes (usually) have title and body
content, and a data structure representing a user doesn’t need that. Rather, users need an
e-mail address, a username, and a safe way to store passwords. Blocks are lightweight storage
solutions for smaller pieces of content such as menu navigation, a search box, a list of recent
comments, and so on. Comments aren’'t nodes either, which keeps them lightweight as well.
It’s quite possible to have 100 or more comments per page, and if each of those comments
had to go through the node hook system when being loaded, that would be a tremendous
performance hit.

In the past, there have been great debates about whether users or comments should be
nodes, and some contributed modules actually implement this. Be warned that raising this
argument is like shouting “Emacs is better!” at a programming convention.

Creating a Node Module

Traditionally, when you wanted to create a new content type in Drupal, you would write a
node module that took responsibility for providing the new and interesting things your con-
tent type needed. We say “traditionally” because recent advents within the Drupal framework
allow you to create content types within the administrative interface and extend their func-
tionality with contributed modules rather than writing a node module from scratch. We’ll
cover both solutions within this chapter.

Let’s write a node module that lets users add jokes to a site. Each joke will have a title, the
joke itself, and a punch line. You should easily be able to use the built-in node title attribute
for your joke titles and the node body for the joke contents, but you'll need to make a new
database table to store the punch lines. We'll do that by using a . install file.

Start by creating a folder a named joke in your sites/all/modules/custom directory.

CHAPTER 7 © WORKING WITH NODES

Creating the .install File

You will need to store some information in your database table. First, you'll need the node

ID, so you can associate the data stored here with a node in the node_revisions table, which
stores the title and body. Second, you'll need to store the revision ID of the node so that your
module will work with Drupal’s built-in revision control. And of course, you'll store the punch
line. Because you now know the database schema, let’s go ahead and create the joke.install
file and place it inside the sites/all/modules/custom/joke directory. See Chapter 2 for more
information on creating install files.

<?php
/7 $1d$

/**
* Implementation of hook install().
*/
function joke install() {
drupal install schema('joke');

}

/**
* Implementation of hook uninstall().
*/
function joke uninstall() {
drupal uninstall schema('joke');

}

/**
* Implementation of hook schema().
*/
function joke schema() {
$schema['joke'] = array(
"description' => t("Stores punch lines for nodes of type 'joke'."),
'fields' => array(
'nid' => array(
"type' => 'int',
'unsigned' => TRUE,
'not null' => TRUE,
"default’ => o0,
"description' => t("The joke's {node}.nid."),
)s
'vid' => array(
"type' => 'int',
'unsigned' => TRUE,
"not null' => TRUE,
"default’ => o0,
"description' => t("The joke's {node revisions}.vid."),

)s

141

142

CHAPTER 7 © WORKING WITH NODES

"punchline’ => array(
"type' => "text',
'not null' => TRUE,
"description' => t('Text of the punchline.'),
))
)J
"primary key' => array('nid', 'vid'),
"unique keys' => array(
'vid' => array('vid")
))
"indexes' => array(
'nid" => array('nid")
))
)

return $schema;

}

Creating the .info File
Let’s also create the joke.info file and add it to the joke folder.

; $1d$

name = Joke

description = A content type for jokes.
package = Pro Drupal Development

core = 6.X

Creating the .module File

Last, you need the module file itself. Create a file named joke.module, and place it inside
sites/all/modules/custom/joke. After you've completed the module, you can enable the
module on the module listings page (Administer » Site building » Modules). You begin with
the opening PHP tag, CVS placeholder, and Doxygen comments.

<?php
// $1d$

Vak

* @file

* Provides a "joke" node type.
*/

CHAPTER 7 © WORKING WITH NODES

Providing Information About Our Node Type

Now you're ready to add hooks to joke.module. The first hook you’'ll want to implement is
hook node_info(). Drupal calls this hook when it’s discovering which node types are available.
You'll provide some metadata about your custom node.

/**

* Implementation of hook node info().

*/

function joke node info() {
// We return an array since a module can define multiple node types.
// We're only defining one node type, type 'joke'.
return array(
'joke' => array(

)
)s
}

"name' => t('Joke'), // Required.

'module’ => 'joke', // Required.

"description’ => t('Tell us your favorite joke!'), // Required.
'has_title' => TRUE,

"title label' => t('Title'),

"has_body" => TRUE,

'body label' => t('Joke"),

'min_word count' => 2,

"locked' => TRUE

A single module can define multiple node types, so the return value should be an array.
Here's the breakdown of metadata values that may be provided in the node_info() hook:

name (required): The name of the node type to display on the site. For example, if the
value is 'Joke', Drupal will use this when titling the node submission form.

module (required): The name of the prefix of the callback functions Drupal will look for.
We used 'joke', so Drupal will look for callback functions named joke validate(),
joke_insert(), joke delete(), and so on.

description: This is generally used to add a brief description about what this content
type is used for. This text will be displayed as part of the list on the “Create content”
page (http://example.com/?q=node/add).

has_title: Boolean value indicating whether or not this content type will use the title
field. The default value is TRUE.

title label:The textlabel for the title field in the node editing form. The text label is
only visible when has_title is TRUE. The default value is Title.

has_body: Boolean value that indicates whether or not this content type will use the
body textarea field. The default value is TRUE.

143

http://example.com/?q=node/add

144 CHAPTER 7 © WORKING WITH NODES

* body label: The form field text label for the body textarea field. The label is only visible
when has_body is TRUE. The default value is Body.

e min_word_count: The minimum number of words the body textarea field needs to pass
validation. The default is 0. (We set it to 2 in our module to avoid one-word jokes.)

e locked: Boolean value indicating whether the internal name of this content type is
locked from being changed by a site administrator editing the content type’s options
at Administer » Content management » Content types. The default value for locked
is TRUE, meaning the name is locked and therefore not editable.

Note The internal name field mentioned in the preceding list is used for constructing the URL of the “Cre-
ate content” links. For example, we’re using joke as the internal name of our node type (it’s the key to the
array we’re returning), so to create a new joke users will go to http://example.com/?q=node/add/joke.
Usually it’s not a good idea to make this modifiable by setting 1ocked to FALSE. The internal name is stored
in the type column of the node and node_revisions tables.

Modifying the Menu Callback

Having a link on the “Create content” page isn’t necessary for implementing hook _menu().
Drupal will automatically discover your new content type and add its entry to the http://
example.com/?g=node/add page, as shown in Figure 7-2. A direct link to the node submission
form will be at http://example.com/?q=node/add/joke. The name and description are taken
from the values you defined in joke_node_info().

Home

Create content

Blog entry
A blog entry is a single post to an online journal, or blog.

Joke
Tell us your favorite joke!

Page
A page, similar in form to a story, is a simple method for creating and displaying information that rarely
changes, such as an "About us" section of a website. By default, a page entry does not allow visitor
comments and is not featured on the site's initial home page.

Poll
A poll is a question with a set of possible responses. A poll, once created, automatically provides a simple
running count of the number of votes received for each response.

Story
A story, similar in form to a page, is ideal for creating and displaying content that informs or engages website
visitors. Press releases, site announcements, and informal blog-like entries may all be created with a story
entry. By default, a story entry is automatically featured on the site's initial home page, and provides the
ability to post comments.

Figure 7-2. The content type appears on the page at http:/lexample.com/nodeladd.

If you do not wish to have the direct link added, you could remove it by using
hook _menu_alter(). For example, the following code would remove the page for anyone
who does not have “administer nodes” permission.

http://example.com/?q=node/add/joke
http://example.com/?q=node/add
http://example.com/?q=node/add
http://example.com/?q=node/add/joke
http://example.com/node/add

CHAPTER 7 © WORKING WITH NODES

/**
* Implementation of hook menu_alter().
*/
function joke menu_alter(&$callbacks) {
// If the user does not have 'administer nodes' permission,
// disable the joke menu item by setting its access callback to FALSE.
if (luser access('administer nodes')) {
$callbacks['node/add/joke"']["access callback'] = FALSE;
// Must unset access arguments or Drupal will use user access()
// as a default access callback.
unset($callbacks['node/add/joke"']["access arguments']);
}
}

Defining Node-Type-Specific Permissions with hook_perm()

Typically the permissions for module-defined node types include the ability to create a node
of that type, edit a node you have created, and edit any node of that type. These are defined in
hook_perm() as create joke, edit own joke, and edit any joke, and so on.You've yet to define
these permissions within your module. Let’s create them now using hook_perm():

Vioio
* Implementation of hook perm().
*/
function joke perm() {
return array('create joke', 'edit own joke', 'edit any joke', 'delete own joke',
'delete any joke');

Now if you navigate over to Administer » User management » Permissions, the new
permissions you defined are there and ready to be assigned to user roles.

