

SECOND EDITION

Using Drupal

Angela Byron, Addison Berry, and Bruno De Bondt

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Using Drupal, Second Edition
by Angela Byron, Addison Berry, and Bruno De Bondt

Copyright © 2012 Angela Byron, Addison Berry, and O’Reilly Media, Inc.. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Julie Steele and Meghan Blanchette
Production Editor: Kristen Borg
Proofreader: Rachel Monaghan

Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

December 2008: First Edition.
April 2012: Second Edition.

Revision History for the First Edition:
2012-04-09 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449390525 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Using Drupal, the image of a dormouse, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-39052-5

[LSI]

1334005156

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449390525

Table of Contents

Foreword . xi

Preface . xiii

1. Drupal Overview . 1
What Is Drupal? 1

Who Uses It? 2
What Features Does Drupal Offer? 3

A Brief History of Content Management 4
A Historical Look at Website Creation 4
The Age of Scripts and Databases 6
The Content Revolution 7

How Does Drupal Work? 8
Modules 9
Users 10
Content (Nodes) 11
Entities and Fields 12
Ways of Organizing Content 13
Types of Supporting Content 15

Getting Help 15
Conclusion 17

2. Drupal Jumpstart . 19
Case Study 20

Implementation Notes 21
Spotlight: Drupal’s Administration Interface 22
Hands-On: Changing Administrative Settings 25
Spotlight: Content Management 26

Content 26
Comments 30
Navigation 32

iii

Blocks 34
Hands-On: Content Management 36

Creating a Basic Page 36
Creating an Article 39
Managing Site Navigation 40
Configuring Blocks 42

Spotlight: Modules 44
Module Administration Page 45
Finding and Installing Modules 46
Removing Modules 48

Hands-On: Working with Modules 49
Spotlight: Access Control 53

Configuring User Access 54
User Profiles 57
Account Settings 58
Handling Abusive Users 58

Hands-On: Creating Roles and Users 59
Hands-On: Configuring Permissions 62
Spotlight: Content Moderation Tools 66

Automated Spam Detection 66
Manual Spam Prevention Tools 68

Hands-On: Contact Form 68
Spotlight: Themes 71

Finding a Theme 72
Theme Installation 73
Theme Configuration 73
Blocks and Regions 75
Administration Theme Setting 76

Hands-On: Branding the Site 77
Summary 79

3. Job Posting Board . 81
Case Study 82

Implementation Notes 83
Spotlight: Field and Field UI 83

Field Types 85
Input Widgets 86
Displays, View Modes, and Formatters 87
Reusing Existing Fields 90

Hands-On: Job Content Type 92
Spotlight: References 100
Hands-On: Adding a Reference Field 100
Hands-On: Customizing Field Display 102

iv | Table of Contents

Hands-On: Job Application Type 108
Spotlight: Views Module 113

Data Types 115
Displays 118
Pieces of a View 121

Hands-On: The Views Module 124
Jobs View 125
Applications View 134

Taking It Further 146
Summary 147

4. Media Management . 149
Case Study 150

Implementation Notes 151
Spotlight: Image Styles 152

Styles and Effects 153
Using an Image Style 157
Troubleshooting Image Styles 158

Hands-On: Image Styles 159
Create Image Styles 160
Improve Image Quality 163

Spotlight: Media 164
Media Files 165
Media Browser 166

Hands-On: Music Reviews 168
Review Content Type 168
Displaying Media Files 173

Spotlight: Content Editing and Image Handling 177
Content Editing 178
Integrating Media in Content 179

Spotlight: Text Formats and Filters 179
Hands-On: Setting Up WYSIWYG 183

Set Up and Configuration 183
Enabling the Media Filter 189

Spotlight: Media Internet Sources 189
Hands-On: Posting Videos 191
Taking It Further 192
Summary 193

5. Product Reviews . 195
Case Study 196

Implementation Notes 197
Hands-On: Basic Product Reviews 199

Table of Contents | v

Creating the Product Review Content Type 199
Spotlight: Amazon Module 203

What’s Included? 203
Locale 204
Referral Settings 204
Amazon Keys 204

Hands-On: Adding an Amazon Field 204
Adding the Product Field 206

Spotlight: Voting API and Fivestar 209
Hands-On: Adding Ratings 210

Adding the Product Rating Field 210
Adding the Reader Rating Field 211

Spotlight: CSS Injector 212
Hands-On: Polishing the Presentation 213

Setting Field Display Options 214
Configuring CSS Injector 216

Hands-On: Building a Product List 217
Spotlight: The Search Module 222

Searching with Views 223
Hands-On: Make the Product List Searchable 224
Rewriting Views Field Output 226
Taking It Further 228
Summary 228

6. Event Management . 231
Case Study 232

Implementation Notes 232
Hands-On: First Steps 233

Creating an Event Content Type 233
Access Control 234

Spotlight: Date Module 235
Date Submodules 235
Date Field Types 236
Date Form Elements 236
Date Field Settings 239

Hands-On: Adding Dates 242
Add the Date Field 242

Hands-On: Upcoming Events View 245
Spotlight: Calendar Module 248

Calendar View Type 248
iCal Integration 250

Hands-On: Calendar View 250
Spotlight: Flag Module 252

vi | Table of Contents

Flag Settings 254
Flag Actions Module 257

Hands-On: Flag Configuration 257
Hands-On: Attendee View 259
Taking It Further 261
Summary 262

7. Managing Publishing Workflows . 263
Case Study 264

Implementation Notes 265
Spotlight: Taxonomy 266

Vocabularies and Terms 267
Taxonomy Term Links 268

Hands-On: Categorizing Content 269
Spotlight: Pathauto 273

Path Aliases 273
Pathauto Patterns 274

Hands-On: Automating URL Aliases 276
Spotlight: Workbench 278

My Workbench 279
Hands-On: Creating Editorial Work Spaces 280
Hands-On: Generating Sample Content 281
Spotlight: Workbench Access 284

Using Hierarchies to Define Access Control 284
Assigning Editorial Access to Workbench Access Sections 286

Hands-On: Workbench Access 287
Setting Up Access Control with Workbench Access 290

Spotlight: Workbench Moderation 295
Editorial Workflow Management with Workbench Moderation 295

Hands-On: Workbench Moderation 298
Taking It Further 304
Summary 304

8. Multilingual Sites . 307
Case Study 308

Implementation Notes 309
Spotlight: Interface Translation 310

Locale 311
Hands-On: Installing a Translation 316
Hands-On: Configuring Locale Features 318

Language Detection and Selection 318
Language Switcher 319

Spotlight: Localization Client 320

Table of Contents | vii

Hands-On: Translating the Interface 321
Using the Locale Module 321
Using the Localization Client 323

Spotlight: Content Translation 326
Hands-On: Translating Content 328

Multilingual Content 328
Translation 329

Spotlight: Internationalization 332
Multilingual Content Selection 333
Strings 333
Site-Wide Language-Dependent Variables 333
Module Helpers 334
Paths 335
Synchronization 335

Hands-On: Internationalization Features 336
Content Selection 336
Site-Wide Variables 336
Content Types 339
Taxonomy 342
Menu Translation 345

Taking It Further 345
Summary 346

9. Online Store . 349
Case Study 350

Implementation Notes 351
Spotlight: Drupal Commerce 351

Commerce and Commerce UI 352
Cart 352
Checkout 353
Customer and Customer UI 353
Order, Order UI, Line Item, and Line Item UI 355
Payment and Payment UI 355
Product and Product UI 356
Product Reference 357
Price, Product Pricing, and Product Pricing UI 357
Tax and Tax UI 357
Additional Drupal Commerce Add-Ons 357

Spotlight: Managing Products with Drupal Commerce 358
Products and Product Types 358

Hands-On: Products and Product Types 359
Initial Setup Tasks 359
Configuring Product Types 359

viii | Table of Contents

Creating Sample Products 362
Spotlight: Feeds Module 364
Hands-On: Bulk-Importing Product Data 366

Creating a Feed Importer for CSV Files 366
Mapping CSV Data to Drupal Commerce Products 368
Importing CSV Product Data 370

Spotlight: Building the Storefront and Shopping Cart 371
Hands-On: Product Displays 373
Hands-On: Creating a Product Catalog 374
Spotlight: Rules Module 383
Hands-On: Taxes 385
Spotlight: Accepting Credit Card Payments Online 388
Hands-On: PayPal 389
Hands-On: Configuring a Payment Method 393
Hands-On: Processing Orders 394

Shopping Cart 395
Checkout Process 396
Placing a Test Order 397
Access Control 400

Taking It Further 402
Summary 403

A. Installing and Upgrading Drupal . 405

B. Choosing the Right Modules . 425

C. Modules and Themes Used in This Book . 441

D. Major Changes Between Drupal 6 and 7 . 445

Index . 457

Table of Contents | ix

Foreword

Drupal’s modular architecture and open source nature make it a popular PHP appli-
cation framework and content management system for hundreds of thousands of web
developers around the world. More than 900 people contributed code and ideas to the
Drupal 7 release, and even more are responsible for developing and maintaining more
than 15,000 contributed modules that can be used to extend Drupal’s functionality.

The size, passion, and velocity of the Drupal community, combined with Drupal’s
strength as a platform, allow incredible things to happen. Every day, new modules are
contributed and existing modules are improved upon. Whether these modules are cre-
ated to catch up with the latest trends on the Web or to invent completely new para-
digms, the Drupal project continues to expand in many different directions.

The beauty of all these modules is that they empower website builders to assemble rich
and powerful websites quickly and easily without having to be a programmer. Millions
of people are using Drupal to build personal blogs, corporate websites, intranets, online
photo galleries, job posting boards, conference websites, and more.

Unfortunately, the challenge for many of these site administrators, and even seasoned
Drupal developers, is to try to make sense of all these modules and the ever-expanding
Drupal universe. What modules should you use to build a newspaper website? What
modules should you use to build an intranet? What modules are best avoided because
they are being deprecated by better ones? What modules can be used on really big
websites that serve millions of pages a day? Navigating your way through the Drupal
world can be daunting.

This book cuts out a lot of the research time and helps you dive headfirst into Drupal.
It does an excellent job of explaining how to rapidly assemble a wide variety of websites
with some of Drupal’s most commonly used modules. Whether you’re new to building
websites or an experienced programmer, this book is full of useful information. Just as
I did in the first edition, I promise that by the end of this book, you’ll be much more
prepared to build the Drupal site of your dreams.

—Dries Buytaert
Drupal founder and project lead

March 2012

xi

Preface

Audience
Who is this book written for?

• If your lead developer can’t seem to shut up about this weird “Drupal” thing, and
you want to figure out what on earth she’s talking about, this book is for you.

• If your boss has approached you and said, “We need to build a site that has X, and
fast!” and “X” is a photo gallery, a product reviews section, an ecommerce store,
or any of the other projects covered herein, this book is for you.

• If you know your way around Drupal, but have found yourself paralyzed by the
sheer volume of contributed modules, and need help figuring out which ones are
worth looking at, this book is for you.

• If you consider yourself well versed in Drupal already, but want to broaden your
horizons by learning about some useful modules that you may not have encoun-
tered yet, and learn best practices for building powerful Drupal websites, this book
is for you.

• If you’ve been building Drupal sites for a while in Drupal 6, but are new to Drupal
7 and want to find out what’s new and different, this book is for you.

If you’re completely new to creating websites and installing web-based scripts, this
book probably isn’t for you, yet. We assume that goofy acronyms like PHP, FTP, URL,
ZIP, and HTML are in your working vocabulary. Likewise, if you’re interested in hard-
core, nitty-gritty details about Drupal’s API functions, this book isn’t for you: our focus
here is on pointy-clicky stuff: combining existing modules to build out functionality,
rather than creating new ones.

If you’re one of the rest of us, who fall somewhere between total newbie and computer
science professor, we hope that this book provides you with an invaluable reference to
building practical websites with Drupal.

xiii

Assumptions This Book Makes
You’ll need access to a computer or server running PHP 5.2 or higher, along with a web
server (Apache preferred) and database (MySQL recommended). For local develop-
ment, there are several all-in-one Apache/MySQL/PHP packages available such as
WAMP for Windows or MAMP for Macs. Visit http://drupal.org/hosting for a list of
Drupal-friendly web hosting companies (with referrals benefiting the Drupal Associa-
tion), and visit http://drupal.org/requirements to read more about Drupal’s system
requirements.

You will also need to install Drupal, and the hands-on chapters assume that you’re
using the book’s source code. Appendix A provides some basic instructions, but if you
run into trouble or want to read more detailed instructions, see the Drupal installation
guide. If you are not using the source code provided with the book, Appendix C con-
tains a list of all of the modules and themes that are used for each chapter so you can
re-create them.

A Note About the Modules Used in This Book
Drupal is constantly moving and its community-contributed module world is con-
stantly shifting. The source code for the book provides the versions that the chapters
were written with, and as time moves on, the versions available on Drupal.org will most
likely change. Sometimes changes don’t dramatically affect how things work, but other
times they do. For many chapters, the hands-on sections will apply for a very long time
or change so little that they will still be quite easy to follow. But even if the user interface
for a module changes dramatically a year down the road, after using this book and
walking through various examples, you should be equipped to explore the new func-
tionality on your own. In addition to the specific hands-on “recipes,” you will also learn
tips and best practices for how to “cook” generally—that is, how to learn about mod-
ules on your own.

Also keep in mind that the Spotlight sections, which discuss module features and com-
paring modules, along with Appendix B, which discusses how to evaluate modules,
provide a good foundation for you to make these evaluations on your own. You can
do your own comparisons as newer modules come out and make the best decisions for
your use. This book is intended to not only be a guide but also a springboard for your
own mastery of the Drupal contributed project world.

If you are just starting out with Drupal, we highly recommend sticking
with the book’s source code, which will always match the book’s text
and screenshots. Once you’ve made it through the book’s examples,
upgrading to the latest code of the day will then just be a matter of
negotiating some minor differences/enhancements around what you al-
ready know.

xiv | Preface

http://www.wampserver.com
http://www.mamp.info
http://drupal.org/hosting
https://association.drupal.org/
https://association.drupal.org/
http://drupal.org/requirements
http://drupal.org/documentation/install
http://drupal.org/documentation/install

Contents of This Book
Beyond the initial chapter that sets the stage, this book is organized as a series of recipes,
each of which consists of the following structure:

Introduction
The introduction gives an overview of what modules are covered, as well as the
overall goal of the chapter.

Case study
The case study describes the needs of a fictitious client who requires a website that
can track events, have product reviews, or sell T-shirts. We describe some back-
ground information about these clients, and go into more detail about their specific
requirements.

Implementation notes
Here we discuss various solutions within Drupal to solve the client’s requirements,
and go into detail about which modules we’ve selected and why. This section
compares and contrasts modules and explains when it’s appropriate to use module
A or why module B is a dead end.

Spotlight
Each chapter introduces one or more major modules or Drupal concepts, and the
Spotlight sections provide a “bird’s-eye view” of what each specializes in and how
it works. Think of this section as a miniature “product sheet” that highlights
features of a given module and what it can do. If you’re not interested in a pointy-
clicky tutorial but instead want to get an idea of the power and flexibility of Dru-
pal’s top contributed modules, scanning the Spotlight sections should provide
what you need.

Hands-on
After describing what a module can do in the general case, the hands-on sections
will show you how to configure them by providing step-by-step “recipes” to build
out the precise functionality the client requires. If you’re new to Drupal, following
these sections will show you exactly how the concepts work in practice, and allow
you to build several real Drupal sites yourself.

Taking it further
This section of each chapter provides pointers to other helpful add-on modules
that you can introduce to a particular use case to enhance its functionality and
make it even more powerful. If you’re extra keen, try experimenting with these
modules to make the book’s example projects even better!

Summary
This section wraps up what we’ve learned over the course of the chapter, and
provides links to the modules used, and other resources that offer more
information.

Preface | xv

Here is a list of the book’s chapters and the material covered. The first three chapters
are considered “required reading” if you haven’t used Drupal before. The rest of the
chapters will assume knowledge of these chapters, including the basics of Drupal and
the Views and Field modules. If you’re familiar with Drupal 6 but haven’t yet used
Drupal 7, you may also want to skim these chapters, as the user interface and feature
set has changed significantly between versions.

Chapter 1, Drupal Overview
This chapter answers the main “need to know” questions about Drupal: what’s
Drupal, who’s using it, why are they using it, and how does it conceptually work?
It also provides some historical context to Drupal, introduces essential terminol-
ogy, and covers everything else you need to get up to speed.

Chapter 2, Drupal Jumpstart
The first hands-on chapter hits the ground running, and will show you how to use
Drupal’s core functionality, as well as a few contributed modules, in order to build
a basic business website. By the end of this chapter, you should feel comfortable
with Drupal’s core functionality and navigating the administrative section.

Chapter 3, Job Posting Board
This chapter introduces the Field and Views modules by walking through the con-
struction of a job-posting website. You will also learn to extend core’s Field module
with additional contributed modules. By the end of this chapter, you’ll understand
how to create custom content types and add form fields, as well as how to click
together lists of any type of website content, which are the basis of all the other
chapters in the book.

Chapter 4, Media Management
This chapter helps you build a family photo gallery using core’s Image module
along with several contributed media modules.

Chapter 5, Product Reviews
In this chapter, you will build a community product review website, with the Am-
azon module providing the product data, and the Voting API and Fivestar modules
providing a rating widget.

Chapter 6, Event Management
This chapter’s all about how to do event management in Drupal, featuring the Date
and Calendar modules for storing and displaying event information, and the Flag
module for keeping track of who’s coming.

Chapter 7, Managing Publishing Workflows
This chapter talks all about implementing custom publishing workflows with the
Workbench module, and uses core’s Taxonomy as well as Pathauto to organize
our content.

xvi | Preface

Chapter 8, Multilingual Sites
This chapter describes how to build a multilingual site using the Locale and Con-
tent Translation modules and the Internationalization (i18n) suite of modules.

Chapter 9, Online Store
In this chapter, you’ll use the powerful Drupal Commerce package to build a T-
shirt store that includes such features as a product catalog, shopping cart, and
payment processing.

Appendix A, Installing and Upgrading Drupal
If you’re new to Drupal, this appendix will get you up to speed on how to install
it, as well as how to do upgrades down the road.

Appendix B, Choosing the Right Modules
Evaluating modules is often the biggest hurdle to building a Drupal site. This ap-
pendix is a breakdown of strategies and tips for figuring out which module will
work for your needs.

Appendix C, Modules and Themes Used in This Book
This appendix lists the modules and themes used in each chapter, for easy
reference.

Appendix D, Major Changes Between Drupal 6 and 7
This appendix covers the big changes that happened between Drupal 6 and 7. It
lists new features, existing features that were modified, as well as a few gotchas
and functionality that has been removed from core in Drupal 7.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates filenames, directories, new terms, URLs, and emphasized text.

Constant width
Indicates parts of code, contents of files, commands, and output from commands.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Preface | xvii

Any navigation around Drupal pages is displayed as follows:

Structure→Content types (admin/structure/types)

This is an instruction to click the Structure link in the administrative toolbar, then click
the Content types link. As a shortcut, you can also enter the path indicated in paren-
theses into your browser—http://www.example.com/admin/structure/types or http://
www.example.com/#overlay=admin/structure/types—to view the page in the adminis-
trative overlay.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation.

All Drupal code, including the Drupal 7 code that you can access through the O’Reilly
website (as described shortly) is subject to the GNU General Public License, version 2.
Your use of Drupal code, including copying, modification, and distribution, is subject
to the license. “Drupal” is a registered trademark of the founder of the Drupal project,
Dries Buytaert. Information about permitted uses of the code and the trademark can
be found at the Drupal website, where you can also find information about how the
GNU General Public License affects your use of the code. More information about the
license is available at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html#SEC3.

With respect to other code examples in this book, you do not need to contact us for
permission unless you’re reproducing a significant portion of the non-Drupal code. For
example, writing a program that uses several chunks does not require permission. Sell-
ing or distributing a CD-ROM of examples from O’Reilly books does require permis-
sion. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Using Drupal by Angela Byron, Addison
Berry, and Bruno De Bondt. Copyright 2012 Angela Byron, Addison Berry, and O’Reilly
Media, Inc., 978-1-449-39052-5.”

If you think that your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Downloading the Book’s Source Code
This book’s website contains a link to a downloadable copy of Drupal 7, along with all
of the modules covered in the book, and the themes used in the example websites for
each hands-on chapter, at http://usingdrupal.com/source_code.

xviii | Preface

http://drupal.org
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html#SEC3
mailto:permissions@oreilly.com
http://usingdrupal.com/source_code

Each hands-on chapter also has an “installation profile” (a set of starter scripts that
configure default options) that bootstraps a starter site for each hands-on chapter with
some basic preconfiguration. These installation profiles may be selected at the begin-
ning of the Drupal installation process; for example, Chapter 3: Job posting board.

Switching between one chapter’s hands-on examples and another’s requires making a
new site while using the same source code. You can do so with minimal fuss using the
following steps:

1. Create a new database for the chapter’s installation of Drupal.

2. Change the permissions on sites/default/settings.php so that the file is writable.

3. Copy sites/default/default.settings.php to sites/default/settings.php, overwriting the
existing settings.php file.

4. Rerun the installation at http://www.example.com/install.php.

More information on how to install Drupal is available in Appendix A.

In addition to configuring some basic settings such as the site name, the theme, and so
on, for each chapter, the installation profiles (with the exception of Chapter 2) also set
up the following users:

username: admin, password: oreilly
The first user, who is in the “site administrator” role; can do everything on the site

username: editor, password: oreilly
A user in the “editor” role; used for chapters that require users with elevated
permissions

username: user, password: oreilly
A normal user in only the “authenticated user” role

It is these users the chapters refer to when the instructions reference logging in as the
“editor” user, or similar. Unless otherwise specified, it is assumed that steps are com-
pleted as the “admin” user.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

Preface | xix

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreil.ly/using-drupal-2e

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
First, some general kudos. We would like to thank the book’s technical reviewers, Ryan
LeTulle and Peter MacIntyre. Thanks to Julie Steele and Meghan Blanchette from
O’Reilly, who guided us through the process of updating the book as well as being ever
patient and helpful. And, of course, thanks to Dries Buytaert for inventing and open-
sourcing Drupal; without him, none of this would have happened.

Addison Berry would like to thank her parents, Merlin and Joan Berry, for always be-
lieving in her and supporting all of her crazy pursuits in life, and Camilla Krag Jensen
for being a constant anchor, and being patient with Danish translations, both for the
book and daily life. Big thanks also to Lullabot for supporting her Drupal habit.

Angela Byron would like to give tremendous, heartfelt, grovelling thanks to her awe-
some wife, Marci McKay, for her endless patience and support of Angie’s insatiable
Drupal addiction. Huge thanks also to her family, particularly Jeanne, Sara, and Keith

xx | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://oreil.ly/using-drupal-2e
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Byron, for all of the support both with the book and with life in general. And finally,
she would also like to dedicate this book to her father, Mike Byron, who passed away
very suddenly in August 2011, leaving behind a legacy of thousands of lives changed.
Keep on rockin’ in your big yellow Firebird in the sky, Dad.

Bruno De Bondt would like to thank his partner Ariane Khachatourians for love, pa-
tience and so many other things—“Home is wherever I’m with you.” Also thank you
to his parents, family and friends for inspiration and support for all he does, like moving
halfway across the world. Big thanks also to the Drupal community for being amazing
and building fantastic open source software.

Preface | xxi

CHAPTER 1

Drupal Overview

This book will show you how to build many different types of websites using the Drupal
web publishing platform. Whether you’re promoting your rock band or building your
company’s intranet, some of your needs will be the same. From a foundational per-
spective, your site will have content; be it audio or text or animated GIF images, a
website communicates its content to the world. You will also need to manage this
content. Although it’s possible to roll your own system with enough knowledge of the
underlying web technologies, Drupal makes creating your website, adding new fea-
tures, and day-to-day editing of content quick and easy. And finally, your website will
have visitors, and this book will show you many different ways in which you can engage
and interact with your community using Drupal.

This chapter will begin by providing the hard facts about Drupal: what it is, who uses
it, and why they chose it. It will then dive into a conceptual overview, starting with
what this ambiguous term “content management” actually means, and how we arrived
at building websites this way. And finally, we’ll define and explain the core Drupal
concepts that are necessary to understand how Drupal handles its content.

What Is Drupal?
Drupal is an open source1 content management system (CMS) being used by hundreds
of thousands of organizations and individuals to build engaging, content-rich websites.
Building a website in Drupal is a matter of combining together various “building
blocks,” which are described later in this chapter, in order to customize your website’s
functionality to your precise needs. Once built, a Drupal website can be maintained
through the use of online forms, without any code having to be changed manually.
Drupal is free to use, and it has an enormous library of constantly evolving tools that
you can use to make your website shine.

1. For more on the open source software movement, please see http://opensource.org—which, incidentally,
is also a Drupal site.

1

http://opensource.org

Drupal is also a content management framework (CMF). In addition to providing site-
building tools for webmasters, it offers ways for programmers and developers to cus-
tomize Drupal using plug-in modules. Almost every aspect of Drupal’s behavior can
be customized with these modules, and there are thousands of them, adding features
from photo galleries to shopping carts to talk-like-a-pirate translators. Many modules
have been freely contributed to the Drupal community and are available for download
and use on your own Drupal-based website, too. All of the functionality that we’ll be
discussing in this book is built using a combination of “core” Drupal and these
community-created “contrib” modules.

And we would be remiss not to also acknowledge Drupal’s community; the wetware
element of Drupal is often cited as one of Drupal’s biggest assets. When Drupal 7 was
released in January 2011, nearly 1,000 members of the community contributed code
to the core software. Additionally, more than 15,000 developers maintain contributed
modules, with countless more helping with testing, documentation, usability, design,
accessibility, user support, translations, and other important areas of the project. Those
familiar with evaluating open source platforms will attest to the importance of a thriving
community base.

Who Uses It?
Over the last few years, the popularity of Drupal has exploded, to the point where some
pretty big names have taken notice. Media companies such as Sony BMG Records,
Lifetime Television, and Al Jazeera are using Drupal as a means of building loyal com-
munities around their products. Magazines such as Spin, Popular Science, and Fast
Company use Drupal to provide interactive online content to their readers. Nonprofits
such as Amnesty International, Oxfam, and the Electronic Frontier Foundation use
Drupal to coordinate activism on important issues. Ubuntu Linux, Eclipse, and Java
are open source projects that employ Drupal to nurture their contributor communities.
Bloggers such as Tim Berners-Lee, Heather B. Armstrong (a.k.a., Dooce), and the
BlogHer community use Drupal as their publishing platform. Technology companies
including Twitter, Symantec, and eBay make use of Drupal to connect with their cus-
tomers. Many levels of government around the world, including the White House, the
United Nations, and the UK government’s open data portal, are also using Drupal to
provide more transparency and better connect with their citizens.

What these websites have in common is a need for powerful publishing options and
rich community features.

The Drupal Showcase website, shown in Figure 1-1, highlights some of these and other
high-profile Drupal websites. Drupal’s own website also has a Drupal case studies sec-
tion containing detailed case studies and success stories. Additionally, Dries Buytaert,
the Drupal project founder and project lead, maintains a list of several high-profile
Drupal websites on his blog at http://buytaert.net/tag/drupal-sites.