Limiting Access to a Node Type with hook_access()

You defined permissions in hook_perm(), but how are they enforced? Node modules can
limit access to the node types they define using hook access(). The superuser (user ID 1)
will always bypass any access check, so this hook isn't called in that case. If this hook isn’t
defined for your node type, all access checks will fail, so only the superuser and those with
“administer nodes” permissions will be able to create, edit, or delete content of that type.
Vak
* Implementation of hook access().
*/
function joke access($op, $node, $account) {
$is_author = $account->uid == $node->uid;
switch ($op) {
case 'create':
// Allow if user's role has 'create joke' permission.
return user access('create joke', $account);

145

146 CHAPTER 7 © WORKING WITH NODES

case 'update':
// Allow if user's role has 'edit own joke' permission and user is
// the author; or if the user's role has 'edit any joke' permission.
return user access('edit own joke', $account) &8 $is author ||
user_access('edit any joke', $account);

case 'delete':
// Allow if user's role has 'delete own joke' permission and user is
// the author; or if the user's role has 'delete any joke' permission.
return user access('delete own joke', $account) && $is author |
user_access('delete any joke', $account);

The preceding function allows users to create a joke node if their role has the “create joke”
permission. They can also update a joke if their role has the “edit own joke” permission and
they’re the node author, or if they have the “edit any joke” permission. Those with “delete own
joke” permission can delete their own jokes, and those with “delete any joke” permission can
delete any node of type joke.

One other $op value that’s passed into hook_access() is view, allowing you to control who
views this node. A word of warning, however: hook_access() is only called for single node view
pages. hook_access () will not prevent someone from viewing a node when it’s in teaser view,
such as a multinode listing page. You could get creative with other hooks and manipulate the
value of $node->teaser directly to overcome this, but that’s a little hackish. A better solution is
to use hook_node_grants() and hook_db_rewrite sql(), which we'll discuss shortly.

Customizing the Node Form for Our Node Type

So far, you've got the metadata defined for your new node type and the access permissions
defined. Next, you need to build the node form so that users can enter jokes. You do that by
implementing hook form():
Vi
* Implementation of hook form().
*/
function joke form($node) {
// Get metadata for this node type
// (we use it for labeling title and body fields).
// We defined this in joke node info().
$type = node get types('type', $node);

CHAPTER 7 © WORKING WITH NODES

$form["title'] = array(
"#type' => 'textfield',
"#title' => check plain($type->title label),
'#required' => TRUE,
"#default _value' => $node->title,
"#weight' => -5,
'#maxlength' => 255,
)
$form['body filter']['body'] = array(
"#type' => 'textarea',
"#title' => check plain($type->body label),
'#default value' => $node->body,
"#rows' => 7,
'#required' => TRUE,
)
$form['body filter']['filter'] = filter form($node->format);
$form['punchline'] = array(
"#type' => 'textfield',
"#title' => t('Punchline'),
'#required' => TRUE,
"#default value' => isset($node->punchline) ? $node->punchline : '',
"#weight' => 5
)s
return $form;

}

Note If you are unfamiliar with the form API, see Chapter 10.

As the site administrator, if you've enabled your module you can now navigate to
Create content » Joke and view the newly created form. The first line inside the preceding
function returns the metadata information for this node type. node_get types() will
inspect $node->type to determine the type of node to return metadata for (in our case,
the value of $node->type will be joke). Again, the node metadata is set within hook _
node_info(), and you set it earlier in joke node_info().

The rest of the function contains three form fields to collect the title, body, and punch
line (see Figure 7-3). An important point here is how the #title keys of title and body are
dynamic. Their values are inherited from hook_node_info() but can also be changed by the
site administrators at http://example.com/?q=admin/content/types/joke aslong as the
locked attribute defined in hook_node_info() is FALSE.

147

http://example.com/?q=admin/content/types/joke

148 CHAPTER 7 © WORKING WITH NODES

Home » Create content

Create Joke

Title: *

Joke: *

+ Web page addresses and e-mall addresses turn inte links automatically.
+ Allowed HTML tags: <a> <clte> <code> <dl> <dt> <dd>
+ Lines and paragraphs break automatically.

More information about formatting options

Punchline: *

Save | Preview |

Figure 7-3. The form for submission of a joke

Adding Filter Format Support

Because the body field is a textarea, and node body fields are aware of filter formats, the form
included Drupal’s standard content filter with the following line (filters transform text; see
Chapter 11 for more on using filters):

$form['body filter']['filter'] = filter form($node->format);

The $node->format property denotes the ID of the filter format being used for this node’s
body field. The value of this property is stored in the node_revisions table. If you wanted the
punchline field to also be able to use input filter formats, you'd need somewhere to store the
information about which filter that field is using. A good solution would be to add an integer
column named punchline format to your joke database table to store the input filter format
setting per punch line.

Then you'd change your last form field definition to something similar to the following:

$form['punchline']['field'] = array(
'#type' => 'textarea',
"#title' => t('Punchline'),
'#required' => TRUE,
'#default value' => $node->punchline,
"#weight' => 5

)5
// Add filter support.
$form['punchline’]['filter'] = filter_form($node->punchline_format);

When you're working with a node form and not a generic form, the node module handles
validating and storing all the default fields it knows about within the node form (such as the

CHAPTER 7 © WORKING WITH NODES

title and body fields—we named the latter Joke but the node module still handles it as the
node body) and provides you, the developer, with hooks to validate and store your custom
fields. We'll cover those next.

Validating Fields with hook_validate()

When a node of your node type is submitted, your module will be called via hook validate().
Thus, when the user submits the form to create or edit a joke, the invocation of hook
validate() will look for the function joke validate() so that you can validate the input
in your custom field(s). You can make changes to the data after submission—see form_
set_value(). Errors should be set with form_set_error(), as follows:
Vass
* Implementation of hook validate().
*/
function joke validate($node) {
// Enforce a minimum word length of 3 on punch lines.
if (isset($node->punchline) 8& str word count($node->punchline) < 3) {
$type = node get types('type', $node);
form set error('punchline', t('The punch line of your @type is too short. You
need at least three words.', array('@type' => $type->name)));

Notice that you already defined a minimum word count for the body field in
hook node_info(), and Drupal will validate that for you automatically. However, the
punchline field is an extra field you added to the node type form, so you are responsible
for validating (and loading and saving) it.

Saving Our Data with hook_insert()

When a new node is saved, hook_insert() is called. This is the place to handle storing cus-
tom data to related tables. This hook is only called for the module that is defined in the node
type metadata. This information is defined in the module key of hook _node_info() (see the
“Providing Information About Our Node Type” section). For example, if the module key is
joke, then joke insert() is called. If you enabled the book module and created a new node
of type book, joke insert() would not be called; book _insert() would be called instead
because book.module defines its node type with a module key of book.

Note If you need to do something with a node of a different type when it’s inserted, use
hook _nodeapi() to hook into the general node submittal process. See the “Manipulating Nodes
That Are Not Our Type with hook_nodeapi()” section.

149

150

CHAPTER 7 © WORKING WITH NODES

Here’s the hook_insert() function for joke.module:
/**
* Implementation of hook insert().
*/
function joke insert($node) {
db_query("INSERT INTO {joke} (nid, vid, punchline) VALUES (%d, %d, '%s')",
$node->nid, $node->vid, $node->punchline);

Keeping Data Current with hook_update()

The update() hook is called when a node has been edited and the core node data has
already been written to the database. This is the place to write database updates for related
tables. Like hook_insert(), this hook is only called for the current node type. For example,
if the node type’s module key in hook _node_info() is joke, then joke update() is called.
/**
* Implementation of hook update().
*/
function joke update($node) {
if ($node->revision) {
// New revision; treat it as a new record.
joke_insert($node);
}
else {
db_query("UPDATE {joke} SET punchline = '%s' WHERE vid = %d",
$node->punchline, $node->vid);

In this case, you check if the node revision flag is set, and if so, you create a new copy
of the punch line to preserve the old one.

Cleaning Up with hook_delete()

Just after a node is deleted from the database, Drupal lets modules know what has happened
via hook_delete(). This hook is typically used to delete related information from the database.
This hook is only called for the current node type being deleted. If the node type’s module key
in hook _node_info() is joke, then joke delete() is called.

/**

* Implementation of hook delete().

*/

function joke delete(&$node) {
// Delete the related information we were saving for this node.
db_query('DELETE FROM {joke} WHERE nid = %d', $node->nid);

}

CHAPTER 7 © WORKING WITH NODES 151

Note Wnen a revision rather than the entire node is deleted, Drupal fires hook _nodeapi () with the $op
setto delete revision, and the entire node object is passed in. Your module is then able to delete its data
for that revision using $node->vid as the key.

Modifying Nodes of Our Type with hook_load()

Another hook you need for your joke module is the ability to add your custom node attributes
into the node object as it’s constructed. We need to inject the punch line into the node loading
process so it’s available to other modules and the theme layer. For that you use hook_load().

This hook is called just after the core node object has been built and is only called for the
current node type being loaded. If the node type’s module key in hook node_info() is joke, then
joke_load() is called.

/%%
* Implementation of hook load().
*/
function joke load($node) {
return db_fetch object(db_query('SELECT punchline FROM {joke} WHERE vid = %d',
$node->vid));

The punchline: hook_view()

Now you have a complete system to enter and edit jokes. However, your users will be frus-
trated, because although punch lines can be entered on the node submission form, you
haven't provided a way to make your module-provided punchline field visible when viewing
the joke! Let’s do that now with hook_view():
Vaki
* Implementation of hook view().
*/
function joke view($node, $teaser = FALSE, $page = FALSE) {
// If $teaser is FALSE, the entire node is being displayed.
if (!$teaser) {
// Use Drupal's default node view.
$node = node_prepare($node, $teaser);

// Add a random number of Ha's to simulate a laugh track.
$node->guffaw = str repeat(t('Ha!'), mt_rand(o, 10));

// Now add the punch line.
$node->content['punchline'] = array(
"#value' => theme('joke punchline', $node),
"#weight' => 2
);

152

CHAPTER 7 © WORKING WITH NODES

// If $teaser is TRUE, node is being displayed as a teaser,
// such as on a node listing page. We omit the punch line in this case.
if ($teaser) {

// Use Drupal's default node view.

$node = node prepare($node, $teaser);

}

return $node;

}

This code includes the punch line for the joke only if the node is not being rendered
as a teaser (that is, $teaser is FALSE). You've broken the formatting of the punch line out
into a separate theme function so that it can be easily overridden. This is a courtesy to the
overworked system administrators who will be using your module but who want to cus-
tomize the look and feel of the output. You declare to Drupal that you will be using the
joke_punchline theme function by implementing hook theme() and provide a default imple-
mentation of the theme function:

/**
* Implementation of hook theme().
* We declare joke punchline so Drupal will look for a function
* named theme joke punchline().
*/
function joke theme() {
return array(
'joke punchline' => array(
"arguments' => array('node'),
)s
)s
}

function theme joke punchline($node) {
$output = '<div class="joke-punchline">".
check _markup($node->punchline). '</div>
";
$output .= '<div class="joke-guffaw">".
$node->guffaw .'</div>";
return $output;

}

You will need to clear the cached theme registry so that Drupal will look at your theme
hook. You can clear the cache using devel.module or by simply visiting the Administer » Site
building » Modules page. You should now have a fully functioning joke entry and viewing
system. Go ahead and enter some jokes and try things out. You should see your joke in a plain
and simple format, as in Figures 7-4 and 7-5.

CHAPTER 7 © WORKING WITH NODES

7/
e« Drupal 6

User login Home

Username: * Cinderella
| Why was Cinderella such a lousy football player?

Password: * Her coach was a pumpkin.

Ha!Ha!Ha!Ha!Ha!Ha!Ha!Ha!Ha!Ha!
Log in |
* Create new account
* Request new password

Figure 7-4. Simple theme of joke node

”
e« Drupal 6

User:login Chickens
| Username: * Why did the chicken cross the road?
Password: * Cinderella

I Why was Cinderella such a lousy football player?

Log in |
& Create new account B
* Request new password

Figure 7-5. The punch line is not added when the node is shown in teaser view

Although this works, there’s a good chance the user will read the punch line right away
when viewing the node in full page view. What we'd really like to do is to have a collapsible
field that the user can click to display the punch line. The collapsible fieldset functionality
already exists within Drupal, so you'll use that rather than create your own JavaScript file.
Adding this interaction is better done in a template file in your site’s theme instead of a theme
function, as it depends on markup and CSS classes. Your designers will love you if you use a
template file instead of a theme function, because to change the look and feel of joke nodes,
they’ll be able simply to edit a file.

Here’s what you'll put into a file called node-joke.tpl.php in the directory containing the
theme you're currently using. If you're using the Bluemarine theme, then node-joke.tpl.php
would be placed in themes/bluemarine. Because we're going to use a template file, the

153

154

CHAPTER 7 © WORKING WITH NODES

hook theme() implementation and the theme_joke punchline() function are no longer
needed, so go ahead and comment them out in your module file. Remember to clear the
cached theme registry as we did before so that Drupal will no longer look for theme_joke
punchline(). And comment out the assignment of the punch line to $node->content in
joke_view(), since the template file will take care of printing the punch line (otherwise, the
punch line will show up twice).

Note After you visit Administer » Site building » Modules (which automatically rebuilds the theme reg-
istry), node-joke.tpl.php will automatically be discovered by the theme system, and Drupal will use that
file to change the look and feel of jokes rather than use the default node template, usually node. tpl.php.
To learn more about how the theme system makes these decisions, please see Chapter 8.

<div class="node<?php if ($sticky) { print " sticky"; } >
<?php if (!$status) { print " node-unpublished"; } ?>">
<?php if ($picture) {
print $picture;
12>
<?php if ($page == 0) { ?><h2 class="title"><a href="<?php
print $node_url?>"><?php print $title?></h2><?php }; 2>
<?php print $submitted?>
<?php print $terms?>
<div class="content">
<?php print $content?>
<fieldset class="collapsible collapsed">
<legend>Punchline</legend>
<div class="form-item">
<label><?php if (isset($node->punchline)) print
check_markup($node->punchline)?></label>
<label><?php if (isset($node->guffaw)) print $node->guffaw?></label>
</div>
</legend>
</fieldset>
</div>
<?php if ($links) { ?><div class="links">8raquo; <?php print $links?></div>
<?php }; 7>
</div>

Drupal will automatically include the JavaScript file that enables collapsibility. The
JavaScript in misc/collapsible. js looks for collapsible CSS selectors for a fieldset and
knows how to take over from there, as shown in Figure 7-6. Thus, in node-joke.tpl.php it
sees the following and activates itself:

<fieldset class="collapsible collapsed">

This results in the kind of interactive joke experience that we were aiming for.

CHAPTER 7 © WORKING WITH NODES 155

7’
& Drupal 6

User login Home

Username: * Cinderella

Password: * Why was Cinderella such a lousy football player?

[+» Punchline

Log in | Her coach was a pumpkin.

* Create new account
e Request new password HalHalHalHa!

Figure 7-6. Using Drupal’s collapsible CSS support to hide the punch line

Manipulating Nodes That Are Not Our Type with
hook_nodeapi()

The preceding hooks are only invoked based on the module key of the module’s hook
node_info() implementation. When Drupal sees a blog node type, blog_load() is called.
What if you want to add some information to every node, regardless of its type? The hooks
we've reviewed so far aren’t going to cut it; for that, we need an exceptionally powerful hook:
hook nodeapi().