2 | Chapter 1: Drupal Overview

http://www.drupalshowcase.com
http://drupal.org/cases
http://drupal.org/cases
http://buytaert.net/tag/drupal-sites

What Features Does Drupal Offer?
Drupal provides a number of features, which are explained in greater detail in Chap-
ter 2. These include:

Flexible module system
Modules are plug-ins that can modify and add features to a Drupal site. For almost
any functional need, chances are good that either an existing module fits the need
exactly or can be combined with other modules to fit the need, or that whatever
existing code there is can get you a good chunk of the way there.

Customizable theming system
All output in Drupal is fully customizable, so you can bend the look and feel of
your site to your will (or, more precisely, to your designer’s will).

Extensible content and entity system
You can define new types of content (blogs, events, words of the day) on the fly,
and even add custom fields for the different content types. Contributed modules
can extend this even further by providing new kinds of fields and different ways to
manipulate them. Best of all, these fields can also be attached to anything in the
system representing itself as an entity, such as users, comments, and taxonomy
(categories).

Figure 1-1. The Drupal Showcase highlights high-profile sites in multiple industries, categories, and
countries

What Is Drupal? | 3

Innate search engine optimization
Drupal offers out-of-the-box support for human-readable system URLs, and all of
Drupal’s output is standards-compliant; both of these features make for search-
engine-friendly websites. There are also other contributed modules that take SEO
capabilities even further.

Role-based access permissions
Custom roles and a plethora of permissions allow for fine-grained control over who
can access what within the system. And existing modules can take this level of
access control even further—down to the individual user level.

Social publishing and collaboration tools
Drupal has built-in support for tools such as group blogging, comments, forums,
and customized user profiles. The addition of almost any other feature you can
imagine—for instance, ratings, user groups, or moderation tools—is only a down-
load away.

A Brief History of Content Management
Before looking any closer at Drupal, let’s take a brief trip back in time to the days before
content management systems. To understand how Drupal and other CMS packages
simplify your work, we’ll take a look at how things worked when the Web was young.

A Historical Look at Website Creation
Back in the dim recesses of time (the 1990s, for those who remember zeppelins and
Model T cars), web pages were nothing more than simple text files nestled comfortably
into folders on a server somewhere on the Internet. With names like index.html,
news.html, about_us.html, and so on, these files were viewable by anyone with a web
browser. Using HTML (hypertext markup language), these files could link back and
forth to each other, include images and other media, and generally make themselves
presentable. A website, as the hipsters of that day would explain, was just a collection
of those files in a particular folder, as pictured in Figure 1-2.

This system worked pretty well, and it made sense. Every URL that a user on the Internet
could visit corresponded to a unique .html file on the web server. If you wanted to
organize your site into sections, you made a folder and moved the files into that folder;
for example, http://www.example.com/news would be the address to the News section
of the site, and the 1997 newsletter would be located at http://www.example.com/news/
fall_1997_products.html. When the webmaster (or the intern) needed to fix a problem,
he could look at the page in his web browser and open up the matching file on the web
server to tweak it.

4 | Chapter 1: Drupal Overview

Unfortunately, as websites grew in size, it was obvious that this approach didn’t scale
well. After a year or so of adding pages and shuffling directories around, many web-
masters had dozens, hundreds, or sometimes even thousands of pages to manage. And
that, friends, caused some serious problems:

Changing the site’s design required an enormous amount of work
Information formatting, layout, and other site design was done individually on
every single page. Cascading style sheets (CSS) hadn’t yet taken the web world by
storm, so tasks as simple as changing the site’s default font required hand-editing
(that’s right) every single file.

The site structure resulted in massive duplication of content
Most designs for websites included a standard footer at the bottom of the page
with copyright and contact information, a header image or some kind of recurring
navigation menu at the top, and so on. If anything changed, every file had to be
updated. If you were very, very lucky, all the webmasters before you had been
conscientious about making sure that there were no layout variations, and this
would be a scriptable change. Most webmasters weren’t lucky, and to this day
mutter darkly about sites built using FrontPage, PageMill, Dreamweaver, HotDog
Professional, and Notepad all at once—depending on who edited the files last.

Websites were impossible to keep consistent and up-to-date
Most complex sites were already organized into directories and subdirectories to
keep things reasonably tidy. Adding a news story in the news directory meant that
you also had to update the “overview” page that listed all news stories, perhaps
post a quick notice on the front page of the website, and (horror!) remember to
take the notice down when the news was no longer “fresh.” A large site with

Figure 1-2. A historical look at website structure

A Brief History of Content Management | 5

multiple sections and a fair amount of content could keep a full-time webmaster
busy just juggling these updates.

The Age of Scripts and Databases
The search for solutions to these problems prompted the first real revolution in web
design: the use of scripts and common gateway interface (CGI) programs. The first step
was the use of special tags called server-side includes (SSI) in each HTML file. These
tags let web designers tell the web server to suck in the contents of another file (say, a
standard copyright message or a list of the latest news stories) and include it in the
current web page as if it were part of the HTML file itself. It made updating those bits
much easier, as they were stored in only one place.

The second change was the use of simple databases to store pieces of similar content.
All the news stories on CNN are similar in structure, even if their content differs. The
same is true of all the product pages on Apple, all the blog entries on Blogger, and so
on. Rather than storing each one as a separate HTML file, webmasters used a program
running on the web server to look up the content of each article from the database and
display it with all the HTML markup for the site’s layout wrapped around it. URLs
such as http://www.example.com/news/1997/big_sale.html were replaced by something
more like http://www.example.com/news.cgi?id=10. Rather than looking in the news
directory, then in the 1997 directory, and returning the big_sale.html file to a user’s
web browser, the web server would run the news.cgi program, let it retrieve article
number 10 from the database, and send back whatever text that program printed out.

All these differences required changes in the way that designers and developers ap-
proached the building of websites. But the benefits were more than worth it: dozens or
even hundreds of files could be replaced with one or more database-driven scripts, as
shown in Figure 1-3.

Even with those improvements, however, there were still serious challenges:

Where do I change that setting again?
Large sites with many different kinds of content (product information, employee
bios, press releases, free downloads, and so on) were still juggling an assortment
of scripts, separate databases, and other elements to keep everything running.
Webmasters updating content had to figure out whether they needed to change an
HTML file, an entry in a database, or the program code of the script.

Too many little pieces were cobbled together
Dynamic content—such as discussion forums or guestbooks where visitors could
interact—required their own infrastructure, and often each of these systems was
designed separately. Stitching them together into a unified web experience was no
simple task.

6 | Chapter 1: Drupal Overview

http://www.cnn.com
http://www.apple.com
http://www.blogger.com

The Content Revolution
Slowly but surely, programs emerged to manage these different kinds of content and
features using a single, consistent user interface. The older generation of software fo-
cused on a particular task or application, but newer CMS implementations offered
generalized tools for creating, editing, and organizing the information on a website.
Most systems also provided mechanisms for developers to build add-ons and new fea-
tures without reinventing the wheel. Figure 1-4 illustrates how a content management
system uses a single database and script to integrate all of these features.

Figure 1-4. The structure of an integrated, database-driven website

Figure 1-3. The move from individual files to database-driven scripts

A Brief History of Content Management | 7

Drupal is one of these next-generation content management systems. It allows you to
create and organize many kinds of content, provides user management tools for both
the maintainers of and the visitors to your site, and gives you access to thousands of
third-party plug-ins that add new features. Dries Buytaert, the founder of the Drupal
project, said in a speech to the 2007 Open Source CMS Summit that his goal for Drupal
was to “eliminate the webmaster.” That might sound a bit scary if you are the web-
master, but after that first thought, the implications are exciting. Thanks to Drupal,
the grunt work of keeping thousands of pages organized and up-to-date vanishes: you
can instead focus on building the features that your site needs and the experience that
your users want.

How Does Drupal Work?
At a conceptual level, the Drupal stack looks like Figure 1-5. Drupal is a sort of middle
layer between the backend (the stuff that keeps the Internet ticking) and the frontend
(what visitors see in their web browsers).

In the bottom layers, things like your operating system, web server, database, and PHP
are running the show. The operating system handles the “plumbing” that keeps your
website running: low-level tasks such as handling network connections, files, and file
permissions. Your web server enables that computer to be accessible over the Internet,
and serves up the correct stuff when you go to http://www.example.com. A database
stores, well, data—all of the website’s content, user accounts, and configuration set-
tings—in a central place for later retrieval. And PHP is a programming language that
generates pages dynamically and shuffles information from the database to the web
server.

Drupal itself is composed of many layers as well. At its lowest layer, it provides addi-
tional functionality on top of PHP by adding several subsystems, such as user session
handling and authentication, security filtering, and template rendering. This section is
built upon by a layer of customizable add-on functionality called modules, which will
be discussed in the next section. Modules add features to Drupal and generate the
contents of any given page. But before the page is displayed to the user, it’s run through
the theme system, which allows modification and precise tweaking for even the pickiest
designers’ needs.

The theme system outputs page content, usually as XHTML or HTML5, although other
types of rendering are supported. CSS is used to control the layout, colors, and fonts
of a given page, and JavaScript is thrown in for dynamic elements, such as collapsible
fieldsets on forms and drag-and-drop table rows in Drupal’s administrative interface.

We’ve talked about the “old” way of building websites using static HTML files, the
transition to collections of scripts, and the “new” way: full-featured web applications
that manage the entire website. This third way—Drupal’s way—requires a new set of
conceptual building blocks. Every website you build with Drupal will use them!

8 | Chapter 1: Drupal Overview

Modules
Just about everything in Drupal revolves around the concept of modules, which are files
that contain PHP code and a set of functionalities that Drupal knows how to use. All
of the administrative- and end-user-facing functionality in Drupal, from fundamental
features such as the ability to log in or create content to dynamic photo galleries and
complex voting systems, comes from modules. Some examples of modules are the
Contact module, which enables a site-wide contact form, and the User module, which
handles user authentication and permission checking. In other CMS applications,
modules are also referred to as plug-ins or extensions.

Figure 1-5. How Drupal and its conceptual layers fit with other layers of a website

How Does Drupal Work? | 9

There are two types of modules: “core” modules, which are included with Drupal itself,
and “contributed” modules, which are provided by the Drupal community and can be
separately downloaded and enabled. Apart from a few required core modules, all mod-
ules can be turned on or off depending on your website’s precise needs.

Though there are contributed modules that offer “drop in and go” functionality, over
the years the Drupal community has generally focused on modules that do one thing
well, in a way that can be combined with other modules. This approach means that
you have almost limitless control over what your website looks like and how it behaves.
Your image gallery isn’t limited by what the original developer thought an image gallery
ought to look and act like. You can drop in ratings or comments and sort the pictures
by camera type rather than date if you’d like. In order to have this flexibility, however,
you have to “build” the functionality in Drupal by snapping together various modules
and tweaking their options, rather than just checking off a checkbox for “image gallery”
and leaving it at that. Drupal’s power brings with it a learning curve not encountered
in many other CMS packages, and with the plethora of available modules, it can be
daunting trying to determine which to use. The rest of this book—as well as Appen-
dix B, which is dedicated to tips and tricks on how to determine module quality and
suitability for your projects—is here to help you solve this problem.

Users
The next building block of a Drupal website is the concept of users. On a simple
brochure-ware website that will be updated by a single administrator and visited only
by potential customers, you might create just a single user account for the administra-
tor. On a community discussion site, you would set up Drupal to allow all of the indi-
viduals who use the site to sign up for it and create their own user accounts as well.

The first user you create when you build a new Drupal site—User 1—
is special. Similar to the root user on a UNIX server, User 1 has permis-
sion to perform any action on the Drupal site. Because User 1 bypasses
these normal safety checks, it’s easy to accidentally delete content or
otherwise break the site if you use this account for day-to-day editing.
It’s a good idea to reserve this account for special administrative tasks
and configuration, and create an additional account for posting content.

Every additional user can be assigned to configurable roles, like “editor,” “paying cus-
tomer,” or “VIP.” Each role can be given permissions to do different things on the
website: visiting specific URLs, viewing particular kinds of content, posting comments
on existing content, filling out a user profile, even creating more users and controlling
their permissions. By default, Drupal comes with two predefined locked roles: authen-
ticated user and anonymous user. Anyone who creates a user account on the site is
automatically assigned the “authenticated user” role, and any visitors who haven’t yet
created user accounts (or haven’t yet logged in with their username and password) have

10 | Chapter 1: Drupal Overview

the “anonymous user” role. In addition, Drupal provides a third predefined, but op-
tional, role: administrator. Any user given the administrator role will automatically have
access to all permissions available on the site.

Content (Nodes)
Nodes are Drupal’s next building block, and one of the most important. A critical part
of planning any Drupal site is looking at your plans and deciding what specific kinds
of content (referred to by Drupal as content types) you’ll be working with. In almost
every case, each content type will be a different kind of node.

All nodes, regardless of the type of content they store, share a handful of basic
properties:

• An author (the user on your site who created the content)

• A creation date

• A title

• Body content

Do you want to create a page containing your company’s privacy policy? That’s a node.
Do you want users to be able to post blog entries on the site? Each entry is a node. Will
users be posting links to interesting stories elsewhere on the Web? Each of those links
is stored as—you guessed it—a node.

In addition to nodes’ basic, common properties, all nodes can take advantage of certain
built-in Drupal features, like flags that indicate whether they’re published or unpub-
lished and settings to control how each type of node is displayed. Permissions to create
and edit each type of node can also be assigned to different user roles; for example,
users with the “blogger” role could create “Blog entry” nodes, but only “administrator”
or “editor” users could create “News” nodes.

Nodes can also store revision information detailing each change that’s
been made since they were created. If you make a mistake (deleting an
important paragraph of the About Us page, for example), this makes it
easy to restore a previous version.

Drupal comes preconfigured with two types of nodes: “Basic page” and “Article.” The
only differences between those two types of nodes are their default configuration set-
tings. “Basic page” nodes don’t display any information about the author or the date
on which they were posted. It’s well suited to content like “About Us” and “Terms of
Service,” where the original author is irrelevant. Article nodes do display that infor-
mation, are set to appear on the front page of the site whenever they’re posted, and
allow the content creator to add tags and images to the content. The result is a blog-
like list of the latest news on the site.

How Does Drupal Work? | 11

You can use Drupal’s content administration tools to create other node types yourself.
Many administrators create a “press release” or “announcement” node type to post
official announcements, while other contributors can post regular “article” nodes. Plug-
in modules can also add new kinds of nodes to Drupal’s content system that offer more
features. One example (which comes with Drupal) is the Poll module. When users
create new Poll nodes, they create a list of poll questions rather than the usual “body”
content. Poll nodes, when they’re displayed to visitors, appear as voting forms and
automatically tally the number of votes for each question.

Additionally, other modules can add to nodes’ properties such as comments, ratings,
file upload fields, and more. From the control panel, you can specify which types of
nodes receive these features. Figure 1-6 illustrates this concept.

Figure 1-6. All nodes in the system share a basic set of properties; nodes may define additional, specific
fields, and modules can add extra features to nodes as well

The idea that new modules add properties and build on top of the node system means
that all content in Drupal is built on the same underlying framework, and therein lies
one of Drupal’s greatest strengths. Features like searching, rating, and comments all
become plug-and-play components for any new type of node you may define, because
under the hood, Drupal knows how to interface with their base elements—nodes.

Using plug-in modules to add new types of nodes—or to add extra fields to existing
node types—is a common task in Drupal. Throughout the book, we’ll be covering a
handful of the thousands of plug-in modules, and you’ll learn how to build complex
content types using these basic tools.

Entities and Fields
New in Drupal 7 is the concept of entities, an additional layer of abstraction above
nodes that spans multiple system components, including comments, users, and files.
This abstraction provides the same functionality-reuse capability that nodes provide,

12 | Chapter 1: Drupal Overview

but expand them even further because functionality can work across multiple entities,
not just on nodes. Examples of entities provided by Drupal core are nodes, comments,
users, files, and taxonomy. Contributed modules, such as Drupal Commerce covered
in Chapter 9, can also provide their own entity types.

The most common cross-entity feature in Drupal is the field system. Entities provide
some default data-entry fields—for example, nodes expose a Title and optional Body
field; users provide a username and password field—but often sites need to capture
additional data beyond the basics. Drupal provides a number of additional field types—
text, number, list, image, etc.—that can be added to any entity, or even shared across
entities. We’ll cover fields in depth in Chapter 3, and work with them in all later chap-
ters as well.

Figure 1-7 illustrates how entities, entity types (also known as bundles in programmer-
speak), and fields work together to allow Drupal to be highly customized to specific
data storage requirements.

Figure 1-7. Entities are a layer of abstraction above other entity types, and allow features such as
fields to be reused across multiple entity types

Ways of Organizing Content
Another important building block is really an entire toolbox of techniques for organ-
izing the content that makes up your site. First-generation websites grouped pages using

How Does Drupal Work? | 13

folders and directories. Second-generation sites used separate scripts to manage and
display different kinds of content. Drupal, though, maintains almost everything as a
node. How can you break your site up into separate topical sections, user-specific blogs,
or some other organizational scheme?

First, each individual node on your site gets its own URL. By default, this URL is some-
thing like http://www.example.com/node/1. You can turn these URLs into user-friendly
paths like http://www.example.com/about using Drupal’s built-in Path module. For or-
ganizational purposes, all of these nodes are treated as a single “pool” of content. Dru-
pal creates every other content page on your site—topical overviews, recent news, and
so on—by pulling up lists of nodes that match certain criteria and displaying them in
different ways. Here are a few examples:

The front page
By default, the front page of a Drupal site is a bloglike overview of the 10 most
recently posted articles. To build this, Drupal searches the pool of content for nodes
with the “Published” flag set to true, and the “Promote to front page” flag set to
true. In addition, it sorts the list so that nodes with the “Sticky” flag are always at
the top; this feature is useful for hot news or announcements that every user
should see.

The Taxonomy module
We mentioned earlier that plug-in modules can add new pieces of information to
nodes, and that’s exactly what Taxonomy does. It allows the administrator of a
site to set up categories of topics that nodes can be associated with when they’re
created, as well as blog-style free-tagging keywords. You might use this module to
create a predefined set of “Regions” for news stories to be filed under, as well as
“Tags” for bloggers to enter manually when they post. The Taxonomy module calls
all of these things terms, and provides a page for each descriptive term that’s used
on the site. When a visitor views one of these pages, Drupal pulls up a list of all
the nodes that were tagged with the term.

The Blog module
Drupal’s built-in Blog module implements a multiuser blogging system by doing
just three things. First, it adds a new node type called “Blog post.” Second, it pro-
vides a listing page at http://www.example.com/blog that displays any nodes of type
Blog that also have their “Published” flag set to true. (If a blog post has its “Pub-
lished to front page” flag set to true, it will show up on the front page as well;
Drupal never hides content on one page just because it appears on another.) Third,
it provides a custom page for each user on the site that displays only blog posts
written by that user. http://www.example.com/blog/1, for example, would display
all blog post nodes that are published and were written by User 1—the
administrator.

14 | Chapter 1: Drupal Overview

Views
For anything fancier than the aforementioned cases, Drupal has an add-on module
called Views, which we’ll be using in nearly all of the chapters in this book. The
Views module is essentially a graphical interface for creating highly customized
listings, from sortable product comparison tables to sidebar blocks listing recent
content to calendars of events. You’ll learn more about the Views module in
Chapter 3.

Drupal comes with several other modules that provide different ways of organizing
nodes, and you can download hundreds of plug-in modules to organize your site in a
variety of ways. The important thing to remember is that almost all “pages” in Drupal
are one of two things: a specific piece of content (node), or a list of nodes that share a
particular set of properties.

Types of Supporting Content
In addition to content and listings of content, there are also various ways to supplement
the content on the page. Two such types of supporting content included with Drupal
core are comments and blocks.

Comments are merely responses by a user to a piece of content, and exist only in relation
to that content. Users may post comments to add their thoughts to the subject matter
within a node, as they often do when a particularly controversial subject comes up on
a blog entry or forum topic. Like nodes, comments are entities that can be expanded
with fields or other contributed modules to add features such as ratings.

Blocks are content “chunks” that fit into regions on the page such as the sidebars,
footers, and headers of a Drupal site. They’re generally used to display helpful links or
dynamic lists such as “Most popular content” or “Latest comments” and similar items.
While nodes take center stage displaying content, blocks help give a single piece of
content some context in the structure of your site.

Many times, blocks will display different content depending on which user is currently
logged in: a “Comments by your buddies” block, for example, might display a list of
posts by users that the current visitor has added to her Buddies list. Each user who logs
in will see a different list. Additionally, blocks may be configured to show up only on
certain pages, or to be hidden only on certain pages.

Getting Help
It’s easy to focus only on the functionality you get for free with an open source appli-
cation. But it would be a mistake to forget that the Drupal community itself is another
vital building block for your website!

As you go through the hands-on examples in this book, you might run into some issues
particular to your installation. Or, you might encounter issues as new versions of

Getting Help | 15

modules are released. Fortunately, the Drupal community has a wealth of resources
available to help you troubleshoot even the nastiest error you might encounter:

• The Drupal Community Documentation contains information on everything from
community philosophies to nitty-gritty Drupal development information.

• The Getting Started Guide contains some particularly useful information to help
get you through your first couple of hours with Drupal.

• The Troubleshooting FAQ has useful tips and tricks for deciphering error messages
that you might encounter.

• For more one-on-one help, try the Support forums or the Drupal Answers web-
site for everything from preinstallation questions to upgrade issues.

• If your question is about a specific module, you can post a “support request” issue
(or a “bug report” if it’s a blatant problem) to the module’s issue queue, which
reaches the module’s maintainer(s). A helpful video on how to maneuver around
the Drupal.org issue queues is available from http://drupal.org/node/273658, and
issue queues are also discussed in Appendix B.

• There’s also a #drupal-support IRC channel on irc.freenode.net if you’re more of
the chatty type.

Other IRC channels you might want to join include #drupal, for
general Drupal chit-chat, and #drupal-contribute, if you’re inter-
ested in participating in the community or you want to keep an eye
on what’s coming down the pipe (note that #drupal-contribute is
not a support channel!). There are also numerous topical channels
for everything from specific modules to general areas of Drupal like
usability or design. For a list of all Drupal IRC channels, see
http://drupal.org/irc.

IRC is not only an invaluable tool for getting your problems solved,
but it’s also one of the best ways to get to know the people behind
the project. While issue queues are normally “strictly business,”
IRC is not only where important stuff happens, but also where you
learn about key contributors’ pet cats, and their cats’ video game
collections.

• Finally, there are local Drupal user groups all over the world, which often hold
monthly meetups and larger regional events called “camps” where you can meet
real humans who understand that “Drupal” is not some kind of medical condition
or a nondairy topping. It’s a great way to get to know members of the community
firsthand, and learn all sorts of new things about Drupal! Check groups.dru-
pal.org to find a group near you.

Note that when asking for help, it’s always best to do as much research as you can first,
and then politely ask direct, to-the-point questions. “Foo module is giving me the error
‘Invalid input’ when I attempt to submit ‘Steve’ in the name field. I tried searching for

16 | Chapter 1: Drupal Overview

http://drupal.org/documentation
http://drupal.org/getting-started
http://drupal.org/Troubleshooting-FAQ
http://drupal.org/forum/18
http://drupal.stackexchange.com/
http://drupal.stackexchange.com/
http://drupal.org/project/issues
http://drupal.org/node/273658
http://drupal.org/irc
http://groups.drupal.org/og
http://groups.drupal.org/og

existing solutions, and found an issue at http://drupal.org/node/1234 filed about it, but
the solution there didn’t fix it for me. Could anyone give me some pointers?” will get
far better, faster, and more meaningful responses than, “Why doesn’t Foo module
work? You developers are useless!” or “How can I build a website with Drupal?” And
oftentimes, you’ll find that during the process of typing out your question in enough
detail for someone else to answer it, you come up with the solution yourself! For other
tips on getting useful help in an open source community, see http://catb.org/esr/faqs/
smart-questions.html.

Conclusion
In this chapter, you’ve learned what Drupal is. You have traced the history of websites
and content management to better understand the challenges inherent in keeping a
growing site healthy. We’ve examined the conceptual building blocks that Drupal uses
when building next-generation sites, as well as how they fit together. We’ve also cov-
ered numerous ways to get help if you’re stuck. In the following chapter, you’ll put
these pieces together by creating your very first Drupal website!

Conclusion | 17

http://catb.org/esr/faqs/smart-questions.html
http://catb.org/esr/faqs/smart-questions.html

CHAPTER 2

Drupal Jumpstart

This chapter, intended for readers who are new to Drupal, provides a tour of its capa-
bilities, as well as definitions for its sometimes obscure terminology. We’ll demonstrate
how Drupal can be used “out of the box” to build a simple website. Readers who are
familiar with Drupal already may still want to skim this chapter, as later chapters will
assume knowledge of all content covered here. By the end, you’ll understand how to
perform administrative tasks in Drupal, such as configuring modules, working with
content types, and setting up site navigation.

This chapter assumes that you already have Drupal up and running. For assistance,
check out Appendix A, as well as the helpful online Getting Started guide at http://
drupal.org/getting-started.

This chapter introduces the following modules:

Node (core)
Allows you to post content and create your own content types

Comment (core)
Allows users to create replies to node content

User (core)
Allows users to log in, and provides Drupal’s robust roles and permissions systems

Block (core)
Adds dynamic sidebars and other supplementary content

Menu (core)
Handles management of a Drupal website’s navigation

Path (core)
Allows entry of friendly URLs such as http://www.example.com/about rather than
http://www.example.com/node/1

19

http://drupal.org/getting-started
http://drupal.org/getting-started

Module Filter (http://drupal.org/project/module_filter)
Allows administrators to quickly filter the list of modules by keyword

Contact (core)
A simple form that site visitors may use to send inquiries to website owners

The completed website will look as pictured in Figure 2-1 and at http://jumpstart.using
drupal.com.

Figure 2-1. The completed Mom and Pop, Inc., website

Case Study
Mom and Pop, Inc. is a small organic grocery store in the midwestern United States
run by its co-owners, Jeanne and Mike. Its current web presence is a long, endlessly
scrolling, static HTML page that lists general information such as the background of
the company, its hours and location, and what promotions are currently running.

Neither Mike nor Jeanne is comfortable with code, so in order to update the web page
content each week they currently pay their next-door neighbor, Goldie, to hand-edit
the page. Because this sort of manual labor is tedious, it usually takes a long time for
Goldie to get around to doing it. As a result, the site is frequently out of date and not
doing much other than costing Mike and Jeanne money to keep it online.

20 | Chapter 2: Drupal Jumpstart

http://drupal.org/project/module_filter
http://jumpstart.usingdrupal.com
http://jumpstart.usingdrupal.com

Mike and Jeanne would like to have a new, fresh site that they can manage themselves
by filling out web forms rather than editing code. They need some static pages, such
as a Home and an About page, and a contact form to receive inquiries from customers.

Mike and Jeanne also would like a place to post announcements, where they can show-
case weekly deals, in-store events, or general goings-on in the community. Visitors to
the site should be able to comment on these announcements, with anonymous visitors’
comments going into an approval queue first.