This hook creates an opportunity for modules to react to the different operations dur-
ing the life cycle of any node. The nodeapi() hook is usually called by node.module just after
the node-type-specific callback is invoked. For example, first joke insert() might be
called, then immediately the nodeapi hook would be called with $op set to insert. Here’s
the function signature:

hook nodeapi(8$node, $op, $a3 = NULL, $a4 = NULL)

The $node object is passed by reference, so any changes you make will actually change
the node. The $op parameter is used to describe the current operation being performed on the
node, and can have many different values:

e prepare: The node form is about to be shown. This applies to both the node Add and
Edit forms.

 validate: The user has just finished editing the node and is trying to preview or submit
it. Here, your code should check to make sure the data is what you expect and should
call form set error() if something is wrong; that will return an error message to the
user. You can use this hook to check or even modify the data, though modifying data in
the validation hook is considered bad style.

e presave: The node passed validation and will soon be saved to the database.

e insert: Anew node has just been inserted into the database.

156

CHAPTER 7 © WORKING WITH NODES

update: The node has just been updated in the database.
delete: The node was deleted.

delete revision: Arevision of a node was deleted. Modules will respond to this if they
are keeping data related to the revision. The node ID can be found at $node->nid, and
the revision ID can be found at $node->vid.

load: The basic node object has been loaded from the database, plus the additional
node properties set by the node type (in response to hook load(), which has already
been run; see “Modifying Nodes of Our Type with hook_load()” earlier in this chapter).
You can add new properties or manipulate node properties.

alter: The node’s content has gone through drupal render() and been saved in
$node->body (if the node is being built for full view) or $node->teaser (if the node is
being built for teaser view), and the node is about to be passed to the theme layer.
Modules may modify the fully built node. Changes to fields in $node->content should
be done in the view operation, not this operation.

view: The node is about to be presented to the user. This action is called after

hook view(), so the module may assume the node is filtered and now contains HTML.
Additional items may be added to $node->content (see how we added a joke punch line
previously, for example).

search result:The node is about to be displayed as a search result item.

update index: The node is being indexed by the search module. If you want additional
information to be indexed that isn’t already visible through the nodeapi view operation,
you should return it here (see Chapter 12).

prepare translation: The node is being prepared for translation by the translation
module. Modules may add custom translated fields.

rss item: The node is being included as part of an RSS feed.

The last two parameters to a hook_nodeapi() function are variables whose values change
depending on which operation is being performed. When a node is being displayed and $op is
alter or view, $a3 will be $teaser, and $a4 will be $page (see node_view() in node.module). See
Table 7-1 for an overview.

Table 7-1. The Meaning of the $a3 and $a4 Parameters in hook_nodeapi() When $op Is alter or

view

Parameter Meaning

$teaser Whether to display the teaser only, such as on http://example.com/?q=node

$page True if the node is being displayed as a page by itself (e.g., at http://example.com/

?g=node/2)

When a node is being validated, the $a3 parameter is the $form parameter from node_
validate() (thatis, the form definition array).

http://example.com/?q=node
http://example.com

CHAPTER 7 © WORKING WITH NODES

The order in which hooks are fired when displaying a node page such as http://
example.com/?g=node/3 is shown in Figure 7-7.

node_page_view() Change title to plain text
node_show()
node_view()
node_build_content() Set build mode to
normal

v

Remove <!--break-->
from body if present

'

Providing module
implements view
hook?

\J
Use default
node_prepare() function
to provide a view

\J

Call hook_view() on
providing module

node_prepare() [Set $node->readmore ‘

l Run filters on body ‘
v
|

[Set $node->content |

Y
[hook_nodeapi($node, view') |

node_view() [hook_link() |
v

[hook_link_alter() |
v

drupal_render() l Render $node->content |
v

l hook_nodeapi($node, 'alter') |

[Theme the node |

Figure 7-7. Path of execution for displaying a node page

How Nodes Are Stored

Nodes live in the database as separate parts. The node table contains most of the metadata
describing the node. The node_revisions table contains the node’s body and teaser, along with
revision-specific information. And as you've seen in the joke.module example, other nodes are

157

http://example.com/?q=node/3
http://example.com/?q=node/3

158 CHAPTER 7 © WORKING WITH NODES

free to add data to the node at node load time and store whatever data they want in their
own tables.

A node object containing the most common attributes is pictured in Figure 7-8. Note that
the table you created to store punch lines is used to populate the node. Depending on which
other modules are enabled, the node objects in your Drupal installation might contain more
or fewer properties.

node Node Object
nid nid: 4
vid vid: 6
type type: joke
language language:
title title: Cinderella
uid uid: 3
status status: 1
created created: 1202845755
changed \p changed: 1202845772
comment comment: 2
promote promote: 1
moderate moderate: 0
sticky sticky: 0
tnid tnid: 0
translate translate: 0

revision_uid: 3
title: Cinderella

node_revisions body: <p>Why was Cinderella such a lousy
revision_uid football player?</p>
title | — |log: Fixtypo.
body format: 1
log revision_timestamp: 1202845772
format punchline: Her coach was a pumpkin.

revision_timestamp guffaw: HalHalHa!
last_comment_timestamp: 1202845755
ioke last_comment_name:

punchline fa‘::g:‘::‘;—_m“"t: 0

uffaw . .
2 [1]: stdClass Object (

tid: 1

node_comment_statistics vid: 1)
last_comment_timestamp name: Fairtytale Characters
last_comment_name degcnphon:
comment_count weight: 0

build_mode: 0

content (structured array)
links: (structured array)
readmore: FALSE

Figure 7-8. The node object

Creating a Node Type with CCK

Although creating a node module like you did with the joke.module offers exceptional control
and performance, it’s also a bit tedious. Wouldn't it be nice to be able to assemble a new node
type without doing any programming? That’s what the CCK modules provide.

CHAPTER 7 © WORKING WITH NODES

Note For more information about CCK, visit the CCK project at http://drupal.org/project/cck.

You can add new content types (such as a joke content type) through the administrative
interface at Administer » Content management » Content types. Make sure to use a different
name for the node type if you have joke.module enabled to prevent a namespace collision. The
part of CCK that is still being sorted out for core is the ability to add fields beyond title and
body to these new content types. In the joke.module example, you needed three fields: title,
joke, and punchline. You used Drupal’s hook node info() to relabel the body field as Joke and
provided the punchline field by implementing several hooks and creating your own table for
punch line storage. In CCK, you simply create a new text field called punchline and add it to
your content type. CCK takes care of storing, retrieving, and deleting the data for you.

Note The Drupal contributions repository is full of CCK field modules for adding images, dates, e-mail
addresses, and so on. Visit http://drupal.org/project/Modules/category/88 to see all CCK-related
contributed modules.

Because CCK is under heavy development at the time of this writing, I won't go into more
detail. However, it seems clear that in the future, writing a module to create a new node type
will become rarer, while the CCK approach of assembling content types through the web will
become more common.

Restricting Access to Nodes

There are several ways to restrict access to nodes. You have already seen how to restrict access
to a node type using hook_access() and permissions defined using hook perm(). But Drupal
provides a much richer set of access controls using the node_access table and two more access
hooks: hook node grants() and hook node access records().

When Drupal is first installed, a single record is written to the node_access table, which
effectively turns off the node access mechanism. Only when a module that uses the node
access mechanism is enabled does this part of Drupal kick in. The function node_access_
rebuild() in modules/node/node.module keeps track of which node access modules are
enabled, and if they are all disabled this function will restore the default record, which is
shown in Table 7-2.

Table 7-2. The Default Record for the node_access Table

nid gid realm grant_view grant_update grant_delete
0 0 all 1 0 0

159

http://drupal.org/project/cck
http://drupal.org/project/Modules/category/88

160

CHAPTER 7 © WORKING WITH NODES

In general, if a node access module is being used (that is, one that modifies the
node_access table), Drupal will deny access to a node unless the node access module has
inserted a row into the node_access table defining how access should be treated.

Defining Node Grants

There are three basic permissions for operations on nodes: view, update, and delete. When
one of these operations is about to take place, the module providing the node type gets first
say with its hook _access() implementation. If that module doesn'’t take a position on whether
the access is allowed (that is, it returns NULL instead of TRUE or FALSE), Drupal asks all modules
that are interested in node access to respond to the question of whether the operation ought
to be allowed. They do this by responding to hook_node grants() with a list of grant IDs for
each realm for the current user.

What Is a Realm?