Neither Mike nor Jeanne is very technical, so it’s important that they have a simple
administration panel. And finally, the site should have some basic branding—site logo
and colors—so that the site “feels” like their own.

Goldie’s been hearing a lot about this “Drupal” thing lately, so she decides to give it a
shot for this project.

Implementation Notes
The Implementation Notes section of each chapter will discuss, compare, and contrast
various options for fulfilling the client’s needs in Drupal, and explain how we decided
on the specific solutions chosen for each chapter.

All of the functionality required by Mom and Pop, Inc., is provided by the bundle of
features that comes as part of the main Drupal software download, called “Drupal core”
or just “Drupal.” Drupal’s Node module has the built-in ability to create various types
of content on the site, including static pages, which work great for the Home and About
pages. We’ll use the core Path module to give these pages nice and descriptive URLs
such as http://www.example.com/about.

Drupal also provides a robust roles and permissions system, which we can use to sep-
arate Goldie’s tasks (website maintenance) from Mike and Jeanne’s tasks (managing
the daily website content) and from the customers on the site (who can do only things
such as leave comments). There are also administrative tools, such as the Dashboard
and Shortcut modules, that can help Goldie provide a specifically tailored administra-
tive interface for Mike and Jeanne.

Drupal also comes with a module called Contact, which can be used to build a simple
contact form for any website. Different categories may be set up, and each one can
optionally send mail to a different email address. This feature is useful for sites with
different support personnel in different departments, for example.

And finally, the announcements section, as we will see, can be handled using just the
default Article content type that ships with Drupal.

Case Study | 21

Spotlight: Drupal’s Administration Interface
Unlike some other content management systems, which have a totally separate back-
end administration tool from the front-facing website, in Drupal the website itself and
the administration tools to manage it are integrated together. In building out your site,
you will frequently pop in and out of the administration section by clicking “edit” on
a piece of content, or “configure” on a particular part of the page.

Figures 2-2 and 2-3 illustrate what Drupal looks like out of the box, as well as the various
ways to enter the administration section and pointers on how the administrative in-
terface works.

Figure 2-2. Different methods of navigating to the administration section

If you’re inheriting a Drupal site created by someone else, your admin-
istration screens may not look identical, or even very close. Everything
in Drupal is very modular, flexible, and customizable, and that includes
its administration tools. The screenshots here demonstrate what Drupal
7 provides out of the box through a combination of Dashboard, Tool-
bar, Shortcut, Overlay, and Contextual Links modules, as well as the
Seven administration theme. We’ll talk a lot more about modules and
themes later in the chapter.

22 | Chapter 2: Drupal Jumpstart

Figure 2-3. A diagram of Drupal’s administration section

The administrative interface of Drupal is split into the following sections, visible in the
toolbar along the top of the screen:

Dashboard
While initially quite sparse, the Dashboard allows you to set up a custom admin-
istrative landing page for your content editors, a “one-stop shop” for all of the
things they need to know, such as the recent users who’ve registered to the site, or
comments that are awaiting approval.

Content
Creating, editing, and deleting content and comments can be done from the Con-
tent administration link. You can also manage workflow information, such as
whether or not the content is published, or whether comments awaiting modera-
tion are approved.

Spotlight: Drupal’s Administration Interface | 23

Structure
Configuration related to how your site is fundamentally built—for example,
choosing what data you wish to capture in your content, and how you navigate to
that content—is housed in the Structure section.

Appearance
This menu allows you to choose and configure themes, which control the look and
feel of your site. We’ll be discussing the Appearance section later in “Spotlight:
Themes” on page 71.

People
This is where you manage the people who administer and visit your site, as well as
what they’re allowed to do. This section will be discussed in more depth in “Spot-
light: Access Control” on page 53.

Modules
Modules are a central construct in Drupal. Installing and enabling modules is how
you add new features and change the existing behaviour of Drupal to meet your
precise needs. This concept will be covered in much more detail in “Spotlight:
Modules” on page 44.

Configuration
The Configuration section is where most modules will put their administration
links. Configuration links are categorized under headings such as “User interface”
and “Web services.”

Reports
The Reports section is useful for both keeping up with maintenance as well as
gaining insight into how your audience interacts with your site.

• The Status report offers a quick glimpse of your site’s overall health and will
warn you of configuration problems.

• The Recent log entries report allows you to monitor site activity as it happens;
errors, user activity, content notifications, and more will appear here.

• The Available updates report will show whether your modules and themes are
out of date, and also allows you to install updates from within the user
interface.

• A variety of “Top” reports (e.g., Top ‘access denied’ errors, Top search
phrases) will show you where your users are running into the most errors, what
your users are searching for the most, and—if you’re running the core Statistics
module—the most popular content on your site.

Help
The Help section contains some basic instructions to help you get started, as well
as a help page for each module you have installed. These pages provide a general
overview of what the module does, as well as some specific uses and how to perform
them. This is a great section to visit the first time you install something new to get
a feel for how it works.

24 | Chapter 2: Drupal Jumpstart

Once you know your way around Drupal a bit, the “Administration
menu” module can speed up your navigation through the admin-
istrative panel; it turns the top-level links into drop-downs that
contain all of the subitems, so you can get to many places in just a
single click.

Hands-On: Changing Administrative Settings
You’ll spend a lot of time in Drupal’s administration panel while building out your
sites, so let’s walk through a simple example of configuring your site: changing Drupal’s
“site name” in the upper-left corner to reflect the customer for whom the site is being
built.

1. In the administrative toolbar, click Configuration. The Overlay will appear, indi-
cating that you’re currently in an administrative context.

2. Under System, choose the “Site information” link (admin/config/system/site-infor-
mation). This page contains some overall settings for your site, many of which were
established during installation.

3. Change the “Site name” value from whatever it currently is to “Mom and Pop, Inc.”

4. Click “Save configuration” to save your settings, then click the X in the upper-right
corner to close the Overlay and return to your site’s frontend.

5. The site name in the upper-left corner should now read “Mom and Pop, Inc.,” as
pictured in Figure 2-4.

Figure 2-4. Newly customized site name

Another useful setting on this page is “Default front page,” which
allows you to customize which path Drupal will load when you
click the Home link or site logo.

Hands-On: Changing Administrative Settings | 25

http://drupal.org/project/admin_menu
http://drupal.org/project/admin_menu

Spotlight: Content Management
Drupal’s primary function is to enable users such as Mike and Jeanne to manage their
own content. This section offers a tour of some of the most basic tools for content
management in Drupal.

Content
As discussed in Chapter 1, each piece of content in Drupal, from a static page to a blog
entry or a poll, is called a node. Drupal comes with two content types by default: “Basic
page,” intended for static content such as an About Us page, and “Article,” intended
for time-sensitive content such as press releases. But, like most things in Drupal, content
types are fully configurable. Figure 2-5 shows the “Create content” page on a typical
Drupal site with several content types available. This page is found under “Add con-
tent” (node/add) in either the Navigation block or the default Shortcut menu.

Figure 2-5. A list of available content types

Figure 2-6 shows an example of a typical node form, which is used to add or edit a piece
of content. Each node has a Title field, which identifies the node in content listings and
controls the title of the web page when viewed, and most nodes also have a Body field,
which holds its primary content. Additional fields of varying types—for example, text,
numeric, or file upload fields—may also be added to a basic node form for more gran-
ular data entry. The next chapter covers extending the fields on the node form in depth.

At the bottom of the node form fields is a set of more advanced options, enclosed in a
set of vertical tabs. These tabs display the current value of each setting, and you can

26 | Chapter 2: Drupal Jumpstart

click them to make adjustments. Although the extensive options at the bottom of this
form may seem daunting, don’t worry. A general site visitor won’t have permissions to
change Menu settings, Authoring information, or most other settings, so the tabs simply
do not show up on the form for these users.

Figure 2-6. A typical node form in Drupal

People coming to Drupal with web development experience with a tool
such as Dreamweaver often get confused by Drupal’s notion of a “page.”
Web development tools often refer to the contents of an entire browser
window from the logo in the upper-left corner down to the copyright
notice in the lower-right as a “page,” but in Drupal creating a new “Basic
page” node affects only the content of a given web page: its title, its body,
and any additional properties such as a byline or rating.

The Body field on a node can optionally provide a summary, which is a short blurb that
entices people to read further. Summaries are displayed in most content listings, in RSS
feeds, and in other places. When a summary is provided, the text in the Body field is
displayed only when a user is looking at a piece of content directly.

Spotlight: Content Management | 27

The “Text format” of the Body field, and other rich-text fields, is an
important setting. Text formats limit the characters that can be entered
into a given field, and configuring them incorrectly can have a significant
impact on the security of your site. We’ll use the default (secure) settings
for this chapter in the interest of brevity, but Chapter 4 has all the gory
details on more permissive text format configuration.

Nodes can have a variety of options applied to them, including the ability to track and
revert revisions, the ability to turn on commenting on the content type, and the ability
to default to Unpublished so new nodes are not immediately visible on the site. You
may set these options on a per-node basis, or specify the defaults for all nodes of this
type in the administration section for content types at Structure→“Content types”
(admin/structure/types) in the administrative toolbar and pictured in Figure 2-7.

Figure 2-7. The content type administration form

When default options for content types are switched, these settings are
not retroactively applied to content that’s already been created. It pays
to spend some time thinking about what settings you’d like on each
content type before you begin creating lots of content on your site.

Nodes that have the “Promoted to front page” publishing option checked appear on
the default front page listing, available via the path http://www.example.com/node, as

28 | Chapter 2: Drupal Jumpstart

pictured in Figure 2-8. Nodes are displayed one after another, with “Sticky at top of
lists” nodes on top, and the rest of the list ordered chronologically starting with the
most recent.

Figure 2-8. The default front page view

“Front page” is a bit of a misnomer; the listing at /node is the front page
only by default; you can change the home page to whatever page you’d
like under the Configuration→System→“Site information” page (admin/
config/system/site-information), covered in the previous hands-on
section.

Although this default view of content is very basic, you can create almost
any type of content listing imaginable with the Views module, discussed
in depth in Chapter 3 and used extensively throughout the rest of the
book.

You can make changes to content workflow once it’s created on the node itself, by
editing it directly, or in bulk by going to the administrative toolbar and clicking the
Content (admin/content) link, pictured in Figure 2-9. Here, content may be deleted,
published, or unpublished, or have various workflow options set.

Spotlight: Content Management | 29

http://drupal.org/project/views

Figure 2-9. The Content administration page

If you ever “lose” a piece of content (for example, you create a node that
is not promoted to the front page, and forget to add a Navigation menu
item pointing to it), you can always find it again from the Content ad-
ministration page. This page is sometimes colloquially referred to as the
“node lost and found,” and can be very helpful, since losing a piece of
“missing” content is pretty easy to do when you’re first starting out.

Comments
The core Comment module allows website visitors to post replies to the content within
a node, enabling them to discuss the topic at hand directly with the author as well as
with one another. Figure 2-10 shows commenting in action.

Most content types have comments enabled by default, although the “Basic page” type
has commenting turned off initially (as it doesn’t make much sense for visitors to discuss
your About Us page). You may configure additional comment settings per content type
from the administrative toolbar at Structure→“Content types” (admin/structure/types).
These settings include specifying whether to require previewing of comments before
posting them, as well as the number of comments to display on the page. We’ll cover
a few of these settings later in the chapter.

30 | Chapter 2: Drupal Jumpstart

Comments may also optionally be placed in a moderation queue rather than being
immediately visible on the site, which can be useful as a basic spam deterrent. Comment
administration facilities are available as a subtab on the main Content screen at
Content→Comments, as shown in Figure 2-11.

Figure 2-11. The Comment moderation queue administration page

Figure 2-10. The Comment module allows visitors to discuss a piece of content

Spotlight: Content Management | 31

There are a number of modules that help ease the burden of dealing with
spam and abusive content. We’ll discuss some of the options later in
this chapter in “Spotlight: Content Moderation Tools” on page 66.

Navigation
Hand-in-hand with creating content is the ability to navigate to it on the site. Drupal
provides a built-in module called Menu for this purpose. Menus hold the navigation
links to various web pages on a Drupal site. Drupal comes with four default menus,
and you can also add your own:

Main menu
A menu provided for custom navigation needs, typically displayed very promi-
nently in the site’s design. Major sections of the site such as Home and About Us
tend to be placed in the Main menu.

User menu
Displays links relevant to the current user, such as “My account” and “Log out.”
This menu is generally placed in the upper-right corner. In the default configura-
tion, these links will be printed twice: once for administrators in the Toolbar, and
once for end users.

Navigation
A general menu that acts as the default “dumping ground” of links offered by new
modules, when they are not strictly administrative tasks. For example, when you
enable the Forum module, a “Forums” link to the forum listing page is added to
the Navigation menu. Many modules offer links under the Navigation menu that
are originally disabled, but can be optionally turned on.

Management
Holds links to administration tasks, essentially duplicating the administrative tool-
bar at the top of the page, for sites that don’t use the default Toolbar module.

As with the “Basic page” and “Article” content types, you don’t have to
use these prebuilt menus. They are merely a potential starting point that
can help you get your site up and running quickly. And like everything
else in Drupal, you can also make your own!

Figure 2-12 shows an example of all four menus in the default core Bartik theme.
Themes will be discussed in more detail later in the section “Spotlight:
Themes” on page 71.

32 | Chapter 2: Drupal Jumpstart

Figure 2-12. Drupal’s built-in menus: Management, User, Main, and Navigation

You can configure which menu to use for “Main links” and “Secondary
links” at Structure→Menus→Settings tab (admin/structure/menu/set-
tings).

Under normal conditions, these two menus are different (they default
to “Main menu” and “User menu,” respectively). However, if you set
both the Main and Secondary menus to the same value, this creates a
sort of drill-down effect in which the top-level items are displayed in the
“Main menu” region, and any subitems of the currently active “Main
menu” link are displayed dynamically in the secondary region.

The powerful Menu Block module generalizes this one-off feature, al-
lows the creation of additional “sub” menus, and provides a variety of
other advanced configuration options.

Spotlight: Content Management | 33

http://drupal.org/project/menu_block

Blocks
Blocks are smaller chunks of content that you can place in your pages. Examples of
some default blocks provided are “Who’s online,” which shows a listing of users cur-
rently logged in; “User login,” which displays a login form to anonymous users; and
“Recent comments,” which shows a list of the newest comments on the site. The Nav-
igation bar in the sidebar, the “Powered by Drupal” text at the bottom, and even the
entire content area of the page are blocks! You can also make your own custom blocks:
for example, you might create a block to display an announcement about an upcoming
event.

Figure 2-13 shows the Block administration page under Structure→Blocks (admin/
structure/block). Blocks are placed within a region of a page. Examples of regions are
“Sidebar first,” “Footer,” and “Content.” Region names, and exactly where they appear
on a page, vary depending on the theme (or design) of your site; some themes may
define additional regions such as “Banner ad” and remove or change some of the default
regions. Therefore, blocks must be configured on a per-theme basis. We’ll discuss more
about themes and regions later in “Spotlight: Themes” on page 71. You may use the
arrow handles on the side to drag blocks to different regions. To see a visual represen-
tation of what the regions look like, as pictured in Figure 2-14, click the “Demonstrate
block regions” link.

Figure 2-13. The Block administration page for the Seven administration theme

34 | Chapter 2: Drupal Jumpstart

One frequently asked question is how blocks and nodes differ, as both
display content. One general rule of thumb is that blocks are typically
supplementary information to the actual content on the page. Block
content also usually either changes often (in the case of the “Who’s
online” block), or consists of temporary information such as a blurb
that’s displayed on the front page for a few days. Block content is also
not searchable, so if the content needs to be referenced permanently, a
node is a much better choice.

Figure 2-14. Block regions for the Bartik theme indicate visually where blocks will be displayed

You can customize the visibility of blocks, as well—for example, to show blocks on
only certain pages or only to users with certain roles. If the core PHP filter module is
enabled, you may also optionally use PHP to specify complex visibility settings—for
example, to display a Help block to any users who have been members for less than a
week. There is also an option to let users control the visibility of certain blocks them-
selves, so they have more control over their browsing experience.

Be careful with using and giving access to use PHP on a Drupal site.
Although PHP is an extremely powerful tool, the ability to work with it
within a web application like Drupal opens the door for security prob-
lems and site crashes. We’ll harp on this point again in “Hands-On:
Configuring Permissions” on page 62, when we talk about access
permissions.

Spotlight: Content Management | 35

Hands-On: Content Management
Out of the box, our wonderful Drupal site (pictured in Figure 2-15) looks pretty bare.
Adding some content with information about Mom and Pop, Inc., will do wonders to
make this actually start looking like a website. In this section, we’ll create a couple of
simple pieces of content—the About Us page and a welcome announcement—and
begin to build our website’s navigation. We’ll also add a few blocks for extra pizzazz.

Figure 2-15. Drupal, after a fresh installation

Creating a Basic Page
First, we’ll make a simple About Us page to get the hang of Drupal’s content creation
and editing tools.

1. Go to “Add content”→“Basic page” (node/add/page) in either the Navigation block
or the Shortcut bar.

2. Enter the page’s Title, Body, and other settings provided in Table 2-1 and pictured
in Figure 2-16. Because this is a static page, we’ll also place it into our site’s main
Navigation menu. Finally, we’ll give the page a friendly path of http://example.com/
about instead of http://example.com/node/1 by providing a “URL path alias.”

36 | Chapter 2: Drupal Jumpstart

Table 2-1. About Us page values

Setting Value

Title About Us

Body Our store has been providing organic food to the community since 1978. Come and see
us at:

123 Main Street

Home Town, MN

Store hours: 12pm–12am

Text formata Filtered HTML (default)

Menu settings

• Provide a menu link Checked

• Menu link title About Us (default)

• Description Learn more about Mom and Pop, Inc.

• Parent item <Main menu> (default)

• Weight 0 (default)

URL path settings

URL alias about
a We’re breezing right by that “Text format” field at the moment, but this is actually an important Drupal security concept to understand,

and will be covered in more detail in “Spotlight: Text Formats and Filters” on page 179. Don’t miss it!

Figure 2-16. Creating the site’s About Us page

Hands-On: Content Management | 37

Setting URL aliases by hand can be tedious. The Pathauto mod-
ule, covered in Chapter 7, allows you to set up customized rules
that automatically generate friendly URLs for all of your website
content (http://example.com/content/about), users (http://exam-
ple.com/user/admin), and more.

3. When you’ve completed these steps, you should see the new page appear, and there
should now be two tabs in the site’s main navigation: About Us and Home, as
shown in Figure 2-17.

Figure 2-17. The completed About Us page

If you forgot to enter a menu item and navigate away from a page,
it can be tricky to find it again without manually going to a path
like http://www.example.com/node/1. The Content administration
page under Content (admin/content) in the administrative toolbar
can help you track down straggler pages.

Congratulations! You’ve just created your first of many nodes in Drupal!

38 | Chapter 2: Drupal Jumpstart

http://drupal.org/project/pathauto
http://drupal.org/project/pathauto

Creating an Article
Next, let’s experiment with creating an Article—Drupal’s other default content type.
Unlike “Basic page,” which contains just a Title and Body field, Articles can also provide
Tags (or keywords) and an Image on each post. Articles also have comments enabled,
and automatically get posted to Drupal’s default home page in reverse-chronological
order, making them useful for things like announcements. So, let’s announce the cre-
ation of our new website!

The features described here for “Basic page” and Article are only their
default behavior. It’s possible to fully customize the capabilities of these
or any other content types under the Structure→“Content types” (ad-
min/structure/types) administrative page. Chapter 3 will go into much
more detail about doing this sort of customization; for now, we’ll stick
with the defaults.

1. Go to “Add content”→Article (node/add/article) in either the Navigation block or
the Shortcut bar.

2. Enter the article’s Title, Body, and other settings provided in Table 2-1 and pictured
in Figure 2-18, and click Save. This time, we’re not going to supply a menu item,
because this announcement will appear on our home page so we’ll have a way to
navigate to it. We’ll also enter a Summary for this post, so that the home page
shows a small bit of text but requires a user to click “Read more” to read the article’s
entire contents.

Table 2-2. Welcome announcement values

Setting Value

Title Welcome to our new website!

Tags announcements, website

Summary (click “Edit summary” link
next to the Body field to expose)

Read all about our new website and what it means for you!

Body Welcome to our new website, powered by Drupal! Don’t know what Drupal is?
Don’t worry; we don’t either. :)

The important thing is that we can now update our website much faster and
more often than before! We’ll be posting about in-store promotions, great up-
coming deals, and general community events.

Stay tuned for further announcements!

Text format Filtered HTML (default)

Image (upload firebird.png in the /assets/ch02-jumpstart folder, or any other image you
have lying around)

Alternate text (visible after uploading
image)

Pa’s prized 1978 Pontiac Firebird

Hands-On: Content Management | 39

Figure 2-18. Creating the site’s first article

3. You should now be redirected to the article page, displaying your full-size image,
body text, and tags, as well as a comment form. By clicking the Home link, you’ll
be taken to the site’s home page, which will display a slightly smaller version of
the image, as well as the Summary text, as shown in Figure 2-19.

The Tags field is a built-in example of Drupal’s robust categoriza-
tion system, called Taxonomy. While we won’t get too in depth
into Taxonomy for this chapter; you can read much more about it
in detail in “Spotlight: Taxonomy” on page 266.

Managing Site Navigation
Great! We now have some simple content on the site, and our Navigation menu is
starting to come together. However, there’s something a little funny going on: our tabs
in the top-left corner are displayed in alphabetical order, which puts About Us before
Home. It would make a lot more sense for Home to come first, so let’s fix that by
reordering the items listed in the menu:

40 | Chapter 2: Drupal Jumpstart

1. Go to Structure→Menus (admin/structure/menu) in the toolbar, and click “list
links” next to “Main menu” (admin/structure/menu/manage/main-menu).

2. Using the handles on the left side, drag the Home item above the About Us item,
as shown in Figure 2-20. You’ll see a note that the changes will not be saved until
the form is submitted.

3. The yellow background and asterisk indicate that the changes are not yet saved.
Make sure to click “Save configuration” to save your menu settings.

Figure 2-20. The menu administration screen allows you to reorder menu links

Figure 2-19. Article shown in summary view on home page

Hands-On: Content Management | 41

Now, if we close out of the Overlay and return back to our site’s frontend, our menu
should have Home listed first. That’s more like it!

Configuring Blocks
Next, let’s start to play around a bit with blocks on the site. Mike and Jeanne don’t
know what Drupal is, which is going to result in all sorts of awkward questions about
that “Powered by Drupal” block in the footer. So let’s remove it. Additionally, they
want to be able to show off the latest weekly deal prominently on the home page, which
is the perfect use for a custom block.

1. Begin by navigating to the Block administration page at Structure→Blocks (admin/
structure/block). Here, you will see a list of all of the available regions.

2. Let’s start by removing the “Powered by Drupal” block. Scroll down the page to
the Footer region, click the handle next to the “Powered by Drupal” block, and
move it down to the Disabled region, as pictured in Figure 2-21.

Figure 2-21. Use the drag-and-drop handles to remove the “Powered by Drupal” block

In addition to being able to drag and drop the blocks into the region
of your choice, you can also use the drop-down list in the Region
column to choose the region.

3. As with menus, the yellow background and asterisk indicate that the changes are
not yet saved. Click the “Save blocks” button to remove the block from the footer.

4. Next, let’s look into that weekly deals block. We’ll start by finding a suitable place
for this announcement. Click the “Demonstrate block regions” link (admin/struc-
ture/block/demo/bartik) at the top of the page to see a preview of available block
regions and their styling. Notice the Featured region displayed along the top, with
a gray background. That should help it stand out from the rest of the page. Click

42 | Chapter 2: Drupal Jumpstart

“Exit block region demonstration” in the upper left to return to the Block admin-
istration page.

5. Next, we need to add our own custom block. Click the “Add block” link at the top
of the page (admin/structure/block/add).

6. Enter the settings from Table 2-3 as shown in Figure 2-22. Use the “Page-specific
visibility settings” to ensure that the block shows up only on the home page. We
can also add the block to the Featured region right from this form.

Figure 2-22. Block configuration form

Table 2-3. Settings for weekly deals block

Field Value

Block-specific settings

Block title This week’s deals!

Block description Weekly deals

Block body New this week: Oranges! Only 42 cents each. Yum!

Text format Filtered HTML (default)

Region settings

Bartik (default theme) Featured

Seven (administration theme) None (default)

Hands-On: Content Management | 43

Field Value

Visibility settings: Pages

Show block on specific pages Only the listed pages

Pages <front>

7. After saving this form with the “Save block” button, you’ll return to the main Block
administration page. Return to your site’s home page, which should now look as
pictured in Figure 2-23.

Figure 2-23. “Weekly deals” block added; “Powered by Drupal” block removed

Spotlight: Modules
As discussed in Chapter 1, modules allow you to turn on and off functionality within
your Drupal website. There are two types of modules: core modules, which come with
Drupal itself, and contributed modules, which are provided for free by the Drupal com-
munity and available for download from Drupal.org. This section discusses everything
you need to know about modules.

44 | Chapter 2: Drupal Jumpstart

Module Administration Page
The Module administration page, available in the administrative toolbar under Mod-
ules (admin/modules) and depicted in Figure 2-24, is where Drupal provides the ability
to turn on and off your website’s functionality. Related modules are grouped together
within fieldsets called packages, and each module entry contains a description and an
indication of which version is currently running on the site. This version information
can be extremely useful when you’re troubleshooting problems. Finally, many modules
also have links to their help pages, permissions, and configuration pages. This is very
handy for getting to the meat of what a module does as soon as you turn it on.

Figure 2-24. The Module administration page

You may switch modules on and off by toggling their Enabled checkboxes, which al-
lows you to custom-tailor the functionality of any Drupal site to its unique needs,
without bogging it down with needless overhead.

A module might also have dependencies. That is, it might require one or more other
modules in order to work properly. For example, the Forum module requires both the
Comment and Taxonomy modules to be enabled before it can be enabled. If you forget
to do this, a confirmation screen will appear asking you whether to enable the required
modules in order to proceed. Some contributed modules may also require certain
versions of other modules in order to be enabled.

Spotlight: Modules | 45

One final handy page to be aware of is the administrative Index page at admin/index,
shown in Figure 2-25. This has a full list of administrative pages grouped by the module
to which they belong.

Figure 2-25. Viewing administrative tasks by module in the admin index

Finding and Installing Modules
Although core modules can provide the basics for your site, and can in some cases get
you pretty far, the real power in Drupal comes from its vast array of community-
contributed modules. You can browse and download all contributed modules from
http://drupal.org/project/Modules, pictured in Figure 2-26.

Drupal 6.x modules are not compatible with Drupal 7.x, and vice versa.
It’s very important to use the “Filter by compatibility” selection at the
top of this screen to display modules only for the Drupal version that
you are using. To display modules compatible with Drupal 7, change
the drop-down to 7.x, and for Drupal 6–compatible modules, select 6.x.

46 | Chapter 2: Drupal Jumpstart

http://drupal.org/project/Modules

Each module has its own project page on Drupal.org, as indicated in Figure 2-27. Here
you’ll find a description and often a screenshot of the project, as well as information
about its developers, what sort of bugs or features the project has, documentation links,
and more. The main feature on this page is a table containing releases of the module
that you may download. The version of the module you should download is the one
in the Recommended Releases table in green, and whose version starts with “7.x-”
(unless you’re using Drupal 6, in which case you’d look for the release that starts with
“6.x-”, and so on). Visit http://drupal.org/documentation/version-info for much more
information on Drupal’s version naming conventions.

One of the most challenging aspects of using Drupal is determining
which modules to use for a given task at hand. There are many modules
that appear to cover similar ground, and the quality of modules can vary
greatly. Appendix B is devoted entirely to the topic of tips and tricks for
selecting the right modules for your project. But it’s not enough to find
the modules you’re looking for; you also have to keep them up-to-date.
We talk more about upgrading modules in Appendix A.

Figure 2-26. The contributed modules browsing page at Drupal.org

Spotlight: Modules | 47

http://drupal.org/documentation/version-info

Once you’ve found your module, you need to get it into your Drupal site. There are
two ways to do this in Drupal 7:

1. The traditional manner is to download the module to your local drive, extract it,
and then move it to your Drupal site’s sites/all/modules/ directory via SFTP or
similar.

2. Drupal 7 also has a feature called Update Manager that allows you to install and
update modules directly from the web interface. We’ll walk through using this
feature in “Hands-On: Working with Modules” on page 49.

Detailed instructions on how to install modules are available in the online Installation
Guide documentation at http://drupal.org/documentation/install/modules-themes.

Removing Modules
If you decide that you no longer want to use a module, you have two choices:

Disable
Disable a module by unchecking the Enabled checkbox and saving the form. This
action switches the module off temporarily, which can be useful for troubleshoot-
ing. You can re-enable the module at any time and your website will function

Figure 2-27. The project page for the Login Destination module

48 | Chapter 2: Drupal Jumpstart

http://drupal.org/documentation/install/modules-themes

exactly the same, as disabling a module does not remove the module’s data
from your database. You may disable a module only if no other enabled modules
require it.

Uninstall
Uninstalling a module removes the module permanently. To uninstall a module,
you must first disable it, and then check off from the Uninstall tab (admin/build/
modules/uninstall). Note that many but not all modules have an uninstall function.

Uninstalling a module will delete all data associated with that module,
possibly including content on your website. Be very careful when using
this option, and be sure to back up your database first. Note that unin-
stalling a module does not remove it from the filesystem; you still have
to do this manually.

Hands-On: Working with Modules
The easiest way to wrap your head around how modules work is to try installing and
configuring a couple of them. This section will cover how to install, enable, and con-
figure a contributed module called Module Filter, which can be downloaded from
Drupal.org.

You’ve probably noticed that scrolling in the Module administration page gets a little
tedious, especially if you’re using the book’s source code, which comes bundled with
dozens of contributed modules: prepare for lots of scrolling! Wouldn’t it be nice if there
were a faster way to find the module you’re looking for? Luckily, there is: the Module
Filter module, pictured in Figure 2-28. This module places a search box at the top of
the modules page to help you quickly filter the list of modules by keyword, and op-
tionally collapses all of the packages to vertical tabs to save screen real estate. This
module does not come with core, so we will need to download it first.

1. Go to the Module Filter project page. Look for its table of releases, pictured in
Figure 2-29.

2. Look for the “Recommended release” that starts with “7.x-” (at the time of writing,
the latest recommended release, as pictured in Figure 2-29, is 7.x-1.6), right-click
the “tar.gz” link, and copy the link location or address, depending on what your
browser calls it. In this example, it should look something like http://ftp.drupal.org/
files/projects/module_filter-7.x-1.6.tar.gz.

3. In your Drupal site, navigate to the modules page at Modules (admin/modules) and
click the “Install new module” link (admin/modules/install).

4. In the form pictured in Figure 2-30, paste in the URL to the module’s tar.gz file
copied in step 2. Click Install to proceed. You may be asked for your SFTP password
if you are installing the module on a remote site.

Hands-On: Working with Modules | 49

http://drupal.org/project/module_filter
http://drupal.org/project/module_filter
http://drupal.org/project/module_filter
http://ftp.drupal.org/files/projects/module_filter-7.x-1.4.tar.gz
http://ftp.drupal.org/files/projects/module_filter-7.x-1.4.tar.gz

Figure 2-28. The Module Filter module adds a search box to the modules page and arranges module
packages into vertical tabs

Figure 2-29. The Module Filter module’s release table on Drupal.org

50 | Chapter 2: Drupal Jumpstart

Figure 2-30. Installing a module through Drupal’s update manager

5. If all goes well, a progress bar will appear and then you’ll be taken to a confirmation
page, as pictured in Figure 2-31. This means the module has been successfully
uploaded and extracted to Drupal’s sites/all/modules directory.

Figure 2-31. The “Update manager” screen if all is successful

6. If these steps did not complete successfully, they may also be done manually.
Download and extract the module .zip file from the Drupal.org project page, then
place the module_filter folder into Drupal’s sites/all/modules folder. When you’re
finished, the directory should look as pictured in Figure 2-32.

With the module files in place, we can now begin the next step: enabling the module
and configuring its settings.

Hands-On: Working with Modules | 51

From here on out, any hands-on sections that require contributed mod-
ules will assume that you’ve taken these steps, and that the module files
are already in place in Drupal’s sites/all/modules directory. The book’s
source code comes with all of the modules necessary to build the web-
sites in future chapters already in place. If you want to follow along with
the other chapters on your own Drupal website, you’ll need to install
each required module in this same fashion. A quick reference list of the
modules and themes used in each chapter is supplied in Appendix C.

1. Return to the Module administration page at Modules (admin/modules) either by
clicking the “Enable newly added modules” link or by navigating there by clicking
the Modules link in the administrative toolbar.

2. Find the Other package fieldset and check the Enabled checkbox next to the Mod-
ule Filter module.

3. Click the “Save configuration” button at the bottom of the form.

4. Immediately, you’ll see the effects of this module, as pictured in Figure 2-28. The
modules page is transformed, with a search box added and fieldsets turned into
vertical tabs. As you type letters into the search box, you’ll see the list of modules
below narrow to only those that match. Handy!

5. Most modules offer additional configuration settings to allow for further custom-
ization, and Module Filter is no different. In the new search box, enter the text
“modu” to reduce the list so that only Module Filter appears, and click the Con-
figure link under the Operations column to discover the settings the module pro-
vides. Experiment with the settings (for example, uncheck the Tabs option) and
observe how the Module page changes.

Figure 2-32. Module Filter module files in the sites directory

52 | Chapter 2: Drupal Jumpstart

Now that we’ve seen how to install, enable, and configure modules, let’s delve into
detail about how to control who has access to use them.

Drush
If you are command-line-inclined, check out the Drush project. Short for DRUpal SHell,
Drush is a command-line shell and scripting interface for Drupal. With it, you can use
handy commands such as:

drush dl module_filter

drush en module_filter

As the command-line version of the preceding steps, this will download the latest 7.x
version of the Module Filter module, place it into the correct directory, and enable it
on your site, quickly and painlessly. There are a bevy of other handy tasks Drush can
do as well, from clearing the site cache (important while debugging) to performing site
upgrades to executing PHP and SQL commands on your Drupal website.

Even if you’re not command-line-savvy, definitely check it out. Drush is a huge time-
saving tool for many common (and not so common) site building tasks.

Spotlight: Access Control
One of the most powerful features of Drupal is its rich, fine-grained access control
system, based around the concept of users, roles, and permissions.

User
A visitor to the website. A user can be anyone: a casual visitor to the website, your
company’s president who’s blogging on the site every day, your system adminis-
trator, or someone who doesn’t work for your company at all but is still adding
content (as with a social networking site).

Role
A group to which users can be assigned. A role can be something like “adminis-
trator” or “sales team member.” Drupal comes with three roles by default—
“anonymous user” (for all users who have not logged in), “authenticated user” (for
all logged-in users), and “administrator” (which gets all permissions)—but you
can create as many different roles as you want.

Permissions
Something that users within a role can (or can’t!) do on the website. Each module
can specify its own list of permissions that may be assigned. Examples of permis-
sions are “Administer modules” and “Post comments.” If a user does not have
proper permissions to do something on the website, she’ll receive an “Access de-
nied” error page when trying to access the given functionality.

Spotlight: Access Control | 53

http://drupal.org/project/drush

You can customize the “Access denied” and “Page not found” error
pages by going to Configuration→System→“Site information” (admin/
config/system/site-information).

It’s worth sitting down at the beginning of each project and really thinking through
what types of users will visit the site and what they’re going to want to do. Different
access levels will correspond to roles and permissions in the system. For example,
“content editor,” “forum moderator,” “customer,” and so on.

Configuring User Access
Controlling user access consists of three parts: (optionally) creating one or more roles
to match the types of visitors your website needs to support, assigning permissions to
those roles, and associating user accounts with those roles.

Under People→Permissions→Roles (admin/people/permissions/roles), pictured in Fig-
ure 2-33, you may create, edit, or remove roles, as well as reorder them with the drag-
and-drop handles in order of escalated privileges. At this stage, there’s nothing more
to a role than a name. Individual users may be assigned to roles either via their user edit
page or from the administration page at People (admin/people). Both creating and as-
signing roles requires the “Administer permissions” permission, which is separate from
the “Administer users” permission that gives access to the main People administration
page.

Clicking the “edit permissions” link next to a role on this screen will
display the matrix of permissions for only that role. This feature can be
useful if you need to set several permissions for only a single role.

At People→Permissions (admin/people/permissions), individual permissions may be as-
signed to roles, as shown in Figure 2-34. Access to this screen is controlled by the
“Administer permissions” permission, so different users can take care of day-to-day
user-related administrative tasks without requiring an escalation of their privileges in
the system.

When you first create a role, it won’t be assigned any permissions be-
yond what all authenticated users receive. Administrators are initially
responsible for defining permissions and assigning users to the new role.
If you get bug reports about people not being able to do things you think
that they should be able to do, always check the permissions page!

54 | Chapter 2: Drupal Jumpstart

Often, permissions will have descriptions underneath them to provide more informa-
tion about what they do. Additionally, modules that can impact website security will
be labeled with “Warning: Give to trusted roles only; this permission has security im-
plications.” This means that this permission should only be given to an administrator-
level user, unless the full ramifications for that permission are fully understood.

Whenever you see “PHP” in a permission name, think very carefully
about whether you trust each and every one of the people within a given
role before you select it. A malicious user with PHP access can wreak all
sorts of havoc, from deleting all of the content on your website to spam-
ming all of your users, or potentially interfering with other applications
outside of Drupal. Beware.

All roles apart from “anonymous user” receive the permissions of “au-
thenticated user” plus any other roles they’re assigned. In Figure 2-34,
editors and administrators inherit the “View comments” permission
because they are by nature logged in (authenticated users) in order to
use the site. However, because “Administer comments and comment
settings” is an elevated permission not given to authenticated users, it
needs to be checked for both editors and administrators so that both
roles receive the permission.

Figure 2-33. The Roles administration page

Spotlight: Access Control | 55

Figure 2-34. The Permissions administration page

The Importance of Testing Access Control
Make sure that you create at least one “test” user for each role that you’ve defined and
click through the site as those users as you complete sections of it. The account created
during installation, known as User 1, bypasses all permission checks in the system.
Though this feature is very handy when you’re initially building the site, testing as User
1 masks situations that will yield “Access denied” errors for your “mere mortal” visitors.

To test as a new user, log out and log back in as a different user with the role you wish
to test. You can also keep multiple browsers open, logged in as a different test user in
each. To switch between several accounts without having to log out between, the Devel
module’s “Switch user” block is very helpful (http://drupal.org/project/devel). You want
to make sure that someone doesn’t have more permissions than he should!

Also note that each time you enable or disable a module, the available user permissions
will most likely change, so always revisit the permissions page after installing or up-
dating a module.

56 | Chapter 2: Drupal Jumpstart

http://drupal.org/project/devel

User Profiles
Each user has a special page in Drupal called the user profile. This is the page that you
see when clicking the “My account” link after you have logged in. Other users might
visit your user profile page by clicking your name next to a blog entry or comment you
have authored on the site. By default, the user profile page lists some simple information
about the account, such as the username and the length of time that the user has been
registered on the site. However, additional fields may be added to a user profile and
contributed modules may provide more information here, as shown in Figure 2-35.
Users may change basic settings in their user profile, such as their password and their
time zone, and other modules can add extra features here as well, such as a language
selection or a field to upload a picture to be displayed alongside the user’s posts.

Figure 2-35. A user profile page on Drupal.org, with additional information provided by add-on
modules

Spotlight: Access Control | 57

Account Settings
Under Configuration→People→“Account settings” (admin/config/people/accounts),
there are many customizable user options, including:

• Various registration options, including whether users may create accounts them-
selves or this function is restricted to administrators only

• The exact text of various system emails sent from Drupal when, for example, a user
registers, or when a user account is blocked

• How to handle the data of a user if her account is canceled

• Which role to use as the “administrator” role

• Signature support, which allows users to enter in a small bit of text to be included
at the end of any of their comments

• Picture support, which allows users to upload an image or avatar that will be dis-
played next to any of their posts and comments

• What extra fields are shown on the user profile, if any, and how they are displayed

The ability to add arbitrary fields to user profiles is an important feature
of Drupal 7, and will be covered in Chapter 3.

By default, registration to the site requires administrative approval,
which is a basic protection measure so that test Drupal sites do not
attract unwanted attention while in development mode. When you’re
ready to make your site public and have real people sign up to it, make
sure to toggle the “Who can register accounts?” setting to Visitors so
your throngs of eager visitors can actually register accounts.

Handling Abusive Users
A community site of any reasonable size and popularity may eventually attract visitors
with less-than-honorable intentions.

Administrators with the “Administer users” permission may change a user’s status to
Blocked, which will prevent him from logging in. The blocked user then has only the
rights of an anonymous user. User accounts may also be canceled, and you’ll be pre-
sented with a variety of options about how to handle the accounts and what to do with
their content.

For more automated blocking, Drupal also provides the ability to block IP addresses,
available at Configuration→People→“IP address blocking” (admin/config/people/ip-
blocking), to help keep out repeat trolls, spammers, and the like. If you have the ability
to block nefarious users from a firewall or web server level, however, that’s a much

58 | Chapter 2: Drupal Jumpstart

more scalable approach and keeps them out of other web applications you might have
on the same server.

We talk more about people with nefarious intent in “Spotlight: Content Moderation
Tools” on page 66.

Hands-On: Creating Roles and Users
Earlier, we talked about Drupal’s access control system, and how it’s composed of
users, roles, and permissions that map to who is going to use the site and what they’re
going to want to do on it. Let’s spend a moment brainstorming about Mom and Pop,
Inc.’s needs in this area.

This site will have four types of users:

• Passing visitors, who will basically only be able to read and search content, com-
ment on news items once their content has been approved, and send mail with the
contact form. This will map to the built-in “anonymous user” role in Drupal.

• Customers, who will log into the site and can freely comment on content, but aren’t
able to actually post news items themselves. Because they will be logged in, we’ll
use the built-in “authenticated user” role for customers.

• The store owners Mike and Jeanne themselves, who will handle writing content
and some of the smaller day-to-day administration of the website. They’ll need to
be able to create and manage content, view logs and statistics, and change certain
website settings when required. However, because they’re not extremely techni-
cally savvy, the more advanced options should be hidden. We’re going to call this
role “editor,” as they will be largely adding and editing content on the site.

• Finally, Goldie is the webmaster, who will actually build the site, as well as look
after the more technical details for Jeanne and Mike. This will entail things like
installing and upgrading modules, and configuring advanced website settings. Al-
though she could just do everything as User 1, at some point she might want to
bring on another family member to take over her duties, so it pays to be forward-
thinking and make a role for this purpose. Luckily, Drupal comes with an “ad-
ministrator” role by default that does just the trick.

These standard four roles are the same ones we’ll use in all future chap-
ters. On your own Drupal site, you can have as many or as few roles as
you’d like.

With that, we can begin setting up our access control:

1. Begin by creating an additional role for Mike and Jeanne. In the administrative
toolbar, click on People→Permissions→Roles (admin/people/permissions/roles).

Hands-On: Creating Roles and Users | 59

2. Enter editor as a role name and click “Add role.”

3. Because e is alphabetically after a, the “editor” role ends up at the end of the role
list. However, the role’s level of permissions is actually between that of an “au-
thenticated user” and an “administrator”; it will have more permissions than the
former but less than the latter. Use the drag-and-drop arrows to move the “editor”
role up one row so that it’s placed between “authenticated user” and “adminis-
trator” and click “Save order.” This will place the roles in the same order from left
to right on the permission page, which will make things more intuitive.

4. After you’ve set up roles, it’s always a good idea to set up some test users as well.
Go back to People (admin/people) and click the “Add user” link (admin/people/
create).

5. Enter in the settings from Table 2-4 and Figure 2-36 and click “Create new
account.”

Table 2-4. Values for initial website users

Setting Value

Username jeanne

Email address jeanne@example.com

Password Your choice, but try to pick something secure; perhaps “Mom-0-Rama”

Status Active (default)

Roles Check:

• authenticated user (default)

• editor

Notify user of new account Unchecked (default)

“Notify user of new account” is a handy feature on “real” Drupal
sites, as it sends a quick email to the person to let him know his
account was created, and provides instructions on how to log in.
The exact email template used to do this, like all other user-related
email templates, is configurable from Configuration→People
→“Account settings” (admin/config/people/accounts).

6. Repeat the previous step for Mike, and repeat it again for Goldie, but add her to
both the “editor” and “administrator” roles.

7. Also create a user called “customer,” but do not assign any special roles.

8. When finished, your People administration screen should look like Figure 2-37.

60 | Chapter 2: Drupal Jumpstart

mailto:jeanne@example.com

Figure 2-36. New user account form

Figure 2-37. A listing of site users

Hands-On: Creating Roles and Users | 61

Technically, Goldie doesn’t need a user account of her own, because
she can just keep using the User 1, or superuser, account. However, it’s
best practice to create a unique user for everyone on the site, and to only
use User 1 when the hugely elevated permissions are actually needed,
like when first installing and building out your Drupal site.

Hands-On: Configuring Permissions
Now that we have roles and users in place, let’s assign some permissions to control
who can do what on the site:

1. In the administrative toolbar, go to People→Permissions (admin/people/
permissions).

2. This screen, as shown earlier in Figure 2-34, is massive, and there’s a lot to do here.
We’ll cover this rather daunting page on a per-role basis.

3. Anonymous users get the least amount of access on the site. They should really
only be able to view and search content on the site, and post comments without
bypassing the moderation queue. Check off the permissions in Table 2-5 for the
“anonymous user” role.

Table 2-5. Permissions for the anonymous user role

Module Permission

Comment View comments (default)

Comment Post comments

Filter Use the Filtered HTML text format (default)

Node View published content (default)

Search Use search

Be very careful when assigning permissions to the anonymous user.
These are the very definition of “untrusted” users. In addition to
the general rule of avoiding any permission with “security impli-
cations” in the description, be aware that some permissions may
behave erratically when assigned to the anonymous user role. For
example, if the Node module’s “Article : Edit own content” per-
mission is applied to the anonymous user role, this will actually
allow all anonymous users to edit articles created by any other
anonymous user! This occurs because all logged-out users share
the same user ID (0). Once again, always make sure to test your
access control to ensure that it’s working as you intended!

4. Authenticated users should get all the permissions of anonymous users, plus a few
others. For example, their comments should appear instantly on the site, rather
than having to wait to be approved. We’ll also allow them to view the user profiles

62 | Chapter 2: Drupal Jumpstart

of other users on the site. Choose permissions for authenticated users according
to Table 2-6.

Table 2-6. Permissions for the authenticated user role

Module Permission

Comment View comments (default)

Comment Post comments (default)

Comment Skip comment approval (default)

Filter Use the Filtered HTML text format (default)

Node View published content (default)

Search Use search

User View user profiles

Remember that choosing a permission for authenticated users se-
lects that permission for all logged-in users, regardless of other roles
they might have. Always give authenticated users the lowest subset
of permissions you’re comfortable giving all active users on the site.

5. Next, we get to the real meat of our site’s access control: the “editor” role for Mike
and Jeanne, our site’s primary users. We’ll want to give them some administrative
control over the site, particularly as it relates to content management. This means
providing permissions such as “Administer blocks” and “Administer comments
and comment settings.” However, we’ll also want to hide the more advanced con-
figuration settings from them, so as not to overwhelm them with settings, partic-
ularly if they could break the site by misconfiguring something. This means not
granting access to permissions such as “Administer text formats and filters” or
“Administer software updates.” Typically, avoid granting access to permissions
with “security implications” in the description to inexperienced content editors,
although there are some notable exceptions.

One such exception is the Node module, which exposes two such permissions:
“Bypass access control” and “Administer content.” “Administer content” is a
handy shortcut permission, as it provides create, edit, and delete permissions to
all content types in the system. In a case like Mom and Pop, Inc. where there are
only two, well-known content creators, we can trust them with this level of per-
missions. We can also trust them with “Bypass access control,” a permission that
allows the user to view all content on the site, even if it would normally be marked
private. While this doesn’t apply in the case of Mom and Pop, Inc., other sites may
be using a module such as Content Access or Organic Groups to hide content from
certain users, and more caution may need to be exercised with this permission in
that case.

Hands-On: Configuring Permissions | 63

http://drupal.org/project/content_access
http://drupal.org/project/og

Finally, there are also a host of permissions around using Drupal’s administrative
tools, such as “Use contextual links” and “Use the administration toolbar.” We’ll
grant these to the “editor” role as well so that Mike and Jeanne can successfully
administer the site going forward. One important permission to grant any editors
on the site is the “Use the administration pages and help” permission from the
System module. Without it, users will be unable to reach several sections of the
administration panel, such as Structure, which holds block and menu configura-
tion pages.

Configure the permissions for the editor role as outlined in Table 2-7. Note that
this list excludes the permissions assigned earlier for the “authenticated user” role,
because those are already provided to those in the “editor” role.

Table 2-7. Permissions for the editor role

Module Permission

Block Administer blocks

Comment Administer comments and comment settings

Comment Edit own comments

Contextual links Use contextual links

Dashboard View the administrative dashboard

Menu Administer menus and menu items

Node Bypass content access control

Node Administer content; this obviates the need for any of the individual content type permissions

Node Access the content overview page

Node View own unpublished content

Node View content revisions

Node Revert content revisions

Node Delete content revisions

Overlay Access the administrative overlay

Path Create and edit URL aliases

Search Use advanced search

System Use the administration pages and help

System Use the site in maintenance mode

System View the administration theme

System View site reports

Toolbar Use the administration toolbar

Users Administer users

64 | Chapter 2: Drupal Jumpstart

6. We don’t need to provide a table for the administrator role; it automatically inherits
all site permissions, which is as intended. However, it’s worth talking about a few
permissions that we’ve deliberately kept restricted to administrators rather than
editors.

Filter module is one of the big places in Drupal with security implications, as the
filters used in text formats determine what user input gets stripped out in content,
comments, and similar. While Filtered HTML in its default configuration is safe,
Full HTML access is extremely dangerous! In addition to the more benign, acci-
dental things users might do with this permission—like leave off a closing </div>
tag that completely destroys your site’s layout—more malicious and savvy users
can embed cookie-stealing JavaScript and Flash code to gain control of an admin-
istrator account (or worse). Keep untrusted users to Filtered HTML only, and ex-
pand the list of allowed tags only after careful consideration of their effects.

From both a security and site stability standpoint, it’s a good idea to restrict the
“Administer modules,” “Administer software updates,” and “Administer permis-
sions” permissions to only users who are tech-savvy enough to maintain the site
themselves. These deal with code changes and privilege escalation, which are best
left to someone familiar with Drupal and its modules.

Finally, any permission with “PHP” in its name should always be restricted to the
fewest number of users possible because such permissions are incredibly danger-
ous. In fact, you might even want to deselect these permissions from the “admin-
istrator” role in order to restrict it to User 1 only (of course, you’d also have to
restrict “Administer permissions” to User 1 in that case so another administrator
couldn’t just turn it on for herself).

7. After double-checking the permissions one more time, click the “Save permissions”
button to save your work.

Now it’s time for the final step: testing! Click “Log out” and notice that the toolbar
disappears, there is no Navigation menu in the sidebar at all, and while you can view
the contents of the site, if you try to go to a URL like /admin, you’ll receive an “Access
denied” error.

8. Log in as “jeanne.” You should have the ability to create content or administer the
site.

9. Log out and then log in as “customer.” You should be able to see the “My account”
and “Log out” links in the upper-right corner, but that’s about it. Click on the
article we created before, and leave a comment. Note that it shows up instantly.

10. Now, log out and leave a comment as an anonymous user. You should receive the
message, “Your comment has been queued for review by site administrators and
will be published after approval.”

11. When you’ve finished experimenting, log back in as the admin user account you
created when you installed Drupal.

Hands-On: Configuring Permissions | 65

12. If you’d like, approve the anonymous comment by going to the administrative
toolbar and clicking Content→Comments→“Unapproved comments” (admin/con-
tent/comment/approval). Edit the comment, and read its contents. If it’s acceptable,
expand the Administration fieldset at the top, change Status to Published, and save
the form.

Future chapters (and the book’s source code) will name the test users
for each role “user,” “editor,” and “admin,” respectively, and give each
account the password “oreilly.”

Spotlight: Content Moderation Tools
When you open the floodgates for your users to become active participants in
content creation, one of the inevitable things that comes up is the issue of content
moderation—that is, ensuring that abusive, vulgar content and unsolicited advertising
or spam is kept off the site and stays off.

You can help prevent this type of content using a two-tiered approach: automated spam
detection and manual spam prevention.

Automated Spam Detection
Mollom is a service started by Benjamin Schrauwen and Dries Buytaert, creator and
project lead of Drupal. It automatically scans the content of your site comments (as
well as nodes, the contact form, and multiple other places where user-generated content
comes in) and, based on its analysis of millions of other blogs’ content, prevents obvious
spam from even being posted to the website. Your website benefits from the collective
intelligence of every other website that has a Mollom plug-in installed, and Mollom is
compatible with many different content management systems and programming lan-
guages.

Mollom attempts to overcome shortcomings of traditional spam-trapping tools in the
following ways:

• Supports blocking not just comment spam, but also spam from the contact form,
node forms (blog entries, forum topics, and so on), user registration and password
request form, and others. This feature is not found in competing solutions, wherein
you have to use one tool for handling comments and another for handling regis-
tration forms, which makes Mollom a one-stop solution.

• Discerns between “spam” and “ham” and for those posts that are borderline, dis-
plays what’s known to web developers as a CAPTCHA (Completely Automated
Public Turing test to tell Computers and Humans Apart), and is known to people
like Mike and Jeanne as “those squiggly, hard-to-read characters you have to type
in to get the darn form to go.” This test allows humans to proceed while blocking

66 | Chapter 2: Drupal Jumpstart

http://mollom.com

spam robots. CAPTCHAs are displayed as both an image and an audio file for
maximum accessibility. Mollom thus helps to remove the need for moderation
queues and eases moderation burden for administrators; spam is blocked before
it hits the site at all.

• Allows deletion not only of spam, but also of low-quality and off-topic content or
violent and abusive content. Mollom also returns a quality score for each post,
based on spelling, language, and punctuation, which you can use to maintain a
certain level of professionalism on your site.