A realm is an arbitrary string that allows multiple node access modules to share the
node_access table. For example, acl.module is a contributed module that manages node
access via access control lists (ACLs). Its realm is acl. Another contributed module is
taxonomy access.module, which restricts access to nodes based on taxonomy terms.

It uses the term_access realm. So, the realm is something that identifies your module’s
space in the node_access table; it’s like a namespace. When your module is asked to return
grant IDs, you'll do so for the realm your module defines.

What Is a Grant ID?

A grant ID is an identifier that provides information about node access permissions for a
given realm. For example, a node access module—such as forum_access.module, which
manages access to nodes of type forum by user role—may use role IDs as grant IDs. A node
access module that manages access to nodes by US ZIP code could use ZIP codes as grant
IDs. In each case, it will be something that is determined about the user: Has the user been
assigned to this role? Or is this user in the ZIP code 123452 Or is the user on this access con-
trol list? Or is this user’s subscription older than 1 year?

Although each grant ID means something special to the node access module that pro-
vides grant IDs for the realm containing the grant ID, the mere presence of a row containing the
grant ID in the node_access table enables access, with the type of access being determined by
the presence of a 1 in the grant_view, grant_update, or grant_delete column.

Grant IDs get inserted into the node_access table when a node is being saved. Each
module that implements hook_node_access_records() is passed the node object. The mod-
ule is expected to examine the node and either simply return (if it won’t be handling access
for this node) or return an array of grants for insertion into the node_access table. The grants
are batch-inserted by node_access_acquire grants(). The following is an example from
forum_access.module.

CHAPTER 7 © WORKING WITH NODES

Vs
* Implementation of hook node access records().

*

* Returns a list of grant records for the passed in node object.
*/

function forum access node access records($node) {

if ($node->type == 'forum') {
$result = db_query('SELECT * FROM {forum access} WHERE tid = %d', $node->tid);
while ($grant = db_fetch object($result)) {
$grants[] = array(

'realm’ => 'forum_access',
'gid’ => $grant->rid,
‘grant_view' => $grant->grant view,

'grant_update' => $grant->grant update,
'grant_delete' => $grant->grant delete
)
}
return $grants;
}
}

The Node Access Process

When an operation is about to be performed on a node, Drupal goes through the process
outlined in Figure 7-9.

161

162 CHAPTER 7 © WORKING WITH NODES

Yes

Sop == No

update?

user allowed to access Yes
this input format?
Yes user has adr_nin_iste
nodes permission?
Disallowed Allowed
Yes user has access
content permission?
No
MNo is node
published?
returns TRUE call hook_access for returns FALSE Disallowed
this node type
Y Y
returns
Allowed NULL Disallowed
; modules
invoke = s 4
> implementing
hook_node_grants() hook_node_grants()
generate SQL of the form:
gid = 0 and realm = "all' OR
gid = 1 AND realm = realminame’ OR
gid = 2 AND realm = realminame' OR <
gid = 3 AND realm = realminame’' OR
gid = 1 AND realm = 'realm2name’ ...
v AND grant_view >=1
is user the node
author?
rows returned no match
No query node_access
table
L4 Y
Disallow Allow Disallow

Figure 7-9. Determining node access for a given node

CHAPTER 7 © WORKING WITH NODES 163

Summary

After reading this chapter, you should be able to
¢ Understand what a node is and what node types are.
* Write modules that create node types.
* Understand how to hook into node creation, saving, loading, and so on.

e Understand how access to nodes is determined.

CHAPTER 8

The Theme System

Changing the HTML or other markup that Drupal produces requires knowledge of the layers
that make up the theme system. The theme system is an elegant architecture that’ll keep you
from hacking core code, but it does have a learning curve, especially when you're trying to
make your Drupal site look different from other Drupal sites. I'll teach you how the theme sys-
tem works and reveal some of the best practices hiding within the Drupal core. Here’s the first
one: you don't need to (nor should you) edit the HTML within module files to change the look
and feel of your site. By doing that, you've just created your own proprietary content manage-
ment system and have thus lost one the biggest advantages of using a community-supported
open source software system to begin with. Override, don't change!

Theme System Components

The theme system comprises several levels of abstraction: template languages, theme engines,
and themes.

Template Languages and Theme Engines

The theme system is abstracted to work with most templating languages. Smarty, PHPTAL,
and PHPTemplate can all be used to fill template files with dynamic data within Drupal. To use
these languages, a wrapper, called a theme engine, is needed to interface Drupal with the cor-
responding template language. You can find theme engines for the most popular templating
languages at http://drupal.org/project/Theme+engines. You install theme engines by placing
the respective theme engine directory inside the engines directory for your site at sites/
sitename/themes/engines. To have the theme engine accessible to all sites in a multisite setup,
place the theme engine directory inside sites/all/themes/engines as shown in Figure 8-1.

The Drupal community has created its own theme engine, optimized for Drupal. It’s
called PHPTemplate, and it relies on PHP to function as the templating language, which
removes the intermediary parsing step other template languages usually go through. This is
the most widely supported template engine for Drupal and ships with the core distribution.
It's located at themes/engines/phptemplate, as shown in Figure 8-2.

165

http://drupal.org/project/Theme+engines

166

CHAPTER 8 © THE THEME SYSTEM

1 smarty.engine
-smarty\ ‘ Y

node.tpl

— S || —

sites all themes engines ‘ 1

i /v phptal.engine
phptal \ ‘

node.tal
Figure 8-1. Directory structure for adding custom theme engines to Drupal
themes engines phptemplate phptemplate.engine

Figure 8-2. Directory structure for Drupal core theme engines. This location is reserved for core
theme engines.

Note It's entirely possible to skip using a templating language altogether and simply use pure PHP tem-
plate files. If you're a speed freak or maybe just want to torture your designers, you can skip using a theme
engine and just wrap your entire theme inside PHP functions, using functions like themename_page() and
themename_node() instead of template files. For an example of a PHP-based theme, see themes/
chameleon/chameleon.theme.

Don't expect to see any change to your site after dropping in a new theme engine.
Because a theme engine is only an interface library, you'll also need to install a Drupal theme
that depends on that engine before the theme engine will be used.

Which template language should you use? If you're converting a legacy site, perhaps it’s
easier to use the previous template language, or maybe your design team is more comfortable
working within WYSIWYG editors, in which case PHPTAL is a good choice because it prevents
templates from being mangled within those editors. You'll find the most documentation and
support for PHPTemplate, and if you're building a new site it’s probably your best bet in terms
of long-term maintenance and community support.

CHAPTER 8 © THE THEME SYSTEM

Themes

In Drupal-speak, themes are a collection of files that make up the look and feel of your site.
You can download preconstructed themes from http://drupal.org/project/Themes, or you
can roll your own, which is what you'll learn to do in this chapter. Themes are made up of
most of the things you'd expect to see as a web designer: style sheets, images, JavaScript files,
and so on. The difference you'll find between a Drupal theme and a plain HTML site is tar-
geted template files. These files typically contain large sections of HTML and smaller special
snippets that are replaced by dynamic content. They are responsible for the look-and-feel of
one specific component of your site. The syntax of a template file depends on the theme
engine that is being used. For example, take the template file snippets in Listings 8-1, 8-2, and
8-3, which output the exact same HTML but contain radically different template file content.

Listing 8-1. Smarty

<div id="top-nav">

{if count($secondary links)}
<ul id="secondary">
{foreach from=$secondary links item=link}

{$link}</1i>

{/foreach}

{/if}

{if count($primary links)}
<ul id="primary">
{foreach from=$primary links item=link}
{$link}</1i>
{/foreach}

{/if}
</div>

Listing 8-2. PHPTAL

<div id="top-nav">
<ul tal:condition="php:is array(secondary links)" id="secondary">
<li tal:repeat="link secondary links" tal:content="link">secondary link</1i>

<ul tal:condition="php:is array(primary links)" id="primary">
<li tal:repeat="link primary links" tal:content="link">primary link</1i>

</div>

167

http://drupal.org/project/Themes

168

CHAPTER 8 © THE THEME SYSTEM

Listing 8-3. PHPTemplate

<div id="top-nav">
<?php if (count($secondary links)) : ?»
<ul id="secondary">
<?php foreach ($secondary links as $link): ?>
<?php print $link?></1i>
<?php endforeach; ?>

<?php endif; ?>
<?php if (count($primary links)) : ?>
<ul id="primary">
<?php foreach ($primary links as $link): ?>
<?php print $link?></1i>
<?php endforeach; ?>

<?php endif; ?>
</div>

Each template file will look different based on the template language in use. The file
extension of a template file denotes the template language, and thus the theme engine it
depends on (see Table 8-1).