• Leverages the power of OpenID by assigning a “reputation score” to OpenID ac-
counts across all websites. This ensures that humans’ posts are let through in-
stantly, while spammers’ posts are blocked across any site they attempt to post to
via an OpenID account.

• Generates graphs showing overall spam content, as pictured in Figure 2-38.

Figure 2-38. Example spam reporting from the Mollom module

Mollom’s goal is to eliminate the need to do any manual intervention of content mod-
eration, by passing the “gray area” validation to the posters themselves via the condi-
tional CAPTCHA. And, unlike the CAPTCHA provided by most websites, users are
only confronted by the scrambled character challenge if their post is “borderline”—not
for every single form submission, unlike other solutions such as the CAPTCHA module.

The Mollom module is available from http://drupal.org/project/mollom, and you can
obtain an API key by creating an account on http://mollom.com.

Spotlight: Content Moderation Tools | 67

http://drupal.org/project/captcha
http://drupal.org/project/mollom
http://mollom.com

If you prefer to use other automated antispam tools such as Akismet or Defensio, an-
other option is the AntiSpam module. While the AntiSpam module is not as popular
in the Drupal world as Mollom, its ability to evaluate multiple external services to see
which provides the best protection is a nice feature.

Manual Spam Prevention Tools
Automated tools are perfect for blocking obvious spam and robots, but what do you
do to prevent trolls on your site from posting pornography or other offensive content?
Some websites prefer a more hands-on approach, particularly if there are legal ramifi-
cations to offensive content appearing on the website even for a second.

Drupal core includes some basic content moderation tools, such as the ability to set
any content type as “unpublished” by default (hiding it entirely from everyone but the
original author and administrators), and revision control so that further edits can be
“rolled back” to a version that was approved. But many Drupal sites set up their own
custom moderation screens with tools like the Views and Flag modules, as well as the
Revisioning module, a simple utility module that ensures that the approved version of
a node stays published when subsequent edits are made.

Hands-On: Contact Form
Let’s tie together everything we’ve learned so far and get the contact form set up, as
pictured in Figure 2-39. This will involve enabling the core Contact module, configuring
its settings, and adding permissions.

In addition to a site-wide contact form, the Contact module also op-
tionally provides each user on the site with her own private contact form,
which is accessible from her user profile. This is a useful means of
allowing users to talk to one another without exposing their email
addresses.

1. First, enable the Contact module. In the administrative toolbar, go to Modules
(admin/modules), and type con in the Module Filter search to quickly access the
module’s row in the modules table. Enable it and click “Save configuration.”

2. Next, we need to set up the contact form’s settings. Click the Configure link in the
Contact module’s table row; or in the administrative toolbar, go to Struc-
ture→“Contact form” (admin/structure/contact).

3. Click the “Add category” (admin/structure/contact/add) link at the top. This screen
shows a list of categories that users can choose from when using the contact form.
On each category, you can choose which email address(es) will receive a copy of
the mail, as well as whether an autoreply message should be sent to the user. By

68 | Chapter 2: Drupal Jumpstart

http://akismet.com/
http://www.defensio.com/
http://drupal.org/project/antispam
http://drupal.org/project/revisioning

default, the Contact module has a category called “Website feedback,” which gets
sent to the administrator email address.

Let’s also add a new category for sales inquiries, so that customers can send in
questions about Mom and Pop, Inc.’s products. We’ll also make this category
selected by default, to help minimize the strain on Goldie’s inbox.

Enter the category settings from Table 2-8, as pictured in Figure 2-40, and click
Save.

Table 2-8. Contact category settings

Setting Value

Category Sales inquiries

Recipients (enter your email address)

Auto-reply Thanks for sending us a sales inquiry! We will respond to you shortly.

Weight 0 (default)

Selected Yes

Figure 2-39. A contact form for the website

Hands-On: Contact Form | 69

Figure 2-40. Settings for the website feedback contact form category

4. Next, we’ll want to add a link in the website navigation to the contact form for
visitors.

Some modules, such as the Contact module, conveniently provide us with a menu
item all ready to use, though in the Contact module’s case it is not enabled by
default. Anytime a module provides a menu item for you, it will always appear in
the Navigation menu by default. We can easily move it to wherever we want,
though.

In the administrative toolbar, go to Administer→Structure→Menus→Naviga-
tion→“List links” (admin/structure/menu/manage/navigation).

5. Find the “Contact (disabled)” menu item in the list. Click its “edit” link.

6. Enter the settings from Table 2-9 and click Save. This will enable the Contact link
and move it from the Navigation sidebar up to the “Main menu” tabs, just after
the Home and About Us links.

70 | Chapter 2: Drupal Jumpstart

Table 2-9. Contact menu item settings

Setting Value

Menu link title Contact

Description Get in touch with us

Enabled Checked

Show as expanded Unchecked (default)

Parent link <Main menu> (the very top selection)

Weight 10

7. Finally, we need to configure permissions on the contact form so that visitors may
use it. In the administrative toolbar, head to People→Permissions (admin/people/
permissions) and enable the permissions listed in Table 2-10. We’ll give all users
the ability to use the site-wide contact form, only authenticated users the ability to
use each other’s personal contact forms, and Mike and Jeanne the ability to tweak
the contact form categories. Click “Save permissions” when finished.

Table 2-10. Permissions for the Contact module

Permission: Contact anonymous user authenticated user editor administrator

Administer contact forms and contact
form settings

 Checked Checked

Use the site-wide contact form Checked Checked Checked Checked

Use users’ personal contact forms Checked Checked Checked

8. Finally, click the Contact link in your menu to view your shiny new contact form,
as pictured in Figure 2-39!

Spotlight: Themes
Drupal gives you a lot of tools to move things around and arrange the functionality of
your site, but often the main difference between most websites comes down to
presentation.

When you think about it, there’s really not much difference between the functionality
of YouTube and Flickr. Certainly, one manages video content and the other focuses on
photos. But these sites have more similarities than differences. Both manage media
content and allow users to share their uploads. Both allow users to create a network of
contacts. Users can create their own profiles, comment on others’ content, and mark
content as a “favorite” for later reference.

Spotlight: Themes | 71

Functionally, these sites are very similar, but their presentation is completely different.
The layout of the sites is different, their backgrounds are different, their entire look and
feel is different—each has a different presentation of its elements.

Themes are the Drupal method for controlling your site’s presentation. It’s not enough
to get a site functionally working—it also has to feel like your own, and has to be
distinguished from other sites out there.

Drupal comes with four themes to get you started:

• Bartik

• Seven

• Garland

• Stark

Finding a Theme
Most sites won’t be satisfied with the meager selection of themes that comes with Dru-
pal core. Luckily, Drupal.org has a large repository of free themes that have been up-
loaded by contributors. You can find a listing of these themes at http://drupal.org/
project/Themes, as pictured in Figure 2-41.

Figure 2-41. Drupal.org’s themes listing, filtered by 7.x-compatible themes

72 | Chapter 2: Drupal Jumpstart

http://drupal.org/project/Themes
http://drupal.org/project/Themes

Many of the themes at the top of the “Most installed” list, including
themes such as Zen and Fusion, are “base” themes. These themes in-
tentionally provide very minimal styling, or even none at all, so that they
can be used as a starting point for highly customized themes by those
with CSS and PHP coding skills.

Unfortunately, detailing how to write a custom theme is outside the
scope of this book, but if this is a topic that interests you, you can find
more about it in the Drupal.org Theming Guide.

The quality of the themes in the Drupal.org repository varies greatly. These themes
have been created for a wide variety of purposes and needs by contributors with a broad
range of programming and design skills. Download several themes and be sure to read
their README.txt files to determine how to best use them.

Several companies, such as Top Notch Themes, offer premium, paid themes. These
themes tend to be higher quality, are a bit more “bullet-proof,” and may allow for easier
customization by administrators.

Theme Installation
Installing a theme requires almost exactly the same process as installing a module, as
we saw in “Hands-On: Working with Modules” on page 49. You can either click the
“Install new theme” link at the top of the Appearance page and walk through the in-
stallation wizard, or download the theme’s .zip or .tar.gz file from its Drupal.org project
page and extract it into the sites/all/themes directory. Your new theme should appear
on the Appearance (admin/appearance) administration page in your Drupal installa-
tion, as shown in Figure 2-42.

As with modules, themes written for Drupal 6 are not compatible with
Drupal 7 and vice versa.

Theme Configuration
Themes can be enabled and disabled from the Appearance page (admin/appearance) in
the administrative toolbar, shown in Figure 2-42.

The Appearance page is divided into Enabled and Disabled themes. Enabled themes
are exposed as options in interfaces such as the Block administration page, and other
contributed modules can use enabled themes to make different parts of the site look
unique. The theme marked “Default theme” (in this case, Bartik) is the one displayed
on the frontend of the site. To set a different theme (such as Stark) as the frontend
theme, click “Enable and set default” or “Set default,” as appropriate.

Spotlight: Themes | 73

http://drupal.org/project/zen
http://drupal.org/project/fusion
http://drupal.org/documentation/theme
http://www.topnotchthemes.com/

Stark isn’t a pretty theme. It gets its name because it exposes Drupal’s
“stark naked” markup with only the bare minimum of styling required
to make sidebars show up in the right place. If you’re looking to make
your own custom theme from scratch, Stark can be a useful starting
point to determine what tags and styling you have to work with by
default.

Drupal offers a number of configuration features that themes can take advantage of.
There are two ways to configure themes. For global options (ones that you want to
apply across all themes), select the Settings tab at Appearance (admin/appearance/set-
tings). For settings specific to a single theme, or to configure settings that are only
offered on a per-theme basis, select the Settings link next to any enabled theme (admin/
appearance/settings/<theme_name>). The settings shown on this form will vary from
theme to theme.

On these settings pages, you can toggle the display of many page elements, including
the site logo, site name, site slogan, user pictures, and others, as shown in Fig-
ure 2-43. Sometimes, one or more of these checkboxes may be disabled by settings
elsewhere in your installation. For example, if the Comment module is turned off,
Drupal no longer lets you toggle the “User pictures in comments” and “User verification
status in comments” settings.

Figure 2-42. The Appearance administration page

74 | Chapter 2: Drupal Jumpstart

Figure 2-43. The theme configuration page allows customization of which page elements are displayed

You can configure settings such as site name and site slogan at Config-
uration→System→“Site information” (admin/config/system/site-infor-
mation).

The theme configuration page also allows administrators to upload their own site logo
image and shortcut icon (also known as the favicon or bookmark icon, which appears
in the browser’s address bar) or simply point to one elsewhere on their server. Note
that in order to see these settings, you must first uncheck “Use the default.”

Some themes, such as the core Bartik and Garland themes, also take advantage of the
Color module, which allows administrators to configure a theme’s color scheme using
a handy JavaScript-based color picker. Figure 2-44 shows the Color module in action.

Blocks and Regions
It’s important to remember that block regions are defined by the theme, and different
themes may offer different regions. If you have blocks assigned to a region in one theme
and you switch to another theme that does not offer a region with the same name, these
blocks could disappear from your site. After enabling a new theme, visit the Block
administration page at Structure→Blocks (admin/structure/block) and see what regions
are available in your theme. You may need to reassign blocks to another region to take
full advantage of the new theme.

Spotlight: Themes | 75

Administration Theme Setting
By default, Drupal ships with the Seven theme—which sports a neutral, no-nonsense
design—for use on administrative pages. This is to help you understand when you’re
viewing the public frontend that your users will see and when you are in a backend,
administrative context. It’s also possible to use a different theme as the administrative
theme, or even to use the same theme for both the front- and backends of the site. You
can choose an administrative theme at the bottom of the Appearance (admin/appear-
ance) page. This theme will be used for all administration pages (those starting with
“admin” in the URL path and also maintenance pages such as update.php), and op-
tionally for content creation and editing pages as well. Figure 2-45 shows the Admin-
istration theme settings page.

Figure 2-44. The Color module, supported in some themes, offers customization of the site’s colors

76 | Chapter 2: Drupal Jumpstart

Figure 2-45. The Administration theme settings page

Hands-On: Branding the Site
Now it’s time to make the site look less like Drupal and more like Mom and Pop, Inc.
This section will walk through configuring a theme in order to customize the look and
feel of a site:

1. In the administrative toolbar, head to the Appearance section (admin/appear-
ance), and check that the first theme listed is Bartik and it’s denoted as “(default
theme)” in the interface. If not, click the “Set default” link next to Bartik in order
to make it the default theme. This change won’t appear to take effect until you exit
the administrative interface and return to your public-facing website.

2. Click the Settings tab (admin/appearance/settings) at the top of the page to config-
ure the global settings, which apply to all themes.

3. Under “Logo image settings,” uncheck “Use the default logo” to allow customi-
zation of the site logo.

4. Upload the mom_and_pop_logo.png image in the assets/ch02-jumpstart folder in
the book’s source code, and click “Save configuration.”

5. Close out of the Overlay or click on the Home button in the administrative toolbar
to return to your site’s frontend. You should now see the new logo appear in the
upper-left corner, although—egad!—it looks absolutely horrendous on that blue
background! Additionally, having both the text logo and the “Mom and Pop, Inc.”
site name text feels pretty redundant. Let’s clean things up a bit.

6. Return to the Appearance settings page by going to the administrative toolbar and
clicking Appearance→Settings, and click the Settings link next to the Bartik theme
(admin/appearance/settings/bartik). This allows you to access the Bartik-specific
theme settings, which include an integrated color-picker from the Color module.

Hands-On: Branding the Site | 77

7. Choose a color scheme that is pleasing to the eye and complements the logo. Be
creative! Scroll down to see a preview of your colors while you work.

8. When you’re happy with your color scheme results, under the Toggle Display
fieldset, uncheck the “Site name” value so that only the logo appears, not the tex-
tual representation. Click “Save configuration” once you’re finished.

You should have a site that now boasts Mom and Pop, Inc.’s slick new logo, along with
a color scheme that’s all their own, as shown in Figure 2-46.

Figure 2-46. Website bearing new logo and colors

Interested in taking theme customization even further? Check out the
Sweaver module, which provides a visual interface for styling themes.
Sweaver will let you select page elements and change not only their col-
ors, but also their background images, spacing, font styling, and more,
all without writing a single line of code. And if you are code-savvy,
there’s even a plug-in to allow you to enter custom CSS for page elements
right from the browser.

78 | Chapter 2: Drupal Jumpstart

http://drupal.org/project/sweaver
http://drupal.org/project/sweaver

Summary
This chapter provided an overview of Drupal’s major functionality by walking you
through building a small website. We created some simple content and content types,
we set up a contact form, and we worked on how to configure Drupal’s theme settings
to customize a site to a particular look and feel. While this site is great for a start, we
can add much more by expanding Drupal core with contributed modules, as we’ll show
you throughout the rest of this book.

Here is a list of contributed modules we referenced in this chapter:

• AntiSpam module

• CAPTCHA module

• Content Access

• Devel

• Drush

• Mollom

• Module Filter

• Organic Groups

• Revisioning

• Sweaver

Here is a list of links that we referenced in this chapter:

• Drupal core download

• Module downloads

• Theme downloads

• Akismet antispam

• Defensio antispam

• Drupal system requirements

• Drupal version information

• Drupal.org handbooks

• Drupal.org Theming Guide

• Getting Started guide

• Support forum

• Troubleshooting FAQ

Summary | 79

http://drupal.org/project/antispam
http://drupal.org/project/captcha
http://drupal.org/project/content_access
http://drupal.org/project/devel
http://drupal.org/project/drush
http://mollom.com
http://drupal.org/project/module_filter
http://drupal.org/project/og
http://drupal.org/project/revisioning
http://drupal.org/project/sweaver
http://drupal.org/download
http://drupal.org/project/Modules
http://drupal.org/project/Themes
http://akismet.com/
http://www.defensio.com/
http://drupal.org/node/270
http://drupal.org/handbook/version-info
http://drupal.org/handbooks
http://drupal.org/documentation/theme
http://drupal.org/node/258
http://drupal.org/forum/18
http://drupal.org/Troubleshooting-FAQ

CHAPTER 3

Job Posting Board

This chapter outlines the two most powerful features in Drupal. Yes, we’re saying out-
right that the two most powerful features are fields and views. The Field module (and
its corresponding Field UI module, which provides an administrative interface) comes
with core and allows you to customize existing entity forms in Drupal by adding a
variety of fields—such as checkboxes, select lists, file uploads, and several others—all
without writing a line of code. The Views module is the natural counterpart to Field,
letting you get data out of your site rather than into it. Views allow you to create pages
and blocks that pull data back out and display it to your visitors. Want a paged table
showing product details that can be sorted by price or manufacturer? You can build it
with Field and Views. Want to display a block that lists the fans of a particular artist
in a grid as a set of user photo thumbnails? You can build it with Field and Views.
Anywhere there’s a list of content on your website (and most websites are almost all
just lists of content in one form or another), Field and Views are the two key modules
you need.

The Field and Views modules form the foundation of nearly every other project in this
book and most of the Drupal-powered websites on the Internet. We’ll cover how to set
up a new content type and customize the node form so that you can add any type of
field for inputting data. We’ll configure a site that allows the creation of job openings,
and then we’ll build an interface for browsing though available jobs.

This chapter introduces the following modules:

Field (core)
Provides infrastructure to add fields to entities

Field UI (core)
Provides the user interface to add fields to entity forms

File (core)
Provides file upload fields

81

References
Provides User and Node reference fields

Views
Creates lists of entities, like content and users

If you would like to participate in the hands-on exercises in this chapter, you should
install Drupal using the Chapter 3: Job posting board installation profile from the book’s
sample code. Doing this will create the starter website on your web server, with some
basic configuration. The completed website will look as pictured in Figure 3-1 and at
http://jobs.usingdrupal.com. For more information on using the book’s sample code,
see the Preface.

Figure 3-1. The completed Epic University site

Case Study
Several students on work-study at Epic University have been tasked with building a job
posting website for their school. The university needs to have the site built in a short
amount of time (not to mention cheaply) on its internal servers. Because of its flexible
entity and field system, user management, and low cost, the students chose to down-
load Drupal and get started building a site.

The Human Resources department requires that university faculty be able to post job
openings, which include a description, department, contact person, and salary infor-
mation. Users should be able to sign into the site and view both a list of all available
openings and lists of openings within a single, specific department. Additionally, users
should be able to apply for a specific position, and to view a record of all positions to
which they’ve applied.

82 | Chapter 3: Job Posting Board

http://drupal.org/project/references
http://drupal.org/project/views
http://jobs.usingdrupal.com

Implementation Notes
Drupal core provides this site with a good starting point. It provides the user access
requirements and allows the creation of several different types of content, such as “job”
and “application” types. Drupal’s default settings give each one of these new types only
a Title and Body field. We’ll need quite a few more fields so that users can enter more
data, and so that we can pull out information from certain fields to make listings of
content.

Custom input forms

At the heart of the requirements for this website, textual data will need to be inserted
through a variety of forms. The Field module will provide the means for users to enter
data into the site. Drupal core provides several different kinds of fields needed, like a
drop-down select list for the university department, or simple text fields for phone
numbers and addresses. Contributed modules, like References or “Address field”, give
us additional fields that let us link content and users throughout the site.

File uploads

One thing we will need is the ability to upload files to the site so that applicants can
include a résumé without having to type it all into a form. Drupal core’s File module
exposes a field that can provide this functionality.

Listings

Besides entering data into the website, job applicants and employers will want to view
lists of potential jobs and applicants. For nearly any purpose of displaying content, the
Views module can provide a listing of content in a variety of ways: a table, a list of full
nodes or teasers, an RSS feed, a list of individual fields, and more. We’ll build all the
necessary lists for this chapter as views, including special views that can take a user ID
or department and filter down to include only relevant content.

Spotlight: Field and Field UI
The Field module provides an extremely flexible framework for creating forms to enter
content. The ability to add custom fields to forms is a new feature in core for Drupal
7. In Drupal 6, all of this functionality was provided by the Content Construction Kit
(CCK) module. Most of CCK is now integrated into core, but there is still a contributed
CCK module in Drupal 7. The main reason for this is to provide an upgrade path for
Drupal 6’s CCK fields to Drupal 7’s core fields. Since we are not upgrading, but instead
building a new Drupal 7 site, we won’t need CCK for this project.

Spotlight: Field and Field UI | 83

http://drupal.org/project/references
http://drupal.org/project/addressfield
http://drupal.org/project/cck
http://drupal.org/project/cck

Upon installing a new copy of Drupal, you’ll see two content types provided: “Article”
and “Basic page.” They both have a Title and Body, which are the basic fields provided
when you create a content type. Any additional content types that are created will also
contain a Title field and (optionally) a Body field.

Using the Field and Field UI modules, pictured in Figure 3-2, you may add any number
of custom fields to any content type. Combined with the ability to create custom con-
tent types, core lets you create completely customized forms for adding content. Fig-
ure 3-3 shows the “Basic page” form after we’ve added a few custom fields, such as an
additional text field, an image field, and a set of radio buttons.

Figure 3-2. The Field UI module provides the ability to add fields to entities, including nodes,
comments, and users

Another new feature in Drupal 7 is the ability to add fields to any entity in the system:
users, comments, and taxonomy terms, with more options offered in contrib through
the means of modules such as File Entity or Drupal Commerce. For example, it’s now
possible to add tags to users, or attach an upload field to comments.

When it comes to actually using fields, it is important to understand the various pieces
involved. There are three main concepts to cover: field types, widgets, and displays.

84 | Chapter 3: Job Posting Board

http://drupal.org/project/file_entity
http://drupal.org/project/drupal_commerce

Field Types
The type of field you choose will determine how a user will save data into your site.
The field type represents the type of data that needs to be saved, such as integer, dec-
imal, or text. It is completely decoupled from what the user will ultimately fill out and
be presented with. When you’re choosing a field to add to an entity, the first decision
you need to make is what kind of data is being stored “behind the scenes” in the form.
Will the information entered into the form be something basic like text or numbers, or
something more special like a relationship to another node or user? The field types
included in core are displayed in Table 3-1, along with how those fields are represented
in the database. Other modules, such as Fivestar and Date, add more field types to use.
Those modules are covered later in the book, in Chapters 5 and 6, respectively. You
can find a full list of available field types in the Fields category from the Drupal.org
module search page.

Figure 3-3. The “Basic page” content type form, after adding custom fields

Spotlight: Field and Field UI | 85

http://drupal.org/project/fivestar
http://drupal.org/project/date
http://drupal.org/project/modules?filters=tid%3A20224
http://drupal.org/project/modules?filters=tid%3A20224

Table 3-1. Core field types

Field type Common uses

Boolean A basic on/off switch, stored in the database as either 0 or 1. This is often used for yes/no or true/false data.

Decimal An efficient way of storing numbers to a certain decimal point. Useful for currency amounts.

File For nonimage file uploads. Stores the filename and directory location of associated files.

Float The most accurate way of storing numbers that need a high level of precision, such as scientific measurements.

Image For image file uploads. Stores the relationship to the file information and metainformation about the image,
such as alt text.

Integer The most efficient way of storing a number. Use for product numbers and identifiers, or whenever you’ll have
an exact number of something, like track numbers on an album or number of attendees at an event.

List (float) Used for presenting a list of options, stored as floating numbers. For example, a user’s preferred version of π.

List (integer) Used for presenting a list of options, stored as integers. Many lists, whether they’re presenting a list of colors
or favorite animals, can choose this type for lookup efficiency.

List (text) Used for presenting a list of options, stored as text. For example, a list of U.S. states that stores two-letter
state abbreviations.

Long text Used to store long strings of text, such as biographies, that require more than a sentence or so.

Long text and
summary

Very similar to “Long text,” this stores long strings of text, along with a smaller version of that text. The
default Body field on core content types uses this field type.

Term reference Used for adding categories to entities. Stores the relationship to term entities and is used to associate
vocabulary terms with content. This field will be covered in more detail in “Spotlight: Taxonomy”
on page 266.

Text Can store a string of text. This is intended for short bits of text, like names and descriptions.

Unlike other elements of a field, its field type cannot be changed. If you
need to change the type of field from text to integer (or any other con-
version), you’ll need to delete the field (along with its data!) and replace
it with a new field with the desired type. Therefore, it pays to think about
your choice up front.

Input Widgets
Once the type of data is determined, then it’s time to think about how it should look
in the form. How will people enter the data you want? In Drupal lingo, form elements
are called widgets. Do you want a drop-down select list, or a group of radio buttons?
Checkboxes or an autocomplete text field? Choose the widget that makes the most
sense for the user entering the data. Note that the widgets available will vary based on
the field type chosen.

The widget types included in core, and to which field types they belong, are displayed
in Table 3-2. Many of these widgets, such as “Select list” and “Text field,” will also
apply to field types added by contributed modules, and contributed modules often
expose additional widget choices as well.

86 | Chapter 3: Job Posting Board

Table 3-2. Core widget types

Widget type Core field type(s) Common uses

Autocomplete
term widget
(tagging)

Term reference This provides a blank text field that will search for existing matching terms as the
user types letters. A user can then select one of the existing terms, or he can enter
a new term, which will then be added to the taxonomy vocabulary once the form
is saved.

Checkboxes/
Radio buttons

Boolean, List, Term
reference

Use when there are multiple options to select from; checkboxes will be used for
fields that support selecting multiple values, radios for a single value only. A “T-
shirt size” field makes sense as a radio button selection, whereas a “Favorite colors”
field makes sense as a collection of checkboxes.

File File This provides an upload button that allows you to browse for a file and upload it
to the Drupal site.

Image Image This widget is the same as the File widget with the additional feature that once an
image is uploaded, a small thumbnail will appear next to the upload field. It also
optionally allows for entry of “alt” and “title” attributes for a textual description of
the image so screen readers and search engines can “see” it.

Text field Decimal, Float,
Integer, Text

This widget allows a single line of text to be entered, such as a name or phone
number. Either plain text or formatted text entry (to support bold and italics or
links, for example) is supported.

Text area
(multiple rows)

Long text Use this widget for entering a larger paragraph of text, such as a biography or a
product description. Either plain text or formatted text entry is supported.

Single on/off
checkbox

Boolean Use when something can only be answered “yes” or “no”; for example, a field that
asks whether a user would like to be added to a mailing list.

Text area with a
summary

Long text and
summary

This is similar to the “Text area (multiple rows)” widget in that it provides a large
text box, but it also provides an (Edit summary) link at the top, which will open a
new summary box when clicked. This allows you to enter a summary of the longer
text, which is typically displayed in listing pages such as the default front page.

Select list List, Term reference An alternative to checkboxes and radio buttons is a drop-down select list. This
widget type is useful when there are many different options to choose from and it
would be cumbersome to display each one inline as a separate choice, such as a list
of countries.

Displays, View Modes, and Formatters
Complementing the configuration of how field data is input, you can also determine
how field data is output and displayed to end users. There are two aspects to configuring
fields’ display: configuring the output of the individual field (such as where its field
label is displayed and how its value should be shown), and configuring the overall way
in which fields are shown when viewed in certain contexts.

Each type of entity presents one or more view modes (e.g., RSS feed, search results,
teaser, or full view) and can be configured to show or hide certain fields or change their
output depending on the context in which the entity is being viewed. You can either
configure default settings applicable to all view modes, or override the defaults by

Spotlight: Field and Field UI | 87

providing a custom display setting for one or more specific view modes. By default,
Drupal provides a custom display override for node teasers to change how your fields
are displayed on full content (and RSS and search results pages) versus on the teaser
view on the default home page. This also means, however, that if you want the fields
to look the same in both view modes, you have to update both the Default settings and
the Teaser settings—custom display settings do not inherit the default display settings.

In Figure 3-4, you can see the Manage Display tab for the core “Basic page” content
type, which shows the Teaser custom display settings enabled. Once a custom display
is enabled, a new subtab will appear in the upper-right corner of the settings page.

Figure 3-4. Manage Display settings with custom Teaser tab

Table 3-3 contains a list of default view modes provided by Drupal core’s entities, and
like everything else in Drupal, contributed modules can provide additional view modes.
There are two subtabs on this page, Default and Teaser. The Default settings will con-
trol the look of the content for all view modes, except those that are checked off in the
Custom Display Settings fieldset at the bottom of the page. By default, core enables
one custom display: the Teaser. So with the default core settings, the changing settings
on the Default tab will control how the fields look on the Full content, RSS, Search
index, and Search results displays.

88 | Chapter 3: Job Posting Board

Content types on your site have a settings page to manage its display settings, which
you can access by going to the administrative toolbar and clicking Structure→“Content
types” and then clicking the “Manage display” link for your desired content type
(admin/structure/types/manage/<content type name>/display). Other entities expose
this same screen closer to their own configuration pages. For example, the field display
management screen for user accounts is at Configuration→People→“Account set-
tings”→“Manage display” (admin/config/people/accounts/display).

Table 3-3. Default view modes provided by Drupal core, and the entities to which they can apply

View mode Entities Description

Default All This type of display is the fallback, and will be used if no better matching view mode is found.
In general, it’s best to stick to the defaults if you can, because once you’ve customized another
view mode, keeping things in sync means changing the display configuration in multiple places.

Full content Node This view mode is used when a node is being displayed with all of its associated data, like on
the http://example.com/node/1 page.

Teaser Node This view mode is used when a node is being displayed in the trimmed or summary view, like
on the default home page at http://example.com/node.

RSS Node This view mode is used with a piece of content in an RSS feed like the home page’s http://
example.com/rss.xml.

Search index Node This view mode controls which fields are searchable. It can be useful to hide fields from the
search index view mode in order to provide better search results.

Search result Node This view mode controls which fields will display on a search result page.

Full comment Comment Comments do not have teasers. This view mode represents when the entire comment is being
viewed, such as on a http://example.com/node/1 page.

Taxonomy
term page

Taxonomy For taxonomy terms, this view mode dictates which vocabulary fields will appear on a taxonomy
listing page such as http://example.com/taxonomy/term/1.

User account User For users, this view mode shows fields on the user profile, on pages such as http://example.com/
user/1.

Within each display settings page, you control the output of the fields using format-
ters. For example, long text with summary fields can be displayed as the full text or the
summary, or hidden altogether, as seen in Figure 3-5. A full list of fields and the for-
matting options they provide can be found in Table 3-4.

Other modules may add other formatters, giving you a plethora of ways to display
information. The core “Image styles” feature, covered in Chapter 4, is an example; it
allows the display of thumbnail or full images, and provides those display options as
formatters for Image fields.

Keep in mind that the formatters available depend on the type of data, once again
making it very important to choose your field type wisely. For example, set up a field
as an integer, decimal, or float if you’ll be displaying numbers.

Spotlight: Field and Field UI | 89

Table 3-4. Fields and the field formatters they have available

Field type(s) Formatters available

Boolean, List (float), List
(integer), List (text)

Either display the label on the field selection (default), or the actual key stored in the database,
such as 0 or 1 (key).

Decimal, Float, Integer Specify how to show the thousands separator (decimal point, comma, space) and specify
whether to show the field prefix/suffix (such as $). For float and decimal fields, specify the
decimal marker (decimal point, comma) and scale (digits after the decimal point). Can also
display the raw, unformatted value.

File Files can be shown as a filename linked to the file, a table containing the file link as well as
the file size, or simply the raw URL to download the file.

Image Specify the image style (original, thumbnail, medium, large) and whether to link the image
to the uploaded file or the piece of content to which it’s attached.

Text, Long text, Long text and
Summary

Display the field contents as formatted text (default), plain text, or text trimmed to a certain
character length.

Reusing Existing Fields
Once you have created a field to add to an entity, you can reuse that field in other
entities. This can be a useful time saver, and also allows you to create listing pages of
multiple content types that share the same field, once we start talking about Views.

There are two “classes” of configuration on fields:

• Field-specific settings, which specify the field type and other options that dictate
its database storage, such as the field length and the number of values it can store.

• Instance-specific settings, which dictate options used only on this field in the con-
text of a particular entity or content type. Examples are its field label, the type of
widget to present to admins, and whether or not the field is required.

Reusing a field on a different entity requires you to keep the same field type and name,
as well as anything else under “[field] settings,” but you can customize the field for each

Figure 3-5. Configuring the display of a field formatter

90 | Chapter 3: Job Posting Board

different instance by using the “[entity type] settings” for the field. You can see how
this looks on a Department field on a Job content type in the configuration screens
shown in Figures 3-6 and 3-7.

The Job Settings section indicates how this field will look and behave only on the Job
content type. The Department Field Settings section determines the global settings for
this field, no matter which content type it is used in. In this example, we have a Job
content type with a Department select list field. We can reuse the Department field as
many times as we like, but the Department field settings, which in this example deter-
mine the list of departments to choose from, will be the same across all instances of the
field. However, we can change, per instance, settings such as the label, and whether it
is required, the help text, and the default value.

Reusing fields can be very helpful if you need to use the same information across mul-
tiple entities. However, it can also be restrictive if you’re trying to customize elements
such as the allowed values for the field per instance. Make sure you only reuse fields
when the instances are really identical.

Figure 3-6. Field settings that are specific to the content type

Spotlight: Field and Field UI | 91

Figure 3-7. Field settings that are global for all uses of this field

Hands-On: Job Content Type
To get started with our job posting website, let’s think about the different content types
needed to build all the functionality that we require. The site requires two different
types:

Job
Description and details of a particular job opening.

Job application
An application for a particular job that provides details about the applicant.

We will need to relate job applications back to the appropriate job openings, as well
as relate jobs back to the appropriate contact person. The node reference and user
reference fields provided by the contributed References module, mentioned earlier in
the chapter, will be an essential tool.

92 | Chapter 3: Job Posting Board

http://drupal.org/project/references

To build this site, we’ll need to go beyond the default “Basic page” and “Article” content
types offered by Drupal core. When you’re building out content types in Drupal, it’s
best to start with a mental picture of what the form looks like that you’re trying to build.
Figure 3-8 shows a sketch of both the job and job application forms that we’re shooting
for.

Figure 3-8. A mockup of the forms required for the job website

The Job content type will contain all the information we need to store about a particular
position that’s available at Epic University. It will need the following core fields:

• Job Title (the core node title field)

• Description (the core node body field)

• Department (a text list field)

• Salary (an integer text field)

Let’s walk through the steps to create this new content type with the core fields we have
available. We’ll get to noncore fields later in the chapter.

1. If you haven’t already, install Drupal using the Chapter 3: Job posting board instal-
lation profile from the book’s sample code. See “Downloading the Book’s Source
Code” on page xviii for more details.

Hands-On: Job Content Type | 93

2. All core field-related modules are enabled by default in the standard installation of
Drupal, so all of the modules we need should be enabled already. Double-check
by going to Modules (admin/modules) from the administrative toolbar. Confirm
that the following modules are enabled, and click “Save configuration”:

• Core package:

— Field

— Field SQL Storage

— Field UI

— File

— List

— Number

— Options

— Text

3. Create the new content type by going to the administrative toolbar and clicking
Structure→“Content types” (admin/structure/types). Click the “Add content type”
link at the top of the page (admin/structure/types/add).

4. Using the settings indicated in Table 3-5, create a new content type called Job. We
repurpose the Title field for Job Title simply by changing the label. When com-
pleted, your screen should look similar to Figure 3-9.

Table 3-5. Settings for the Job content type

Field Value

Name Job

Description A currently available position.

Submission form settings

Title field label Job title

Comment settings

Default comment setting for new content Closed

5. Click the “Save and add fields” button to save your work. After submitting the
form, the new content type will be created, and you will be taken to a page to begin
adding your custom fields.

If you save the content type by clicking the “Save content type”
button instead of the “Save and add fields” button, you will be
taken back to the main content types screen (admin/structure/
types). You can begin editing the fields by clicking the “manage
fields” link (admin/structure/types/manage/<content type>/fields)
for the content type you wish to work with. That will take you to
the same location as the “Save and add fields” button would.

94 | Chapter 3: Job Posting Board

6. Before we add our first field, let’s change the label for the Body field so it makes
more sense for our use case. Click the “edit” link in the Operations column for the
Body field. Change the Label to say “Description” instead and click the “Save set-
tings” button, and you will be returned to the “Manage fields” screen (admin/
structure/types/manage/job/fields).

7. Use the settings from Table 3-6 and pictured in Figure 3-10 to complete the “Add
new field” form to add a new select list for the Department field. You need to select
the field type before you can select the widget type. Once you have selected the
field type, the widget type drop-down will populate with the options you have
available for that specific field type.

Table 3-6. “New field” settings for the Department option

Field Value

Label Department

Field name department

Select a field type List (text)

Select a widget Select list

Figure 3-9. Adding a new Job content type

Hands-On: Job Content Type | 95

It’s worth spending a couple of minutes thinking about what type
of data a field will store before selecting the field type. Once se-
lected, the field type can’t be changed. If you make a mistake, you
must delete the field and create a new one with the correct field
type.

Figure 3-10. The “Add new field” form for the Department field

8. After clicking the Save button, on the next page, you’ll be able to edit the global
field settings. In the case of list fields, this means adding items to the select list. Use
the values from Table 3-7 and pictured in Figure 3-11 to populate the options a
user may select. Click the “Save field settings” button to proceed.

Table 3-7. Configuration for the Department field

Field Value

Allowed values list Administration

Arts

Athletics

Business

Education

Health Sciences

Sciences

96 | Chapter 3: Job Posting Board

Figure 3-11. The field settings configuration form for the Department field

Notice in the help text for the allowed values list, it mentions en-
tering fields in the format of “key|label.” This format—e.g., “edu|
Education”—is useful if the department has a standard abbrevia-
tion or code that you’d like to store. Specifying a key will also ensure
that the label (Education) can be changed independently and will
not affect any of the existing field data pointing to that field. To
ensure this safeguard, if keys are not specified for list values, the
Field module will automatically generate them for you. If you go
back to edit this field value later, you’ll notice the options have all
been changed to “Education|Education” (and the like) on your be-
half. The key of a list also determines the field type of list field you
want; “1234|Education” would be better as a “List (integer)” field.

9. Now we can finish up our configuration by adding some help text for our users.
In the Help text field, add “Select the department in which this job belongs,” as
shown in Figure 3-12.

Hands-On: Job Content Type | 97

Figure 3-12. Job settings for the Department field

You will notice that the settings you just added on the previous
Field Settings screen are also at the bottom of this Job Settings
screen. The job settings that you enter, like the help text, will apply
only to the Department field in the Job content type. The field set-
tings that are entered will be applied everywhere that you use this
Department field, even in other entities. If you are using the same
field in multiple entities, you should pay close attention to these
settings and understand that changing field settings will make
changes across all of your content types.

10. After saving the new field by clicking the “Save settings” button, you should be
returned to the “manage fields” tab (admin/structure/types/manage/job/fields). We
can now add the Salary field. Fill in the settings for the new field from Table 3-8.
We’ll add the salary as an integer, but if you want to include cents in the salary,
you can use a decimal field instead.

98 | Chapter 3: Job Posting Board

Table 3-8. Settings to create the Salary field

Field Value

Label Salary

Field name salary

Select a field type Integer

Select a widget Text field

11. Click Save to create the Salary field. There are no field settings for an Integer field,
so click the “Save field settings” button to proceed at the next screen. Finish setting
up the field with the options from Table 3-9 to provide some help text, make the
field required, and prefix the salary with a $ (dollar sign) so it looks like a dollar
amount. Click “Save settings” when finished.

Table 3-9. Configuration for the Salary field

Field Value

Job settings

Required Checked

Help text Enter a yearly salary for this position.

Minimum 0

Prefix $

12. Finally, before any users can actually create pieces of job content, they’ll need to
have permission to create and edit jobs. Add permissions for the new content type
by going to the administrative toolbar and clicking People→Permissions (admin/
user/permissions). Check the options shown in Table 3-10 and click the “Save per-
missions” button.

Table 3-10. Permissions for the Job content type

Permission: node module anonymous user authenticated user editor administrator

Node

Job: Create new content Checked Checked

Job: Edit own content Checked Checked

Job: Edit any content Checked

Job: Delete own content Checked Checked

Job: Delete any content Checked

Hands-On: Job Content Type | 99

Spotlight: References
The References module is a contributed module that allows you to create relationships
between nodes and/or users. When you download References, you will see that you
actually have a package of several modules: References, Node Reference, and User
Reference. References is the central module and is required by the other two. The Node
and User Reference modules provide the actual fields that you can use to add to your
site. In Drupal 6, these modules were included as part of the main CCK package.

Creating a reference field comes in very handy when you have content that has a rela-
tionship to another piece of content. A classic example of this would be a music site.
You can have three content types: Artist, Album, and Song, which are obviously related
to each other, but each is a unique kind of content that has different fields. If we use a
Node Reference field in these content types, we can identify which Album node a Song
node “belongs” to, and likewise we can identify which Artist node an Album “belongs”
to. Using References, we can reuse the information we already have (Artist and Album
nodes) instead of having to re-enter those values each time we create a new song. Once
we create these references, we can easily display that information on the content type
itself, and we can use that relationship within Views to create custom lists of related
content. So we can have an Artist node that displays all of the albums for that artist,
and the Album nodes can display all of the songs, or we can use Views to list all of the
songs by a particular artist. You can do the same thing with users on your site using
the User Reference module.

While it’s not 100% feature-compatible at the time of this writing, keep
an eye on the Entity Reference module in the future. This module goes
one better than References and creates a generic field that can form ref-
erences between any two entity types. Or, if your needs call for even
more complex relationships, check out the Relation module, which
makes relationships entities so you can add relationships to the rela-
tionship itself. Whoa.

Hands-On: Adding a Reference Field
Now we need to add a primary contact for this job position. This will usually be the
person creating the entry, but we’ll allow the user to enter any of the possible faculty
members on the site. This will be done as a “User reference” field, provided by the
contributed References module. References is included in the source code that accom-
panies this book, so if you are using the source code, you can just enable the modules.
If you are not using the source code, you should get a copy of the References module
and add it to your site, as explained in Chapter 2.

100 | Chapter 3: Job Posting Board

http://drupal.org/project/entityreference
http://drupal.org/project/relation
http://drupal.org/project/references

1. First we will need to enable the modules we need. In the administrative toolbar,
click Modules (admin/modules) and enable the following modules:

• Field package:

— Node Reference

— References

— User Reference

2. Navigate back to Structure→“Content types,” and click the “managed fields” link
next to the Job content type (admin/structure/types/manage/job/fields). Enter the
values from Table 3-11 into the “Add new field” form, and then click Save. Note
that if the site grew to include hundreds of faculty members, switching the widget
type from a select list to an autocomplete text field might be a good idea, but for
now, with our small site, a select list will work fine.

Table 3-11. Settings to create the Contact field

Field Value

Label Contact

Field name contact

Select a field type User reference

Select a widget Select list

3. Configure the field settings so that only users of the “editor” role (to which faculty
members are assigned) and Active status can be referenced. This narrows down
the list of potential users that can be selected. Click the “Save field settings” button.

If you’re using the book’s source code, this “editor” user role was
already set up for you during installation, along with the “editor”
user and several other sample faculty members. You can assign the
“editor” role to additional users via the People (admin/people)
menu.

4. In the Job Settings section, set the help text to “Select the faculty member who is
the primary contact responsible for hiring this position.” Click “Save settings”
when you are done.

When finished, your completed Job content type should look as pictured in Figure 3-13.

Hands-On: Adding a Reference Field | 101

Figure 3-13. Job content type with Department, Salary, and Contact fields

Hands-On: Customizing Field Display
For usability, it’s often important to display forms and page contents in a specific order,
and to add formatting so that it’s more clear what data is being presented. The following
steps will take you through some minor customizations to the way fields are displayed.

Let’s take a look at what all of our hard work has accomplished so far. Navigate to
“Add content”→Job (node/add/job), from either the Shortcut bar or the Navigation
menu. It should look as pictured in Figure 3-14.

This works for basic data entry, but there are a few things that we could do to make
our job posting board more intuitive for our faculty members:

• Reorder the fields on the data entry form so that the department is selected before
the job description is filled out.

• Make minor adjustments to where field labels appear and how their values are
output on job postings.

• Hide certain fields—such as Contact—on the Teaser view of the job post so that
readers must read the entire description in order to obtain more information.

This section will cover how to make these sorts of cosmetic changes to fields.

102 | Chapter 3: Job Posting Board

1. First, let’s reorder the fields on the form so that they make more logical sense. In
the administrative toolbar, go to Structure→“Content types” and click “manage
fields” next to the Job type (admin/structure/types/manage/job/fields). Drag the
handle on the left side of each row and arrange the table so that it is in the following
order (shown in Figure 3-15), and then click the Save button when finished:

• Job title

• Department

• Description

• Salary

• Contact

2. The Job content type is now nearly complete. Let’s see what our form currently
looks like. Log in as editor, enter the password oreilly, and create a new Job piece
of content by clicking “Add content”→Job (node/add/job) in either the Navigation
block or the Shortcut bar.

3. Fill out the values in Table 3-12, or feel free to make up your own. Now that we’ve
reordered the fields, the form should look similar to Figure 3-16 (if you are logged
in as the “admin” user, you’ll see several more options that are hidden from other
users). Click Save when you’re finished filling in the fields.

Figure 3-14. The Create Job form with no display customization

Hands-On: Customizing Field Display | 103

Table 3-12. Settings to create the Contact field

Field Value

Job Title Alumni Director

Department Administration

Description Epic University is looking for an Alumni Director. The position will require keeping track of graduate contact
information as well as organizing alumni social events.

Salary 50000

Contact Marty Johnson

Taking a look at the content after it’s created, we’ll see that it’s not entirely pretty.
Figure 3-17 shows the default output of our Job type when we view the content. The
department is still listed underneath our description; the labels are included above each
field, making the page longer than it needs to be; and the salary could really use a
comma. Fortunately, we can use Field Formatters to change the display of the job
content a bit more to our liking.

Figure 3-15. Field order for the Job content type

104 | Chapter 3: Job Posting Board

Figure 3-16. The Job form as seen by a user in the “editor” role

Figure 3-17. Default output of the Job content type

Hands-On: Customizing Field Display | 105

1. Log back in as user admin, password oreilly. In the administrative toolbar, click
Structure→“Content types” and click the “manage display” link next to Job (admin/
structure/types/manage/job/display), which will take you to the display options for
the fields in the Job type.

2. First we’ll clean up the labels and field order. Update the form to use the values
presented in Table 3-13, and drag them into the order specified in the table. We’ll
leave the Format column with its defaults. Click Save when finished.

Table 3-13. Default display field settings for the Job content type

Field Label

Department Inline

Description <Hidden>

Salary Inline

Contact Inline

3. To add a comma to the Salary field, we’ll need to go deeper into that field’s settings.
Click the gear icon button all the way to the right of the Salary field row, as shown
in Figure 3-18. Set the “Thousand marker” to Comma, and click Update. Don’t
forget to hit the Save button at the bottom of the form when you’re done!

Figure 3-18. Display field settings for the Job content type

4. After saving the changes, take a look at the Job piece of content a second time. The
new, cleaner look is shown in Figure 3-19.

Now you can see that our labels are displayed next to the values, rather than on a
separate line. A comma is automatically placed in the correct location for the Salary
field. Nice!

106 | Chapter 3: Job Posting Board

Figure 3-19. Job content after configuring the field display

The last step is to fix up our Teaser display as well, since that has its own custom settings
and won’t automatically inherit the defaults we just set. We can also make some subtle
changes in the display for that view mode.

1. Let’s go back to our display settings. In the administrative toolbar, click Struc-
ture→“Content types,” click the “manage display” link, and this time click the
Teaser subtab (admin/structure/types/manage/job/display/teaser).

2. Currently, the Description field is the only one visible, and the rest of the fields are
listed as Hidden. Let’s move the Department field to the top of the list, with Salary
below Description. Ensure that the Contact field is moved down in the Hidden
section at the bottom of the page to prevent the field value from displaying alto-
gether. Make people read the full job description before they see who to contact!

3. Now change the Salary field to use a comma, just like we did before, by clicking
the gear icon for the field, changing the “Thousand marker” field to Comma, and
clicking Update.

4. Finally, we should make our labels behave just as we did for the default display.
Change the Label setting to Inline for the Department and Salary fields.

5. Once you’ve made all of your changes, make sure you save the form. It should look
like Figure 3-20. If you return to the site’s home page, the Alumni Director position
should now show Department and Salary information.

If you want even more flexibility over your content layout, check
out the Display Suite module. With Display Suite, you can divide
the content area into regions such as left, right, header, and footer,
and have full control over exactly where and how your fields ap-
pear. See an introduction at http://tutr.tv/t5821.

Hands-On: Customizing Field Display | 107

http://drupal.org/project/ds
http://tutr.tv/t5821

Figure 3-20. Teaser display settings for the Job content type

Hands-On: Job Application Type
Now that the university is able to create job positions, it would be helpful if prospective
employees could submit résumés to the positions in which they’re interested. We’ll
create another content type for this purpose, called Job Application.

1. Return to the main content type settings page by heading to the administrative
toolbar and clicking Structure→“Content types” (admin/structure/types). Add an-
other content type by clicking on the “Add content type” tab at the top of the page.

2. On the “Add content type” page, fill in the form with the values from Table 3-14.
Again, we’ll easily create the first two fields (“Title” and “Introductory message”)
by reusing the Title and Body fields provided by Drupal core.

Table 3-14. Settings for the Job content type

Field Value

Name Job Application

Description An application for a job position

Submission form settings

Title field label Title

Publishing options

Promoted to front page Unchecked

108 | Chapter 3: Job Posting Board

3. After you submit the form with the “Save and add fields” button, the new content
type will be created. Click “edit” next to the Body field and change its label to
“Introductory message.” Save when finished.

4. Use the settings from Table 3-15 to add a new node reference field for the job type.
This will connect a particular “Job application” node with the Job node.

Table 3-15. Add field settings for Job node reference

Field Value

Label Job

Field name job

Select a field type Node reference

Select a widget Select list

5. Click Save and select the Job content type on the “Content types that can be ref-
erenced” field at the field settings screen, to limit the select list only to job content.
Click “Save field settings” to continue.

6. On the Job Application settings screen, check the Required field checkbox so that
all applications are associated with a job posting. Click the “Save settings” button
to complete adding the field.

7. The last thing required for our job application type is to allow users to upload a
résumé or some other file with their application. We’ll use a file field, which is
provided by core with the File module. Add the Résumé file field using the settings
from Table 3-16 and then click Save.

Table 3-16. Add field settings for the Résumé file field

Field Value

Label Résumé

Field name resume

Select a field type File

Select a widget type File

8. On the next screen, leave the default settings and click the “Save field settings”
button.

The upload destination defaults to Public, but other contributed
modules can provide additional “upload destinations” for file
fields. For example, the AmazonS3 module provides a way to up-
load files to the Amazon Simple Storage Service rather than to Dru-
pal itself. Handy for large files!

Hands-On: Job Application Type | 109

http://drupal.org/project/AmazonS3

9. Fill out the Job Application settings with the values in Table 3-17 and click “Save
settings.” We want to restrict the types of file extensions that may be uploaded to
just document files, and also specify that all files uploaded through the widget
reside in a resumes subdirectory of the main Drupal files directory for better orga-
nization. The File module also allows control over the visibility of the file on the
application itself. The provided settings will force the file to always be listed,
without the possibility of being overridden. However, there are options that allow
for use cases that require that sort of flexibility.

Table 3-17. Field settings for the Résumé file field

Field Value

Job Application settings

Required field Checked

Allowed file extensions pdf doc docx txt rtf pages odf

File directory resumes

Résumé field settings

File displayed by default Checked

The list of supported file extensions is included automatically be-
low the file field when it is displayed, so there’s no need to duplicate
that information in the field help text.

10. Now we’ve added all the fields needed. Order the fields on the “Manage fields” tab
as follows and click the Save button:

• Title

• Job

• Introductory message

• Résumé

When finished, your content type should look as pictured in Figure 3-21.

11. Finally, add permissions for the new content type by going to the administrative
toolbar and clicking People, then the Permissions tab (admin/people/permissions).
We want logged-in users to be able to manage their own job applications, and for
editors to be able to manage any of the applications. Check the options shown in
Table 3-18 and then click “Save permissions.”

110 | Chapter 3: Job Posting Board

Table 3-18. Permissions for the Job Application content type

Permission: Node anonymous user authenticated user editor administrator

Job application: Create new content Checked Checked Checked

Job application: Edit own content Checked Checked Checked

Job application: Edit any content Checked Checked

Job application: Delete own content Checked Checked Checked

Job application: Delete any content Checked Checked

That finishes the configuration of the form for the Job Application content type. Let’s
take a look at the finished form as a user in the “authenticated user” role. After logging
in with the username user and password oreilly, create a new application by clicking
“Add content”→Job Application (node/add/job-application) in the sidebar. The form
should look as shown in Figure 3-22.

The user user was created for you automatically when you installed
Drupal from the book’s source code. If you installed a different way,
create a normal user with only the “authenticated user” role assigned.

Figure 3-21. Completed job application type

Hands-On: Job Application Type | 111

Figure 3-22. The job application form, as seen by any authenticated user

Because job applications won’t be as visually important as job listings, we’ll skip con-
figuring the display options for this content type. But if you’re feeling sparky, you can
still make these changes by logging back in as the administrator, going to the admin-
istrative toolbar and clicking Structure→“Content types,” and then clicking the “Man-
age display” link for the Job Application content type (admin/structure/types/manage/
job-application/display). After a user creates a new job application, it should look some-
thing like Figure 3-23.

An important thing to note in Figure 3-23 is how our node reference field (Job) appears
when given a value. The default behavior is a link to the original piece of content that
is referenced. Clicking on the Alumni Director link from this application will take us
back to the Alumni Director job. There are other ways to display node reference fields
as well, which can be explored in the “Manage display” tab on the Job Application type
(admin/structure/types/manage/job-application/display).

112 | Chapter 3: Job Posting Board

At this point, it’d be a good idea to populate your site with some content.
Log in as either admin or editor with the password oreilly and create
several pieces of job content at “Create content”→Job (node/add/job).
It’s also a good idea to create a few applications as user, applying for a
few different job positions. Having several pieces of content will help
with the next section.