Table 8-1. Template File Extensions Indicate the Template Language They Depend On

Template File Extension Theme Engine

.theme PHP

.tpl.php PHPTemplate*
.tal PHPTAL

.tpl Smarty

* PHPTemplate is Drupal’s default theme engine.

Installing a Theme

To have a new theme show up within the Drupal administrative interface, place the theme

in sites/all/themes. This makes the theme accessible to your Drupal site and to all sites on

a multisite setup. If you wish the theme to be used for a specific site only and you are using a
multisite setup, you should place it in sites/sitename/themes. You can install as many themes
as you want on your site, and themes are installed in much the same way modules are. Once
the theme files are in place, navigate to the administrative interface via Administer » Site
building » Themes. You can install multiple themes. You can even enable multiple themes at
once. What does that mean? By enabling multiple themes, users who have been given the
select different theme permission will be able to select any one of the enabled themes from
within their profile. Their chosen theme will be used when they are browsing the site.

CHAPTER 8 © THE THEME SYSTEM

When downloading or creating a new theme, it’s a best practice to keep the new theme
separate from the rest of the core and contributed themes. You can do this by creating another
level of folders inside your themes folder. Place custom themes inside a folder named custom,
and themes downloaded from the Drupal contributions repository inside a folder named
drupal-contrib. This practice is not as important to follow as with custom and contributed
modules, as you are unlikely to have many themes on one site but very likely to have many
modules.

Building a PHPTemplate Theme

There are several ways to create a theme, depending on your starting materials. Suppose your
designer has already given you the HTML and CSS for the site. How easy is it to take the
designer’s design and convert it into a Drupal theme? It’s actually not that bad, and you can
probably get 80 percent of the way there in short order. The other 20 percent—the final nips
and tucks—are what set apart Drupal theming ninjas from lackeys. So let’s knock out the easy
parts first. Here’s an overview:

1. Create or modify an HTML file for the site.
2. Create or modify a CSS file for the site.
3. Create a .1info file to describe your new theme to Drupal.
4, Standardize the filenames according to what Drupal expects.

[3)]

. Insert available variables into your template.

(=]

. Create additional files for individual node types, blocks, and so on.

Note If you're starting your design from scratch, there are many great designs at the Open Source Web
Design site at http://www.oswd.org/. (Note that these are HTML and CSS designs, not Drupal themes.)

Using Existing HTML and CSS Files

Let’s assume you're given the HTML page and style sheet in Listings 8-4 and 8-5 to convert to
a Drupal theme. Obviously, the files you'd receive in a real project would be more detailed
than these, but you get the idea.

Listing 8-4. page.html

<html>
<head>

<title>Page Title</title>

<link rel="stylesheet" href="global.css" type="text/css" />
</head>

169

http://www.oswd.org

170 CHAPTER 8 © THE THEME SYSTEM

<body>
<div id="container">
<div id="header">
<h1>Header</h1>
</div>

<div id="left">
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut.
</p>
</div>

<div id="main">
<h2>Subheading</h2>
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut.
</p>
</div>

<div id="footer">
Footer
</div>
</div>
</body>
</html>

Listing 8-5. global.css

#container {
width: 90%;
margin: 10px auto;
background-color: #fff;
color: #333;
border: 1px solid gray;
line-height: 130%;

}

#theader {
padding: .5em;
background-color: #ddd;
border-bottom: 1px solid gray;

}

#header h1 {
padding: 0;
margin: 0;

}

CHAPTER 8

#sidebar-left {
float: left;
width: 160px;

margin: 0;
padding: 1lem;
}
#main {

margin-left: 200px;
border-left: 1px solid gray;
padding: 1em;

max-width: 36em;

}

#footer {
clear: both;
margin: 0;

padding: .5em;
color: #333;
background-color: #ddd;
border-top: 1px solid gray;
}
#sidebar-left p {
margin: 0 O lem O;
}
#main h2 {
margin: 0 0 .5em O;

}

The design is shown in Figure 8-3.

Header

Lorem ipsum dolor sit Subheading

amet, consectetuer

adipiscing elit, sed diam Lorem ipsum dolor sit amet, consectetuer adipiscing
nonummy nibh euismod elit, sed diam nonummy nibh euismod tincidunt ut..

tincidunt ut.

Footer

Figure 8-3. Design before it has been converted to a Drupal theme

THE THEME SYSTEM

Let’s call this new theme greyscale, so make a folder at sites/all/themes/custom/
greyscale. You might need to create the themes/custom folders if you haven't already. Copy
page.html and global.css into the greyscale folder. Next, rename page.html to page.tpl.php

so it serves as the new page template for every Drupal page.

17

172

CHAPTER 8 © THE THEME SYSTEM

Creating a .info File for Your Theme

Each theme needs to include a file that describes the capabilities of the theme to Drupal.
This file is the theme’s . info file. Because we called our theme greyscale, our .info file will
be named greyscale.info. Create the file at sites/all/themes/custom/greyscale/
greyscale.info, and enter the ten lines shown in Listing 8-6.

Listing 8-6. .info File for the Greyscale Theme

; $1d$
name = Greyscale
core = 6.X

engine = phptemplate
regions[left] = Left sidebar

; We do not have a right sidebar.
; regions[right] = Right sidebar
regions[content] = Content
regions[header] = Header
regions[footer] = Footer

If we wanted to get more complicated, we could give Drupal a lot more information in
our .info file. Let’s take a moment to see what information can be included, which is shown
in Listing 8-7.

Listing 8-7. .info File with More Information

; Id

; Name and core are required; all else is optional.
name = Greyscale

description = Demurely grey tableless theme.
screenshot = screenshot.png

core = 6.X

engine = phptemplate

regions[left] = Left sidebar

; We do not have a right sidebar
; regions[right] = Right sidebar
regions[content] = Content
regions[header] = Header
regions[footer] = Footer

; Features not commented out here appear as checkboxes
; on the theme configuration page for this theme.

features[] = logo
features[] = name
features[] = slogan
features[] = mission

CHAPTER 8 © THE THEME SYSTEM

features[] = node user picture
features[] = comment user picture
features[] = search

features[] = favicon

features[] = primary links
features[] = secondary links

; Stylesheets can be declared here or, for more

; control, be added by drupal add css() in template.php.
; Add a stylesheet for media="all":

stylesheets[all][] = mystylesheet.css

; Add a stylesheet for media="print":
stylesheets[print][] = printable.css

; Add a stylesheet for media="handheld":
stylesheets[handheld][] = smallscreen.css

; Add a stylesheet for media="screen, projection, tv":
stylesheets[screen, projection, tv][] = screen.css

; Override an existing Drupal stylesheet with our own
; (in this case the forum module's stylesheet):
stylesheets[all][] = forum.css

; JavaScript files can be declared here or, for more

; control, be added by drupal add js() in template.php.
; scripts.js is added automatically (just like style.css
; 1s added automatically to stylesheets[]).

scripts[] = custom.js

; PHP version is rarely used; you might need it if your
; templates have code that uses very new PHP features.
php = 5.2.0

; Themes may be based on other themes; for example, they
; may simply override some of the parent theme's CSS.

; See the Minnelli theme at themes/garland/minnelli for
; an example of a theme that does this in Drupal core.
base theme = garland

Because the Greyscale theme now has a . info file (the simple one in Listing 8-6) and a
page.tpl.php file, you can enable it within the administrative interface. Go to Administer »
Site building » Themes and make it the default theme.

Congratulations! You should now see your design in action. The external style sheet won't
yet load (we’ll address that later), and any page you navigate to within your site will be the
same HTML over and over again, but this is a great start! Any page you navigate to within your
site will just serve the static contents of page.tpl.php, so there’s no way to get to Drupal’s
administrative interface. We've just locked you out of your Drupal site! Whoops. Getting locked
out is bound to happen, and I'll show you now how to recover from this situation. One solu-
tion is to rename the folder of the theme currently enabled. In this case, you can simply

173

174

CHAPTER 8 © THE THEME SYSTEM

rename greyscale to greyscale , and you'll be able to get back into the site. That’s a quick fix,
but because you know what the real problem is (that is, that we’re not including dynamic con-
tent yet), instead you’ll add the proper variables to page.tpl.php so that the dynamic Drupal
content is displayed rather than the static content.

Every PHPTemplate template file—such as page.tpl.php, node.tpl.php, block.tpl.php,
and so on—is passed a different set of dynamic content variables to use within the files. Open
page.tpl.php, and start replacing the static content with corresponding Drupal variables.
Don't worry; I'll cover what these variables actually do soon.

<html>
<head>

<title><?php print $head_title ?></title>

<link rel="stylesheet" href="global.css" type="text/css" />
</head>

<body>
<div id="container">
<div id="header">
<h1><?php print $site_name ?></h1>
<?php print $header ?>
</div>

<?php if ($left): 2>
<div id="sidebar-left">
<?php print $left ?>
</div>
<?php endif; ?>

<div id="main">
<?php print $breadcrumb ?>
<h2><?php print $title ?></h2>
<?php print $content ?>

</div>

<div id="footer">
<?php print $footer_message ?>
<?php print $footer ?>
</div>
</div>
<?php print $closure ?>
</body>
</html>

Reload your site, and you'll notice that the variables are being replaced with the content
from Drupal. Yay! You'll notice that the global.css style sheet isn’t loading because the path
to the file is no longer correct. You could manually adjust the path, or you could do this the
Drupal way and gain some flexibility and benefits.

CHAPTER 8 © THE THEME SYSTEM

The first step is to rename global.css to style.css. By convention, Drupal automatically
looks for a style.css file for every theme. Once found, it adds this information into the
$styles variable that’s passed into page.tpl.php. So let’s update page.tpl.php with this
information:

<html>

<head>
<title><?php print $head title ?></title>
<?php print $styles ?>

</head>

Save your changes and reload the page. Voila! You'll also notice that if you view the source
code of the page, other style sheets from enabled modules have also been added, thanks to the
addition of this $styles variable:

<html>
<head>
<title>Example | Drupal 6</title>
<link type="text/css" rel="stylesheet" media="all"
href="modules/node/node.css?f" />
<link type="text/css" rel="stylesheet" media="all"
href="modules/system/defaults.css?f" />
<link type="text/css" rel="stylesheet" media="all"
href="modules/system/system.css?f" />
<link type="text/css" rel="stylesheet" media="all"
href="modules/system/system-menus.css?f" />
<link type="text/css" rel="stylesheet" media="all"
href="modules/user/user.css?f" />
<link type="text/css" rel="stylesheet" media="all"
href="sites/all/themes/greyscale/style.css?f" />
</head>

By naming your CSS file style.css, you also allow Drupal to apply its CSS preprocessing
engine to it to remove all line breaks and spaces from all CSS files, and instead of serving mul-
tiple style sheets, Drupal can now serve them as a single file. To learn more about this feature,
see Chapter 22.

Note Drupal adds a dummy query string (2 in the preceding examples) to the end of the style sheet
URLs so that it can control caching. It changes the string when needed, such as after running update.php
or after a full cache clear from the Administer » Site configuration » Performance page.

When you refresh your browser after renaming global.css to style.css, you should
see a theme similar to that in Figure 8-3, with a header, footer, and left sidebar. Try going to
Administer » Site building » Blocks and assigning the “Who’s online” block to the left sidebar.

175

176

CHAPTER 8 © THE THEME SYSTEM

There are plenty more variables to add to page.tpl.php and the other template files. So
let’s dive in! If you have not already done so, browse through the existing themes in your Drupal
installation’s themes directory to get a feel for how the variables are used.

Understanding Template Files

Some themes have all sorts of template files, while others only have page.tpl.php. So how do
you know which template files you can create that Drupal will recognize? What naming con-
ventions surround the creation of template files? You'll learn the ins and outs of working with
template files in the following sections.

The Big Picture

page.tpl.php is the granddaddy of all template files, and provides the overall page layout
for the site. Other template files are inserted into page.tpl.php, as the diagram in
Figure 8-4 illustrates.

MNavigation
blog post 1
—_—
Who's online
node.tpl.ph
block.tpl.ph g
blog post 2
Syndicate
page.tpl.php

Figure 8-4. Other templates are inserted within the encompassing page.tpl.php file.

CHAPTER 8 © THE THEME SYSTEM

The insertion of block.tpl.php and node.tpl.php in Figure 8-4 happens automatically
by the theme system during page building. Remember when you created your own
page.tpl.php file in the previous example? Well, the $content variable contained the output
of the node. tpl.php calls, and $left contained the output from the block.tpl.php calls. Let’s
examine how this works.

Let’s add a node template file to our Greyscale theme. Rather than writing it from scratch,
we'll copy Drupal’s default node template file; that is, the node template that is used if
node.tpl.php cannot be found in a theme. Copy modules/node/node.tpl.php to sites/all/
themes/custom/greyscale/node.tpl.php. Then visit Administer » Site building » Modules so
that the theme registry will be rebuilt. Drupal will find sites/all/themes/custom/greyscale/
node.tpl.php during the rebuilding process, and from now on, it will use this file as the node
template. Create a node using Create content » Page (fill out just the Title and Body fields).
Now change your node. tpl.php file slightly (maybe add “Hello world!” to the end of it). The
display of your node should change to use the new template with your modifications.

You could do the same thing with block.tpl.php (you can find the default block template
file at modules/system/block.tpl.php) or with any other template file that you find in Drupal.

Introducing the theme() Function

When Drupal wants to generate some HTML output for a themable item (like a node, a block,
a breadcrumb trail, a comment, or a user signature), it looks for a theme function or template
file that will generate HTML for that item. Almost all parts of Drupal are themable, which
means you can override the actual HTML that is generated for that item. We'll look at some
examples soon.

Tip For a list of themable items in Drupal, see http://api.drupal.org/api/group/themeable/6.

An Overview of How theme() Works

Here’s a high-level overview of what happens when a simple node page, such as http://
example.com/?g=node/3 is displayed:

1. Drupal’s menu system receives the request and hands off control to the node module.

2. After building the node data structure, theme('node’, $node, $teaser, $page) is
called. This finds the correct theme function or template file, defines lots of variables
that the template may use, and applies the template, resulting in finished HTML for
the node. (If multiple nodes are being displayed, as happens with a blog, this process
happens for each node.)

177

http://api.drupal.org/api/group/themeable/6
http://example.com/?q=node/3
http://example.com/?q=node/3

178

CHAPTER 8 © THE THEME SYSTEM

3. If the comment module is enabled, any comments are changed into HTML and
appended to the node’s HTML.

4. This whole glob of HTML is returned (you can see it as the $return variable in
index.php) and passed to the theme() function again as theme('page', $return).

5. Before processing the page template, Drupal does some preprocessing, such as dis-
covering which regions are available and which blocks should be shown in each
region. Each block is turned into HTML by calling theme('blocks', $region), which
defines variables and applies a block template. You should be starting to see a pattern
here.

6. Finally, Drupal defines lots of variables for the page template to use and applies the
page template.

You should be able to discern from the preceding list that the theme() function is very
important to Drupal. It is in charge of running preprocessing functions to set variables that
will be used in templates and dispatching a theme call to the correct function or finding
the appropriate template file. The result is HTML. The process is shown graphically in
Figure 8-5. We will take an in-depth look at how this function works later. Right now, it is
enough to understand that when Drupal wants to turn a node into HTML, theme('node")
is called. Depending on which theme is enabled, the theme_node() function will generate
the HTML or a template file named node. tpl.php will do it.

This process can be overridden at many levels. For example, themes can override built-
in theme functions, so when theme('node") is called a function called greyscale node() might
handle it instead of theme_node(). Template files have naming conventions that we'll explore
later too, so that a node-story.tpl.php template file would target only nodes of type Story.

CHAPTER 8 © THE THEME SYSTEM 179

theme('foo')
is called

4

; Get theme path
Exit from entry

Include $file if
there is a file entry

Y

Theme function Template file

Find first implemented Start $variables
function array with registry
entry arguments

Call function, Set default render
e.g., theme_foo() function and
extension

Is registry entry
type ‘'module’?