Spotlight: Views Module
The Views module provides listings of data on your site: users, comments, nodes, and
more. Any listing of data provided by the Views module is called a view, which we’ll
always refer to in all lowercase to distinguish it from the Views module, which is cap-
italized. Figure 3-24 shows examples of some of the listings that can be built with the
Views module.

Creating a basic view entails selecting the fields you would like displayed (node title,
author name, image, etc.), how you would like that list to be filtered (only display
“story” node types that are published), how you would like the listing to be sorted
(newest stories on top), and what you would like the list to look like when it’s dis-
played (a block showing a bulleted list of headlines).

In more technical terms, Views is a visual SQL query builder. When you build a view,
you are essentially constructing a query that Views will pull from your site database.
However, the Views module has significant advantages over a handcoded query. Some
examples:

• Views handles not only generating the query logic, but also the wrapping display
logic. Flipping a display from a simple bulleted list to a table with sortable columns
to even an events calendar is a matter of a few clicks.

Figure 3-23. A job application piece of content

Spotlight: Views Module | 113

• You don’t have to write any code just to make content listings, nor do you have to
update code to make subsequent minor visual tweaks to it.

• Modules will tell Views about their fields; you don’t need to know anything about
the underlying database structure, and you are insulated in case this structure
should change behind the scenes between module updates.

• The same view can be used in several places on the site, as blocks, pages, feeds,
and other types of listings.

• Results can be split into multiple-page listings or use sortable table columns, AJAX
pagers, or filtering drop-downs to allow visitors to “drill down” to the content they
want.

• All views have support for caching results, for a performance boost.

More than anything else, Views can significantly speed up the development of your
site, without your having to learn module development or a single line of PHP. Views
can form the backbone of outputting content on your site.

Figure 3-24. Several types of views created by the Views module are visible on Grammy.com

114 | Chapter 3: Job Posting Board

SQL and Views
SQL is a computer database language that allows for retrieval of data from a database.
SQL is made up of simple commands such as:

SELECT title FROM node WHERE nid = 10

Each of these commands is called a query. These queries can get quite a bit longer in
order to retrieve the necessary information from the database, but that’s one of the
reasons Views is so helpful: it can build the queries for you.

Because a view is based upon a SQL query, many of the concepts in Views map directly
to SQL. Consider the basic parts of a query: the select statement, where clause, and
order by clause. These map directly to fields, filters, sort criteria, and other components
of views covered later in this chapter.

SELECT [fields]
FROM [base data type and any relationships]
WHERE [filters or contextual filters]
ORDER BY [sort criteria]

Although you don’t need to know SQL to use Views, the correlation is very strong, and
it might help you to understand Views more easily if you’re familiar with SQL or are
converting existing code to views.

The typical way to create a new view is to go through a one-page wizard that sets up
the most common settings used in views. You can either stop there and use the results
of the wizard, or you can continue with a more advanced configuration of the basic
view that has been created so far. Figure 3-25 shows the wizard interface. The full Views
interface is pictured in Figure 3-26.

If you install the “Advanced help” module, you will get access to the
built-in documentation for Views (and other modules that use it to dis-
play documentation). In the Views interface, you will notice this as small
gray circles with a question mark next to various elements on the page.
If you click these question marks, a help page will pop up with more
information.

Data Types
When building a view, the first thing that you will need to determine is exactly what
sort of “stuff” is going to compose your list. In the background, Views is building
database queries and, just as if you were writing some SQL by hand, you need to start
with an idea of what the central data in your query is going to be. You have a lot of
different kinds of data in your Drupal site. Content and users are probably the two most
easily recognized and most often used, but you can also build lists of taxonomy terms,
files, comments, and more. You need to select your data type when you start building

Spotlight: Views Module | 115

http://drupal.org/project/advanced_help

your view, which you do in the wizard, where it states Show and provides a select list
of data types you can list, as shown in Figure 3-27.

You will notice that once you select a data type, you can’t change it in
the main Views interface, as you can for the other settings you select on
the wizard page. The view name and data type are key information, and
the only way to change those settings is to build the view over again
from the start.

Figure 3-25. The wizard interface for building a basic view

116 | Chapter 3: Job Posting Board

Figure 3-26. The full Views setting interface

Figure 3-27. Selecting a data type for building a view

Spotlight: Views Module | 117

Once you select your base data type, the interface will provide the correct options to
build your list for that data type. Different kinds of data have different properties that
Views can use. You can also tie in additional information from other data types as you
build your view, using relationships. For example, I may want a list of content on the
site, but that list can be enhanced further by gathering more information about the
users who created the content and adding the user data to the view as well. We’ll talk
more about relationships and how to use them later, in “Relationships” on page 124.

Displays
A display determines how a view will be presented to the user. A view can have multiple
displays, and can even create several pages listing the same content in different ways.
The upper-left corner of the Views interface lets you choose which display you are
editing. Figure 3-28 shows adding a new display to a view.

Figure 3-28. Adding a new display

By default, there are four different kinds of displays, each serving a particular purpose.
Other modules may also add extra display types:

Attachment
Think of attachments as essentially subviews: a supplementary display that can be
attached above and/or below other types of displays. This display type can be
helpful for giving a view context or adding a glossary when your view is being
filtered. An example could be a view displaying a list of tracks beneath a view
displaying albums.

Block
You can position views exposed as blocks in sidebars or any region from the Blocks
configuration page by going to the administration toolbar and clicking Struc-
ture→Blocks (admin/structure/block).

Feed
The Feed display type creates a customizable RSS feed to which users may subscribe
using an RSS reader. Feeds can both receive their own URL and be attached to any
block or page display.

118 | Chapter 3: Job Posting Board

Page
Makes a page with its own URL in which the view occupies the main content.

The Views module provides many exciting options to easily configure the display of
your content. The settings for the first display you create will also be the default settings
for any future displays; however, each display can have its own settings that override
the view defaults. To change any value within the Views interface, click the option
represented as a link, and the configuration for that option will appear in a pop-up
modal screen. Figure 3-29 depicts the settings for all displays versus an override for a
specific display, along with an example of italicized text being used to indicate an over-
ridden value.

Figure 3-29. Configuration when overriding a default value

Pay very close attention to whether the font for an option in the Views
administration screen is italicized. Italics indicate that a setting is being
overridden for that particular display, meaning that changes to it will
only affect the given Page or Block. You must specifically override set-
tings on displays; otherwise, they will affect the defaults—and thus all
other non-overridden displays—regardless of which display is currently
selected.

It’s also important to pay attention to the particular display you are editing, as the
settings change slightly between display types. Some of the most important configura-
tion options for a view are available only when you are configuring a particular display.
For example, to set a URL for a Page view, you have to be configuring a view’s Page
display. The URL is presented as an option within the Page settings, displayed in the
middle column of the interface. The display-specific section for a Page view is shown
in Figure 3-30.

Spotlight: Views Module | 119

Figure 3-30. The available settings may change, depending on the display type that is being edited

One other thing to be aware of in the Views interface is how you add and rearrange the
data settings. There is an “add” button on some sections for adding items. You will
also notice that the “add” button sometimes has a small down arrow next to it. If you
click the arrow instead of the word “add,” you will see more options, like “rearrange”
for the ordering of fields, or “and/or” for determining the logic of your filters. You can
see an example of this interface in Figure 3-31.

Figure 3-31. Adding data items and accessing additional actions

120 | Chapter 3: Job Posting Board

Pieces of a View
The main Views interface has a lot of settings, and it has been designed to provide the
most often used settings right up front, while hiding the more advanced and less used
settings to keep the interface as organized as possible. However, there’s still a lot of
information to fit in there! The interface has three main columns. The first column, on
the left, contains basic information and the most commonly used criteria to build the
view’s query. The second column, as pointed out earlier, contains display-specific set-
tings, in addition to a few other elements surrounding the view. The third column
contains a collapsed fieldset where all of the advanced settings are kept.

Here is a rundown of each section on the Views administration page, pictured previ-
ously in Figure 3-26.

Title

The Title setting will set the title above the view when it is displayed. It is most com-
monly used to add a header and a page title element to a page display. So you would,
for instance, get an h1 header element at the top of the view, and see the same title in
the browser’s title bar when on that view page.

Format

A format is how Views knows what markup to produce when displaying your view. By
default, you will have several options—Grid, HTML list, Jump menu, Table, and Un-
formatted list—which are printed as HTML. However, other contributed modules can
add to this list and provide non-HTML options, like XML or CSV, for example. The
default HTML will be “Unformatted list,” which will output each row of the view result
in an HTML <div>. You can easily change to one of the other formats, which will change
the overall HTML structure. Each of the formats has additional settings where you can
further tweak the HTML, by clicking the Settings link next to the format name.

Under the Format setting, there is a Show link, which dictates how each row returned
in the view is styled. This is where you will determine if you want to just have the full
Drupal content rendered, or if you would like to control things more by having it output
individual fields that you hand-select. The default for the Content data type is Content,
which by default will display the view’s selected nodes in a listing much like Drupal’s
default home page. But the most commonly used setting for most views is Fields, for
more granularity over what exactly shows up in the view.

Row styles also provide additional configuration options, such as what view mode to
show the content in and whether to show links and comments, in the case of a Content
row style. For Fields row styles, you can specify the wrapping HTML elements to use
around the values, whether certain fields should be displayed inline (next to each other)
or on top of each other, and what separator characters (if any) should be placed between
field values.

Spotlight: Views Module | 121

Fields

A field represents a piece of data to display in your view. Some examples of fields are
the node title, a user’s email address, the image attached to an article, a taxonomy term,
or pretty much any piece of data within Drupal.

Each field provides a number of configuration options, including the ability to cus-
tomize or hide the field’s label, specify what Formatter it should use to output its value,
use custom HTML and CSS around the field, and rewrite the field value so that, for
example, it links to a different page.

Building Efficient Views
A view that uses the Content row style is usually less efficient than a view that uses
Field. This is because Views is able to collect all the needed data directly when using
fields, but a node listing loads every field for every node that is displayed. For example,
a view that needs to display only the title and author of a node should be displayed
using Field, preventing the unnecessary loading of taxonomy terms, other fields, or any
other data added by other modules.

Even when you’re loading a large number of fields, using the Field display type will
often be more efficient, because Views can pull in all the data at once in a single query,
rather than individually loading nodes (loading a single node will usually take at least
10 queries, or more depending on how many modules you have enabled).

The Views module includes some handy developer information to help with further
optimizations. In the Views settings page at Structure→Views→Settings, you can turn
on display of the SQL query that the view is generating as well as how long the view
takes to generate. You can use this information to make adjustments and see how they
affect performance.

Filter criteria

By default, the Views module will show all of the data—users, comments, or nodes,
depending on the base view data type—available on your website. Filter criteria is used
to further restrict the list of records being returned in a view. Some common filter
criteria includes showing only nodes that have their Published flag turned on, only users
within a specified role, or only nodes of a particular type, such as our Job or Job Ap-
plication nodes.

You also have the option of exposing filter criteria to site visitors, which provides a user
interface to let users choose what content should appear in listings. An exposed filter
for node title, for example, would provide a text box that allows users to search for
content containing a certain word, and an exposed filter for Department would provide
a select box for users to see jobs only from the Arts department. You can also expose
filter forms in a block under the “Exposed form” section under advanced settings.

122 | Chapter 3: Job Posting Board

Sort criteria

Once you’ve narrowed down results from your database and have the fields you want
to display, you can use sort criteria to determine the order in which those results show
up. Some examples are sorting by the created date, node title, or author username. On
each sort criteria, you can choose whether it should sort ascending (A–Z) or descending
(Z–A).

As of Drupal 7, sort criteria (like filter criteria) can also be exposed, to allow site visitors
to fiddle with the ordering of results.

Contextual filters

Filter criteria will always filter the view in exactly the same way each time it’s viewed.
For example, a filter criteria of “Content: Promoted to front page (Yes)” will only ever
show content that’s been promoted to the front page.

However, sometimes you don’t know exactly how you want to filter the results coming
back from a view until the time that it’s displayed. For example, in a scenario where
you want to make a listing of content that appears on users’ profiles, you wouldn’t want
to have to make a separate view for each user on your site: one filtered by user ID 1,
one filtered by user ID 2, and so on.

Contextual filters are the dynamic version of filter criteria. They allow you to create a
single view, and filter the results based on the context coming in from outside—for
example, the user ID from the page URL.

The “context” part of contextual filters usually comes from the page URL. If your view
is displayed at the URL http://example.com/my_view, URL parts after my_view would
be taken as context values. For example, in the URL http://example.com/my_view/10,
the number 10 would be the first context value. You can have as many context values
as you want in your view; just keep adding more URL parts.

In addition to context values that are at the end of the URL, you can also place context
values in the middle of a URL by using the % symbol in the view’s Path configuration.
This feature can be helpful when you want to utilize some of the existing paths in
Drupal, such as user paths, which might look like http://example.com/user/10/
my_view. We still want 10 to be the first argument, but it’s now in the middle of the
URL. By specifying a URL path for the view as user/%/my_view, the symbol is swapped
with the contents of the URL and passed into the view as the first piece of context. If
this is over your head right now, don’t worry—we’re going to walk you through an
example of this kind of argument in the section “Hands-On: The Views Mod-
ule” on page 124.

Spotlight: Views Module | 123

Relationships

When you need to include data from an object that’s not directly available (like a user’s
information) inside a listing of content (which is based on nodes), a relationship lets
you retrieve the object information that is related to the listed content. In relational
databases, a view relationship could be considered the equivalent of doing a JOIN in
SQL. If the “Require this relationship” field is checked, the query will change from a
LEFT JOIN to an INNER JOIN, resulting in better performance. However, you can
only do this if you’re sure all of the records you’re showing have a correlating record
in the data being related.

We’ll set up an example of a relationship where a job application is related to a par-
ticular piece of job content. The user creates a piece of content (an application) that is
related to another piece of content (the job). Using a Views relationship, we can create
a listing of content that includes information from both the application and the job
itself.

Header, footer, and no results behavior

Views also lets you customize the view’s header and footer (what appears above and
below its results), as well as what should happen if the view returns an empty set of
results. You can either put straight-up text in these areas (like “Welcome to our job
listings page” or “No jobs found. Please try again later!”) or embed another view in
these areas.

Hands-On: The Views Module
OK! Enough conceptual mumbo-jumbo; let’s start getting our hands dirty with Views!

The requirements of our site include two particular views. One view is frontend-facing,
showing all the available jobs to users of the site. Faculty users (more specifically, users
in the “editor” role) will use the second view to review the list of applicants who have
applied to various jobs.

The first step to using the Views module is to enable it. The Views module has two
parts: the Views module itself, which handles the low-level “plumbing,” and the Views
UI module, which presents the screens used to configure the views. Additionally, “Ad-
vanced help” is an optional module that provides useful inline help for modules such
as Views.

1. In the administrative toolbar, click “Site building”→Modules (admin/build/mod-
ules) and enable the following modules:

• Chaos Tool Suite package

— Chaos Tools

124 | Chapter 3: Job Posting Board

• Other package

— Advanced help

• Views package

— Views

— Views UI

Jobs View
The “jobs” view will provide a listing of jobs at Epic University, categorized by depart-
ment. The completed view will be similar to the one pictured in Figure 3-32.

Figure 3-32. A sample page from the jobs view, listing jobs in the Sciences department

1. Get started by visiting the Views configuration page by going to the administrative
toolbar and clicking Structure→Views (admin/structure/views).

2. Click the “Add new view” link at the top of the page, as shown in Figure 3-33, and
populate the form with the values from Table 3-19. This screen is designed to set
up the most common things used in a view. Your screen should look as pictured
in Figure 3-34. These initial settings will provide us with a view that shows a listing
of jobs, with its information displayed in a table, and a pager to move from one
page of results to another if there are more than 10 items. It will also have a menu
item in the Main Menu, which leads to a page showing the view. Lastly, we are
adding an RSS feed so people can follow the latest job postings with an RSS feed
reader.

Hands-On: The Views Module | 125

Figure 3-33. Add a new view

Figure 3-34. Initial view information

126 | Chapter 3: Job Posting Board

Table 3-19. The Jobs view configuration values

View setting Value

View name Jobs

Description Checked; “A list of available positions at Epic University”

Show Content of type Job sorted by Newest first

Create a page Checked (default)

Create a block Unchecked (default)

Page settings

Page title Available positions

Path jobs (default)

Display format Table of fields

Items to display 10 (default)

Use a pager Checked (default)

Create a menu link Checked; Menu: Main menu; Link text: Available positions

Include an RSS feed Checked; Feed path: jobs.xml (default)

3. After clicking the “Continue & edit” button, Views takes you to the main view-
building interface, where we will tweak some of our settings to refine the view.
Scroll down to the bottom of the page, and you’ll see a live preview of what your
view shows so far. Excellent!

4. When we created the view, we selected the Table display format, and the wizard
automatically filled in that we would use fields. It didn’t let us choose which fields,
though, and by default it only provides the Title field in the view. However, we
definitely want more information than that. Let’s correct this problem by adding
a few fields to the view. We want to display the Title, Post date, Salary, and Contact
for each job.

5. Click the “add” button in the Fields area to start adding new fields. Include the
fields from Table 3-20, as pictured in Figure 3-35. To speed up entry, you can select
Content from the Filter selection to filter the list of available fields by only those
pertaining to that group, or start entering characters in the Search field to limit the
results. Note that we already have our Title field, so we just need to add the other
three.

Table 3-20. Fields for the Jobs view

Fields: Add Fields Value

Content: Contact Checked

Content: Post date Checked

Content: Salary Checked

Hands-On: The Views Module | 127

Figure 3-35. Fields for the Jobs view

6. After you click the “Apply (all displays)” button, Views will display the configu-
ration forms for each field, one by one, to allow you to configure each field’s op-
tions. When you’re finished entering each of the values from Table 3-21 and pic-
tured in Figure 3-36, click the “Apply (all displays)” button to proceed to the next
field’s settings. The values listed in Table 3-21 assume you will leave the rest of the
fields’ default settings in place and only make the modifications indicated in the
table.

Table 3-21. Individual field configuration for the Jobs view

Defaults: Configure field setting Value

Content: Contact (Leave the defaults)

Content: Post date Date format: Time ago (with “ago” appended)

Content: Salary Thousand marker: Comma

128 | Chapter 3: Job Posting Board

Figure 3-36. Field configuration for the Jobs view

7. Click the drop-down arrow next to the “add” button in the Fields section, select
the “rearrange” item, and drag the fields in the following order, as pictured in
Figure 3-37:

• Content: Title

• Content: Post date

• Content: Salary

• Content: Contact

Once you have rearranged the fields, click the “Apply (all displays)” button to save
your changes.

8. Now that our view has fields, you should save the view by clicking the Save button.
If this button is grayed out, be sure to finish editing whatever field you’re editing;
then the button will be activated again.

9. At this point, we can pause and take a look at our view so far. If you scroll down
the view edit screen, at the bottom, you will see a preview area. It automatically
updates as we change the settings for the view. Our view currently looks a lot more
table-like, as pictured in Figure 3-38 (with some sample content in it).

Hands-On: The Views Module | 129

Figure 3-38. The Jobs view preview

10. Our view is coming along nicely. One thing that we did not include was a Depart-
ment field in this listing, because our requirements actually call for a directory-type
listing. That is, the first page of our Jobs view should display a list of departments,
and then clicking on the department should provide a list of jobs inside. Because
it would be tedious to create a view like this for each department, we’ll accomplish
this requirement with a contextual filter, a very powerful Views feature.

Figure 3-37. Rearrange fields for the Jobs view

130 | Chapter 3: Job Posting Board

To get started implementing this directory-type listing, we’re going to go into the
Advanced section of the Views editor. Click on the Advanced fieldset to open the
settings, and then click the “add” button next to Contextual Filters. As before with
fields, you can search or filter to narrow the list of items. Select “Content: Depart-
ment (field_department)” from the list and click the “Apply (all displays)” button.
Then enter the settings from Table 3-22, as shown in Figure 3-39.

These settings will look like total gobbledygook at the moment, so let’s step
through them. What we’re after is a directory at http://www.example.com/jobs/
<department> which, if no department is specified, will show a list of departments
along with the total number of jobs they offer.

The “When the filter value is not in the URL” section indicates what the view should
do when the URL http://www.example.com/jobs is accessed, rather than http://
www.example.com/jobs/athletics. Here, we are asking it to display a list of depart-
ment names in ascending order. The Summary style will display the titles of the
various departments, along with the number of jobs within that department next
to it. This type of view can be very useful for directory listings. The Views module
also allows you to control how the dynamic URL and title are displayed. The “%1”
in the Title looks a bit funny; this will be replaced by the department name dy-
namically when the page is viewed (%1 means “the first context value for this
view”).

Finally, we do some path transformations to keep URLs consistently lowercase and
dash-ified, even if the “real” department name contains capital letters and spaces.

Table 3-22. Contextual filters for the Jobs view

Setting Values

When the filter value is not in the URL Display a summary (checking this will expose a bunch of other settings, but they
can be safely ignored)

When the filter value is in the URL or
a default is provided

Override title: Checked (in the text field that appears, enter “Jobs in the %1
Department”)

More Case: Capitalize each word

Case in path: Lower case

Transform spaces to dashes in URL: checked

Be sure to save the view when you’re done.

We added only one contextual filter in our Jobs view. But you can add
as many contextual filters as you like. They don’t even have to be the
same type. This way, you can get multipage structures, each drilling
down additionally on the items that should appear in a list.

Hands-On: The Views Module | 131

Figure 3-39. Contextual filters configuration for the Jobs view

132 | Chapter 3: Job Posting Board

We’re now finished with the Jobs view! The final view screen should look as pictured
in Figure 3-40. Take a look at our view by closing the overlay and clicking the new
“Available positions” link in the Main menu. After we add this contextual filter, our
view contains a nice hierarchical structure! It should be similar to Figure 3-41.

Figure 3-40. Completed Jobs view configuration

Figure 3-41. The root level of the Jobs view, with a summary display contextual filter

Hands-On: The Views Module | 133

Clicking on any of the options will take you to a filtered listing within that category,
such as in Figure 3-42. Pay attention to the URL also as you move between pages. It
should be similar to http://www.example.com/jobs/administration or http://www.exam
ple.com/jobs/athletics. This is the way arguments work in Views: the path we specify
displays the summary view, then any “directories” (such as administration) under that
URL are taken as arguments.

Figure 3-42. Inside the Filtered view, when the context “sciences” is passed in

This concludes our introductory view, where we’ve used several features of Views. This
example used a Page display, added some fields, and used contextual filters in a simple
manner. In our next example, we’ll create a view that uses multiple displays, and gets
a little bit trickier.

Applications View
The Applications view will serve both as a tool for administrators and as a reference
for users. It will provide the following displays:

• A listing of all job applications in the entire system as a single page

• A listing of all applications for a particular job, displayed as a tab on the job page

• A listing of applications filled out by the currently logged-in user, displayed as a
block in the sidebar

Taking all these pieces together, the final view should display something similar to
Figure 3-43.

Create the view and default display

In this view, we’ll be setting up several displays and then overriding the defaults within
each display. By setting up a large amount of the configuration in the default display,
we’ll save work when we need to change properties that are common to all displays.

134 | Chapter 3: Job Posting Board

http://www.example.com/jobs/administration
http://www.example.com/jobs/athletics
http://www.example.com/jobs/athletics

1. Start by getting to the Views administration area by going to the administrative
toolbar and Structure→Views (admin/structure/views). Click the “Add new view”
link, and enter the settings from Table 3-23 into the wizard, then click “Continue
& edit”.

Table 3-23. Add view settings for the Applications view

View setting Value

View name Applications

Description Checked; “A list of submitted applications, by job or user”

Show Content of type Job application sorted by Newest first

Create a page Checked

Create a block Unchecked

Page settings

Page title Applications (default)

Path applications (default)

Display format Table of fields

Items to display 10 (default)

Use a pager Checked (default)

Create a menu link Checked; Menu: Navigation menu; Link text: Applications (default)

Include an RSS feed Unchecked (default)

2. Now we’ll set up some default fields. Click the “add” button in the Fields area.
Check off the fields described in Table 3-24 and click “Apply (all displays).” Then
configure each field’s settings, clicking “Apply (all displays)” once again after each
screen.

Figure 3-43. The multiple displays of the Applications view

Hands-On: The Views Module | 135

Table 3-24. Default fields for the Applications view

Defaults: Field Values

Content: Job (leave the defaults)

Content: Post date Label: Application date

Date format: Short format: 12/04/2011 - 9:30

There is one more field that would be very useful in this view: the name of the user who
submitted the application. If we look for the username in the list of fields we can use,
though, we won’t find it. The closest field in the list is “Content: Author uid,” and the
help text underneath it states “The user authoring the content. If you need more fields
then the uid add the content: author relationship.” The uid is only a number, like 4 or
206, and isn’t really that helpful. We do want more fields than the user ID number—
we want the name—so we will need a new Views module trick that we haven’t used
yet: Relationships. Figure 3-44 shows a diagram of how relationships work. All of our
Job Application nodes have an author uid associated with them. We can use that ID
to connect with the rest of the user information in the database, and then pull out the
bits we want once we’ve created the connection.

Figure 3-44. If two objects share a bond, Relationships can pull in data from one to another

1. Using relationships is a two-part process.

First, you must identify the relationship—that is, tell Views what your connector
piece is, and second, you will need to use that relationship to add the fields or other
data that you want to the view. Let’s create a new relationship we can use. Open

136 | Chapter 3: Job Posting Board

the Advanced fieldset to expose more settings, and click the “add” button next to
Relationships. “Select Content: Author” and click the “Apply (all displays)” but-
ton. Since all content will have an author, we can make the resulting query more
efficient by checking the “Require this relationship” checkbox. Click “Apply (all
displays)” once more, and that’s all there is to it. We have added in the relationship,
and now we can start using it.

2. Click the “add” button in the Fields section once again, and this time you will see
more options than before. There is now a whole group of fields available in the
User group. Select the User: Name field and click “Apply (all displays).” You will
see that it is using the relationship we just created. Change the field’s Label to
Applicant Name and click “Apply (all displays)” again.

3. We now have all of the fields that we want for our view. Click the down arrow next
to the “add” button and select “rearrange.” Put the fields in the following order
and click “Apply (all displays)”:

• Content: Post date

• Content: Title

• (author) User: Name

• Content: Job

4. Now we need to change one last, very important setting. The default access to this
view is set to allow anyone with the “View published content” permission to see
the view, but we want to allow only “editor” members on the site to have access
to review all the applications. This is also why we put the menu item for this view
in the Navigation menu and not the Main menu, meant for all users. In the Page
settings section, click the “Access: Permission” link. Use the settings from Ta-
ble 3-25 to restrict access to this display and click “Apply (all displays).” When
you’ve finished, the settings should look as pictured in Figure 3-45.

Table 3-25. Page display access restrictions for the Applications view

Settings Values

Access restrictions Role

Role editor

Restricting access to the view only prevents unprivileged users from
accessing the view display at http://www.example.com/applica-
tions; it does not prevent an unprivileged user from typing in http://
www.example.com/node/4, where node 4 is a job application that
is not hers. Protecting this kind of node-level access control
requires the use of a node access module. See “Taking It Fur-
ther” on page 146 for some suggestions on resolving access
concerns.