Optionally change
render function L]
and extension

| =

Preprocess functions run
(sets variables)

'

Discover template file,
e.g., foo.tpl.php

v

Hand template file and
variables to render
function and execute

Figure 8-5. Flow of execution for a call to the theme() function

Overriding Themable Items

The core philosophy behind Drupal’s theme system is similar to that of the hook system. By
adhering to a naming convention, functions can identify themselves as theme-related func-
tions that are responsible for formatting and returning your site’s content or template files
containing PHP can be used.

180

CHAPTER 8 © THE THEME SYSTEM

Overriding with Theme Functions

As you've seen, themable items are identifiable by their function names, which all begin with
theme_, or by the presence of a template file. This naming convention gives Drupal the ability
to create a function-override mechanism for all themable functions. Designers can instruct
Drupal to execute an alternative function, which takes precedence over the theme functions
that module developers expose or over Drupal’s default template files. For example, let’s
examine how this process works when building the site’s breadcrumb trail.

Open includes/theme.inc, and examine the functions inside that file. Many functions in
there begin with theme_, which is the telltale sign that they can be overridden. In particular,
let’s examine theme_breadcrumb():

Vass
* Return a themed breadcrumb trail.
*
* @param $breadcrumb
* An array containing the breadcrumb links.
* @return a string containing the breadcrumb output.
*/
function theme breadcrumb($breadcrumb) {
if (lempty($breadcrumb)) {
return '<div class="breadcrumb">"'. implode(' » ', $breadcrumb) .'</div>';
}
}

This function controls the HTML for the breadcrumb navigation within Drupal. Currently,
it adds a right-pointing double-arrow separator between each item of the trail. Suppose you
want to change the div tag to a span and use an asterisk (*) instead of a double arrow. How
should you go about it? One solution would be to edit this function within theme. inc, save it,
and call it good. (No! No! Do not do this!) There are better ways.

Have you ever seen how these theme functions are invoked within core? You'll never see
theme_breadcrumb() called directly. Instead, it’s always wrapped inside the theme() helper
function. You'd expect the function to be called as follows:

theme_breadcrumb($breadcrumb)
But it’s not. Instead, you'll see developers use the following invocation:
theme('breadcrumb’, $breadcrumb);

This generic theme() function is responsible for initializing the theme layer and dispatch-
ing of function calls to the appropriate places, bringing us to the more elegant solution to our
problem. The call to theme () instructs Drupal to look for the breadcrumb functions shown in
Figure 8-5, in the following order.

Assuming the theme you're using is Greyscale, which is a PHPTemplate-based theme,
Drupal would look for the following (we'll ignore breadcrumb.tpl.php for a moment):

greyscale breadcrumb()

phptemplate breadcrumb()
sites/all/themes/custom/greyscale/breadcrumb.tpl.php
theme_breadcrumb()

CHAPTER 8 © THE THEME SYSTEM

Where would you put a function like phptemplate breadcrumb() to override the built-in
breadcrumb function?

Easy—your theme’s template.php file is the place to override Drupal’s default theme func-
tions, and intercept and create custom variables to pass along to template files.

Note Don’t use Garland as the active theme when doing these exercises, since Garland already has
a template.php file. Use Greyscale (or Bluemarine) instead.

To tweak the Drupal breadcrumbs, create sites/all/themes/custom/greyscale/
template.php file and copy and paste the theme_breadcrumb() function in there from
theme.inc. Be sure to include the starting < ?php tag. Also, rename the function from
theme_breadcrumb to phptemplate breadcrumb. Next, visit Administer » Site building »
Modules to rebuild the theme registry so Drupal will detect your new function.

<?php
/**
* Return a themed breadcrumb trail.
*
* @param $breadcrumb
* An array containing the breadcrumb links.
* @return a string containing the breadcrumb output.
*/
function phptemplate breadcrumb($breadcrumb) {
if (lempty($breadcrumb)) {
return ''. implode(' * ', $breadcrumb) .'"';
}
}

The next time Drupal is asked to format the breadcrumb trail, it'll find your function first
and use it instead of the default theme breadcrumb() function, and breadcrumbs will contain
your asterisks instead of Drupal’s double arrows. Pretty slick, eh? By passing all theme func-
tion calls through the theme () function, Drupal will always check if the current theme has
overridden any of the theme_functions and call those instead. Developers, take note: any parts
of your modules that output HTML or XML should only be done within theme functions so
they become accessible for themers to override.

Overriding with Template Files

If you're working with a designer, telling him or her to “just go in the code and find the
themable functions to override” is out of the question. Fortunately, there’s another way to
make this more accessible to designer types. You can instead map themable items to their
own template files. I'll demonstrate with our handy breadcrumb example.

Before we begin, make sure that no theme function is overriding theme_breadcrumb(). So
if you created a phptemplate_breadcrumb() function in your theme’s template.php file in the

181

182

CHAPTER 8 © THE THEME SYSTEM

preceding section, comment it out. Then, create a file at sites/all/themes/custom/greyscale/
breadcrumb.tpl.php. This is the new template file for breadcrumbs. Because we wanted to
change the <div> tag to a tag, go ahead and populate the file with the following:

<?php if (lempty($breadcrumb)): ?>
<?php print implode(' ! ', $breadcrumb) ?>
<?php endif; ?>

That’s easy enough for a designer to edit. Now you need to let Drupal know to call this
template file when looking to render its breadcrumbs. To do that, rebuild the theme registry
by visiting Administer » Site building » Modules. While rebuilding the theme registry, Drupal
will discover your breadcrumb.tpl.php file and map the breadcrumb themable item to that
template file.

Now you know how to override any themable item in Drupal in a way that will make your
designers happy.

Adding and Manipulating Template Variables

The question becomes this: if you can make your own template files and control the variables
being sent to them, how can you manipulate or add variables being passed into page and
node templates?

Note Variables are only aggregated and passed into themable items that are implemented as template
files. Variables are not passed into themable items implemented as theme functions.

Every call to load a template file passes through a series of preprocess functions. These
functions are responsible for aggregating the variables to pass along to the correct template
file. Let’s continue with our example of using the breadcrumb trail. First, let’s modify sites/
all/themes/custom/greyscale/breadcrumb.tpl.php to use a variable called $breadcrumb
delimiter for the breadcrumb delimiter:

<?php if (lempty($breadcrumb)): ?>

<?php print implode(' '. $breadcrumb delimiter .' ', $breadcrumb) ?>

<?php endif; ?>

How are we going to set the value of $breadcrumb_delimiter? One option would be in a
module. We could create sites/all/modules/custom/crumbpicker.info:

; $1d$

name = Breadcrumb Picker

description = Provide a character for the breadcrumb trail delimiter.
package = Pro Drupal Development

core = 6.x

CHAPTER 8 © THE THEME SYSTEM

The module at sites/all/modules/custom/crumbpicker.module would be tiny:

<?php
// $1d$

/**

* @file

* Provide a character for the breadcrumb trail delimiter.
*/

/**

* Implementation of $modulename preprocess_$hook().

*/

function crumbpicker preprocess breadcrumb(8$variables) {
$variables['breadcrumb_delimiter'] = '/';

}

After enabling the module at Administer » Site building » Modules, your breadcrumb
trail should look like Home / Administer / Site building.

The preceding example illustrates a module setting a variable for a template file to use.
But there must be an easier way than creating a module every time a variable needs to be set.
Sure enough, it’s template.php to the rescue. Let’s write a function to set the breadcrumb
delimiter. Add the following to your theme’s template.php file:

Vioio
* Implementation of $themeenginename_preprocess_$hook().
* Variables we set here will be available to the breadcrumb template file.
*/
function phptemplate preprocess_breadcrumb(&$variables) {
$variables['breadcrumb delimiter'] = '#';

}

That'’s easier than creating a module, and frankly, the module approach is usually best for
existing modules to provide variables to templates; modules are not generally written solely
for this purpose. Now, we have a module providing a variable and a function in template.php
providing a variable. Which one will actually be used?

Actually, a whole hierarchy of preprocess functions run in a certain order, each one with
the potential to overwrite variables that have been defined by previous preprocess functions.
In the preceding example, the breadcrumb delimiter will be # because phptempl