Hands-On: The Views Module | 137

5. Save the progress on the Applications view by clicking the Save button.

This concludes the default configuration of the Applications view. We have a basic
view of applications on the site, which are displayed in a page, with a menu item in the
Main menu, as pictured in Figure 3-46.

Figure 3-46. The Applications view page display in action

Figure 3-45. The Applications view so far

138 | Chapter 3: Job Posting Board

Create the Job Tab display

We’ve created a page containing all the applications on the entire site. Although this
might be helpful for watching incoming applications, it’s not entirely helpful for our
jobs’ contact people, who will be primarily interested in only the applications posted
to one job. To fill this need, we’ll make a display that limits the applications to just one
job, using a contextual filter. We’ll also need to create a new relationship to connect
the application to the job being applied for so the contextual filter has something to
work with. To make this page easy to find, we’ll add it as a tab on the job node pages
(see Figure 3-47).

Figure 3-47. The Applications view displayed as a tab on a job node

If you’ve left the Views administration area, return to it by going to the administrative
toolbar and clicking Administer→Structure→Views→Applications→Edit (admin/struc-
ture/views/view/applications/edit).

1. Click the “+ Add” link in the Displays bar, as shown in Figure 3-48, and select Page.

Figure 3-48. Adding a new Page display to the Applications view

Hands-On: The Views Module | 139

2. The new display gets the name Page by default. To help distinguish it from the
original Page display we created, we’ll rename it to Job Tab, because this page will
be displayed as a tab on job nodes. Click the Page link next to “Display name” just
below, change it to Job Tab, and then click Apply.

3. To display the information required on this tab, we will need to override our default
settings. We need to have a relationship to the job to which the applicant is ap-
plying, and a contextual filter to bring in the job ID. However, these settings are
specific to this one display, and should not affect the default page we already set up.

Fortunately, Views solves this with its display overrides concept. At the top of the
configuration screen for each of our Views elements, there is a drop-down preceded
by the word “For.” This defaults to “All displays” with the assumption that we
want to update the settings across all of our view’s displays. To limit our changes
to just this display, we need to select the override option, as pictured in Figure 3-49.

Figure 3-49. Override settings for a View

4. First, let’s add a relationship to the application’s job so we can pull the job’s ele-
ments into our view. Open the Advanced fieldset, click the “add” button for Re-
lationships, add the settings from Table 3-26 (shown in Figure 3-50), and click
“Apply (this display).”

Table 3-26. Default relationships for the Applications view

Defaults: Relationships Values

Content: Job (field_job) For: This page (override)

Require this relationship: Checked

Once you have applied your changes, you will see that you have an active override
in the Views editor, indicated by the section title (Relationships, in this case) being
italicized, as pictured in Figure 3-51).

140 | Chapter 3: Job Posting Board

Figure 3-50. Relationship configuration for the Job Tab

Figure 3-51. Overriding the Relationships portion of a view

Hands-On: The Views Module | 141

5. Similar to the Jobs view that we configured earlier, we can filter down the listing
of applications by adding a contextual filter to the display. We’ll add a contextual
filter that filters the list of applications to a single job node. Click the “add” button
for “Contextual filters,” select “Content: Nid,” and use the values from Ta-
ble 3-27. Remember to override these settings for just this display. The Content
Nid contextual filter allows us to filter by one particular job’s ID. Here we’re using
another feature of Views’ contextual filters: a validator. Views will check the node
ID passed in to the URL and verify that it belongs to a job node. Click “Apply (this
display)” when done.

Table 3-27. The Job Tab “Content: Nid” settings for the Applications view

Settings Values

For This page (override)

Relationship field_job

When the filter value is not in the URL Display contents of “No results found”

When the filter value is in the URL or a default is provided Override title: Checked; “Job Applications for %1”

Specify validation criteria: Checked

Validator: Content

Content Types: Job

Validate user has access to the content: Checked

6. We set our view to “Display contents of ‘No results found’,” but this is blank by
default. Let’s add something more useful there. Click the “add” button next to No
Results Behavior (right under Relationships). Select “Global: Text area” and enter
the following text: “No applications have been submitted.” Then, click “Apply (all
displays).”

7. Now that we’ve set up an argument for this display, we need to give it a URL. Use
the settings from Table 3-28 to set up the Page settings and click Apply. We don’t
need to worry about overriding here, because these settings are always per display.

Table 3-28. Job Tab display page settings

Job Tab: Page settings Values

Path node/%/applications

Menu Type: Menu tab

Title: Applications

Similar to using %1 in the title of the contextual filter, we’re using the percent
symbol to specify that the first context value will be in the middle of the URL. You
can use this approach to add tabs to user pages also, such as user/%/my_display,
or any other page in Drupal with a dynamic path.

142 | Chapter 3: Job Posting Board

8. And finally, we no longer need the Job listed on this display; it would be redundant,
as we’ll be looking at the job directly. Click the drop-down arrow next to the “add”
button in the Fields section, and select “rearrange.” Override this section for this
display by changing the For field to “This page (override).” Then click the “remove”
link for the Content: Job Job field, and click “Apply (this display)” to save your
changes.

If you want behavior specific to one display and not others, be sure
to change the For setting to “For: This page (override).” The Views
module’s settings default to affecting all displays within that view.
You can end up accidentally deleting this field from more than one
display if you’re not in override mode. If that happens, you will
need to add the field back to the main Page display, and then re-
move it again from the Job Tab display.

9. Click the Save button to save the view, which should now look like Figure 3-52.

Figure 3-52. Applications view with new Job tab

We’ve now added a tab to all job nodes (for users in the “editor” role). Visiting a node
that has applications should look similar to Figure 3-47, shown earlier.

Hands-On: The Views Module | 143

Create the Applications block display

The last display that we’re going to assemble will be available to all users of the site. It
will be a block that will show all the job applications that the currently logged-in user
has submitted on the site. We’ll also change the style of this display from a table to a
list layout, because it will need to be displayed in the narrower sidebar column. The
final display will look similar to Figure 3-53.

Figure 3-53. The front page with the User Applications display as a block in the right sidebar

If you have left the Views configuration screen, return to the Applications view by going
to the administrative toolbar and clicking Structure→Views→Applications→Edit (ad-
min/structure/views/view/applications/edit). We’ll start by adding a new display to this
view:

1. Click the “+ Add” link in the Displays bar and select Block from the display list.

2. Now we’ll need to override some settings. Click the Title link to see the configu-
ration screen, change For to “This block (override),” and change the title to My
Applications. Click “Apply (this display).”

3. Change the Format to an unordered list by clicking the Table link in the Format
section, and once again changing For to “This block (override),” and selecting
“HTML list” as the format. Click “Apply (this display).” We can keep the default
configuration, so just click “Apply (this display)” again to complete the change.

4. Now configure a description on the block that will show up in the block adminis-
tration area. Under “Block settings,” enter a block name of User Applications and
click Apply.

We’ve now set essentially three names or titles for this block. Here’s a rundown of
where each title will be displayed:

Display Name
Used within the Views interface as the name of the display. Shown in the Displays
bar at the top of the Views editing screen.

144 | Chapter 3: Job Posting Board

Title: Title
Used as the block title when it is displayed to the end user.

Block settings: Block name
Used to refer to the block when arranging blocks by going to the administrative
toolbar and clicking Structure→Blocks (admin/build/block).

Because this is a block that will live in the sidebar, we’ll want to display far fewer fields
so that it fits nicely in the narrower region of the page. To do this, we’ll need to override
the Fields area of this view.

1. Click on the down arrow next to the “add” button in the Fields section and select
“rearrange.” Select “This block (override)” and then click the “remove” link for
the “Content: Post date Application date” and “(author) User: Name Applicant
Name” fields. Click “Apply (this display)” to save your changes.

2. Configure the remaining fields as indicated in Table 3-29. Since we already did an
override in the Fields section, by removing a few fields in the previous step, you
will notice that the configuration for these fields defaults now to “This block (over-
ride).” Once you override any part of a section, everything in that section is con-
sidered to be in override mode.

Table 3-29. Block fields in the Applications view

Block: Field Values

Content: Title (Application title) Create a label: unchecked

Content: Job (Job) Create a label: unchecked

Formatter: Title (no link)

3. Reorder the fields by clicking the down arrow next to the “add” button and se-
lecting “rearrange,” so that the job comes first, then the title of the application.

4. Because we need to limit this display to job applications by the current user, we
need to add a filter to the display. We’ll leave the two existing filters in place—
“(Content: Published (Yes)” and “Content: Type (= Job application)”—and add a
single new filter for User: Current. Make sure we are using an override by selecting
“This block (override)” then check off the User: Current filter and click “Apply
(this display).” Select Yes for “Is the logged-in user” and click “Apply (this dis-
play).” This step will allow the block’s contents to change dynamically depending
on who the currently logged-in user is.

5. One last item, which is easy to overlook, is that our poor regular users on the site
will not be able to see the view. We have the permissions set up to only allow access
for editors on the site. In the Block Settings section, click the Role link next to
Access, select “This block (override),” then change the selection to Permission.
The permission defaults to “View published content,” which is fine, so click “Apply
(this display)” once again to finish.

Hands-On: The Views Module | 145

6. Save the view, which should now look like Figure 3-54. Your configuration for the
User Applications block display is now complete.

Figure 3-54. The completed Block display for the Applications view

7. By adding a new Block display, we’ve added a block to the Drupal site. Before it is
visible anywhere, though, we need to enable the block. In the administrative tool-
bar, click Structure→Blocks (admin/structure/block) and scroll down to the Dis-
abled section to find your new block, User Applications. Place it in the Sidebar
Second region and save your changes.

Whew! After that whirlwind tour of views, you should now see a sidebar block showing
any jobs you’ve applied for.

Taking It Further
The basic job website that we’ve built only touches on the surface of the capability of
Field and Views. There are a lot of possibilities for extending the functionality of this
job site by adding more fields to both the Job and Job Application content types. Here
are a few modules that could be used to take things a bit further with our job board:

146 | Chapter 3: Job Posting Board

Automatic Node Titles
This module provides support for creating title templates for nodes. For example,
rather than having users manually enter a title for their applications (which may
result in nonsensical things such as “Hire me!”), this module could ensure that all
application titles follow a standard format automatically, such as [author-name] –
[job-title].

Node Reference URL Widget
This module adds a new field widget for node references. With this, we could
display a link on our Job content that says “Apply for this job,” and the link would
take people to the application form with the correct job already selected so they
don’t have to figure out which one to select from the list.

Content Access and private files
Right now, all job applications submitted to the site are public and searchable even
by anonymous users. That’s no good, since résumés are bound to contain sensitive
information. Content Access is one example of a node access module, and can limit
viewing of job applications only to site editors. When coupled with Drupal core’s
private files feature, configurable at Configuration→Media→“File system” (admin/
config/media/file-system), you can specify that file fields are able to save uploaded
files to the private files directory instead.

Field Permissions
Another way to protect certain private application information from displaying to
unprivileged users, the Field Permissions module can selectively block fields from
being edited or viewed, depending on the visitor’s role.

Summary
This chapter taught you how to use two of Drupal’s fundamental “building block”
modules: Field and Views. These modules constitute the cornerstone of Drupal’s power
and are used extensively throughout the rest of the book. Field is used to model your
website’s content by adding extra fields to hold different properties, and Views is used
to display lists of your website’s data.

Besides the basic features of these modules, this chapter also introduced you to the
methodology for Drupal site building. Rather than installing monolithic packages, in
Drupal each module provides specific functionality, and works together with other
modules to enhance their functionality. As we created fields for our different content
types, References was working together with the core Field module. While making
listings of content, Views retrieved information provided by both core modules and
References. This sort of cooperation between modules serves as the foundation for the
rest of the book, as more modules join the party and give new shape to our sites.

Summary | 147

http://drupal.org/project/auto_nodetitle
http://drupal.org/project/nodereference_url
http://drupal.org/project/content_access
http://drupal.org/project/field_permissions

Here are the contributed modules that we referenced in this chapter:

• Automatic Nodetitle

• Display Suite

• Entity Reference

• Field Permissions

• Node Reference URL Widget

• References

• Relation

• Token

• Views

These are some other resources that we referenced and community resources for learn-
ing more about the new concepts introduced in this chapter:

• Field modules

• Views Developers Drupal group

148 | Chapter 3: Job Posting Board

http://drupal.org/project/auto_nodetitle
http://drupal.org/project/ds
http://drupal.org/project/entityreference
http://drupal.org/project/field_permissions
http://drupal.org/project/nodereference_url
http://drupal.org/project/references
http://drupal.org/project/relation
http://drupal.org/project/token
http://drupal.org/project/views
http://drupal.org/project/modules?filters=tid%3A20224%20drupal_core%3A103%20bs
http://groups.drupal.org/views-developers

CHAPTER 4

Media Management

Almost every website needs some kind of media management support, ranging from
allowing users to upload photos to handling automatic media encoding in different file
formats. Drupal’s flexibility allows for managing media in a variety of ways, and for
scaling from a one-person portfolio to millions of users uploading photos on a fan site.

This chapter introduces the following modules:

Image (core)
Provides a field for uploading images, as well as the ability to establish “styles” of
images such as thumbnails

Media
Provides media management for Drupal: comes with a media browser and various
tools that other modules can leverage and extend

Media: YouTube
Extends the Media module to allow users to easily embed videos from YouTube

WYSIWYG
Provides support for WYSIWYG (“What You See Is What You Get”) editors

If you would like to participate in the hands-on exercises in this chapter, install Drupal
using the Chapter 4: Media installation profile from the book’s sample code. This will
create the example website on your web server. The completed website will look as
pictured in Figure 4-1 and at //media.usingdrupal.com. For more information on using
the book’s sample code, see the Preface.

To complete this chapter, you must have the Clean URLs feature work-
ing, and your version of PHP must have the GD library installed. See
“Troubleshooting Image Styles” on page 158 for more information.

149

http://drupal.org/project/media
http://drupal.org/project/media_youtube
http://drupal.org/project/wysiwyg
http://media.usingdrupal.com

Figure 4-1. Band Wagon website

Case Study
John and Lisa are both music lovers. They love listening to records, going to shows,
and talking about music with their friends. They’ve been thinking for a while about
setting up a website where they could write reviews of new records and shows, and
share their concert photos and YouTube videos of their favorite bands. Since many of
their friends are also into music, John and Lisa want to do this in a way that will allow
their friends to sign up and join in the fun. Lisa has heard about Drupal from her
coworker, and decides that it seems like a perfect match for their project.

After a few evenings of brainstorming, John and Lisa have come up with a list of things
they want the website to do. When photos are uploaded, they should be automatically
resized for use on different pages: a thumbnail to use on overview pages, and a pro-
portionally scaled version for review pages. John and Lisa also want to be able to group
reviews of the same band together in overview pages, using a simple tagging system.

150 | Chapter 4: Media Management

Since they want their friends (many of whom don’t know anything about websites, let
alone HTML) to be able to use the website, the process of uploading photos, posting
videos, and creating attractive review pages needs to be really easy. Users should be
able to easily enrich their posts by changing text styles (bold, italic, lists, etc.) and
mixing and matching photos and videos with their text. When a user writes a review,
it should be possible to use another user’s photo or video by selecting it from a media
archive.

Implementation Notes
Even though there is a wide array of options to choose from when it comes to handling
multimedia in Drupal, recent developments in the Drupal community have simplified
this area of Drupal a lot. The Media module, together with Drupal core’s tools and
other contributed modules, provides solid support for multimedia, while leaving all the
room you need to build a unique project.

Photo Uploads

Image handling in Drupal has long been a distributed effort between several cooper-
ating (or competing) modules. In Drupal 7, you can still choose between several op-
tions, with Drupal core’s Image module and the Media module being the main ones.

The Image module, which we encountered in “Creating an Article” on page 39, provides
an image upload field that you can add to content types, taxonomy terms, users, and
every other Drupal entity that you can imagine.

The Media module, which is a contributed module, is the go-to option if you want
broader multimedia support. As we will see later in this chapter, it was developed
specifically to solve the long-standing problem of media management in Drupal. It
supports media file uploads (image, video, and audio file types are supported out of
the box), management and reuse of media assets, and much more.

In this chapter, we’ll use the Media module’s Media field instead of the Image module’s
Image field. Media’s solution offers not only a way of uploading photos, but also of
adding other media types such as videos. It even comes with an easy-to-use media
browser to add existing media assets to content.

Posting Videos

The Media module not only allows uploading and managing local media assets, but it
also provides a centralized way to access media on various third-party content sources.
For example, there are modules available to help you post photos from Flickr and videos
from YouTube on your Drupal website by simply copy/pasting the photo’s or video’s
URL, or its embed code, a string of code that allows you to show a video or photo from
somewhere else on the Web on your own site.

Case Study | 151

http://drupal.org/project/media

Thumbnail Generation

Drupal core’s Image module comes with a very powerful feature called “Image styles,”
which takes care of all sorts of image manipulation. It can not only be used to create
thumbnails, but also to chain together several image effects such as crop, rotate, scale,
desaturate, and sharpen to create completely customized displays of images. The Media
module uses the “Image styles” functionality to take care of image manipulation.

WYSIWYG Editor

WYSIWYG editors allow nontechnical website users to use bold or italic text, create
bulleted lists, or add links to other web pages (and much more than that) by using an
interface that heavily resembles that of word processing software. The Media module
comes with a plug-in for WYSIWYG editors, so users can easily embed media assets in
their posts. Instead of choosing one of the many available standalone editor modules,
we’ll use the WYSIWYG module to add an editor to our site, since more Drupal 7 sites
use it and the developers are much more active in maintaining it.

The next step is choosing a WYSIWYG editor to plug in to the WYSIWYG module.
The WYSIWYG module is an incredibly flexible framework, and actually supports
multiple WYSIWYG editors. We’ll use the CKEditor WYSIWYG editor, as it won top
billing in an extremely comprehensive review of all available editors for the WYSIWYG
module.

Spotlight: Image Styles
When you’re uploading photos to a website, it’s important to ensure that they are
displayed at the right size. Otherwise, when you upload an exceptionally large image,
chances are good that it will break your site’s layout. To prevent this, you’ll want to
scale these images so that they’re a consistent size, and create thumbnails for use in
listing pages. “Image styles,” a feature that’s part of Drupal core’s Image module, will
provide these options and many more for displaying images.

We tackle image manipulation before going into detail on how to set up
media handling for Drupal in general, since some of the concepts ex-
plained here will come in handy later.

The automatic image manipulation provided by “Image styles” allows you to combine
a series of effects such as cropping, scaling, or resizing into what is called an image
style. By combining effects, you can create a customized display of your images. Fig-
ure 4-2 shows the result of a style that combines a crop effect with rotate to make a
square image that is rotated 90 degrees.

152 | Chapter 4: Media Management

http://drupal.org/project/wysiwyg
http://ckeditor.com/
http://www.f3internet.com/articles/2010/08/09/review-of-drupal-rich-text-editors/

Figure 4-2. An image style combining two effects: scale and crop, then rotate

The image is generated on the fly, then saved (or “cached”) in a directory with the same
name as the image style. This way, the expensive part of manipulating images only
happens once, and subsequent requests are read directly from disk.

Styles and Effects
The main “Image styles” page, which you can reach by clicking Configuration→
Media→“Image styles” (admin/config/media/image-styles), displays a list of the styles
available on the site, as shown in Figure 4-3. You can add new styles and edit existing
styles.

Figure 4-3. The “Image styles” administration screen

The style name will be part of the URL of all generated images, so it’s
good to keep it short, make it all lowercase, and use only alphanumeric
characters, underscores, and dashes. If you’re building a site where
standard image sizes will be used in a variety of places, a name that
describes the final output is also a good idea, such as “160_square,”
“200_width,” or “300x200_resize.” For our examples, we’ll use default
names like “thumbnail” and “large,” which are semantic in their use.

Spotlight: Image Styles | 153

The real fun comes in when you add new effects to a style. Multiple effects may be
added to a single style, and the effects will be applied from top to bottom. Whenever
you edit a style, the cached files will all be flushed so that they can be regenerated. This
makes it easy to change all the images on the site from using a 100-pixel thumbnail to
a 120-pixel thumbnail (or make any other possible changes). The configuration form
for adding a new effect to a style is shown in Figure 4-4.

Figure 4-4. Effects on an image style

Crop

Crop allows you to trim off edges of the image that are not wanted. Crop takes pixel
values, and allows you to define which part of the image is retained by choosing an
anchor point. The end result of a cropping effect will be similar to Figure 4-5.

Figure 4-5. Cropping will trim off edges of an image

154 | Chapter 4: Media Management

Desaturate

Desaturate allows you to convert a color image into a black and white image. This
effect, shown in Figure 4-6, doesn’t have any settings.

Figure 4-6. Desaturating converts a color image to black and white

Resize

Resize can be used to force an image to a particular dimension. You can enter width
and height values to scale to a specific pixel size.

Usually, you’ll want to use the scale action instead of resize, as resizing might make
your image look squished or stretched. Rather than maintain proportions, resize forces
an image to be exactly those dimensions, as shown in Figure 4-7.

Figure 4-7. Resizing can change the aspect ratio of an image

Rotate

Rotate allows you to rotate images according to a given amount of a degrees, as shown
in Figure 4-8. A positive number of degrees rotates the image clockwise; a negative
number rotates it counterclockwise. You can also define a background color to fill areas
of the image that are exposed after the rotation. If you want to get funky, you can even
randomize the rotation angle for each image.

Spotlight: Image Styles | 155

Figure 4-8. Rotate can change the rotation angle of an image

Scale

Scale is used to size images proportionally. Unlike resize, you need to enter either a
width or height. The dimension without a value will be automatically determined when
the image is scaled to the given dimension. If both dimensions are entered, the image
will be scaled to fit within both values.

If your site absolutely needs images to be no smaller than a certain size, you can use
the Allow Upscaling option to enlarge images to the entered dimensions.

Scaling will always maintain the aspect ratio of the original image. The end result of a
scaling action is shown in Figure 4-9.

Figure 4-9. Scaling an image maintains the aspect ratio

Scale and crop

As the name implies, the scale and crop action is a single-action combination of the
scale and crop functions. In this action, the image is scaled until one dimension fits
within the given size, then the larger dimension is cropped off (also called a zoom
crop). This action is most helpful for making square thumbnails while maintaining the
aspect ratio of the original image. An example of the result of the scale and crop action
is shown in Figure 4-10.

156 | Chapter 4: Media Management

Figure 4-10. The scale and crop effect trims off the larger side while maintaining the aspect ratio

The effects just described are the ones that are available in Drupal
core’s “Image styles.” For an expanded set of actions (including water-
mark, border, text placement, brightness, and transparency), you can
install the ImageCache Actions module, available at http://drupal.org/
project/imagecache_actions (the name comes from the contributed
ImageCache module, which was the image manipulation toolkit in pre-
vious versions of Drupal).

Using an Image Style
After setting up styles in the “Image styles” administration area, you need to tell Drupal
where these styles should be used. The field that comes with Drupal core’s Image
module provides options to display the image in either the original size or in one of the
styles you configured.

Field formatters

The typical display of images is configured with field formatters, as shown in Fig-
ure 4-11. For every style setup on your site, “Image styles” adds a field formatter. It also
allows you to link the image either to the content (the node where the image is used),
to the image file, or not at all.

Figure 4-11. Configuring an image field to use an image style

Spotlight: Image Styles | 157

http://drupal.org/project/imagecache_actions
http://drupal.org/project/imagecache_actions

Manually viewing a styled image

You may view an image style at any time by manually assembling the URL to the image
and style. Assembling such a URL is illustrated in Figure 4-12.

Figure 4-12. Assembling a URL to an image style

After configuring an image style, it’s easy to test what an image will look like by visiting
the URL of an image.

Troubleshooting Image Styles
“Image styles” makes use of several advanced PHP and Apache features, such as URL
rewriting and the GD image library. Because its software requirements are steep, any
misconfiguration in your server or Drupal setup may cause “Image styles” to break.
The following sections describe common problems with getting “Image styles” to work.
If you are able to successfully upload images to your articles, you can safely skip this
section.

Check Clean URLs

The most common problem is that Clean URLs (a core feature that provides URLs like
http://example.com/node/1 instead of http://example.com/?q=node/1, which is the de-
fault) are not enabled, or not supported by the software on the web server. Visit the
Clean URLs configuration page, as shown in Figure 4-13, by clicking Configuration in
the administrative toolbar, then Clean URLs in the “Search and metadata” section on
that page (admin/config/search/clean-urls). If you receive an error on the configuration
form, see the handbook page for setting up Clean URLs (http://drupal.org/getting
-started/clean-urls) for help configuring your server.

Drupal’s Clean URLs feature requires the Apache extension
mod_rewrite, or its equivalent for your web server. See http://drupal.org/
node/717772 for instructions on setting up Clean URLs on almost every
possible web server platform.

158 | Chapter 4: Media Management

http://drupal.org/getting-started/clean-urls
http://drupal.org/getting-started/clean-urls
http://drupal.org/node/717772
http://drupal.org/node/717772

Figure 4-13. If the Clean URL test has successfully run, Clean URLs will be enabled when Drupal is
installed

Check GD library

Another common problem is a lack of the GD image library on the server. This could
be the problem if no image is being generated at all when you visit an “Image styles”
URL. GD is a software package that is enabled by default with installations of PHP, but
sometimes it is missing from the installation when you’re doing custom installs of PHP.
You can check the status of GD in your installation by clicking Reports in the admin-
istrative toolbar, then Status report (admin/reports/status). Halfway down the page, you
should see a message similar to Figure 4-14, confirming that GD is enabled.

Figure 4-14. The message you should see for GD on the Status report

If GD looks OK but you’re still not having images generated, try checking the config-
uration of your PHP installation by clicking the “more information” link next to PHP
on the status report page (admin/reports/status/php).

Check for the “GD settings” section, which should be similar to Figure 4-15. Check
that all the needed libraries are available for the kinds of images being uploaded. If the
entire section is missing from this page, then GD is not installed at all.

If you prefer to use ImageMagick instead of GD, you can download the
ImageMagick module.

Hands-On: Image Styles
Before we can nicely publish our favorite bands’ photos on our website, we need to
make sure to set up image styles, in order to create scaled-down versions of the images
while leaving the original images intact. Otherwise, full-resolution photos and images
in different sizes will appear all over the place, which is not what we want.

Hands-On: Image Styles | 159

http://drupal.org/project/imagemagick

We’ll set up image styles to provide us with thumbnails for listing pages and a scaled-
down version to use on review pages. Later in this chapter, we’ll learn how to use these
image styles in various places across the site.

Create Image Styles
Drupal core’s Image module, which is enabled by the book’s source code, provides
three image styles out of the box. It is possible to override these default styles for your
own needs, or you can create new styles from scratch. In this section, we’ll override
existing image styles. We’ll also briefly explain how to create your own custom style
from scratch, which is very similar.

1. Go to the “Image styles” settings page by clicking Configuration→Media→“Image
styles” (admin/config/media/image-styles). You’ll see a list of the image styles that
exist on your site (the ones that the Image module provides by default).

2. Next to the “thumbnail” style, click “edit” (admin/config/media/image-styles/edit/
thumbnail). This will take you to the style’s configuration page, pictured in Fig-
ure 4-16.

Figure 4-15. Checking for GD in a PHP install

160 | Chapter 4: Media Management

Figure 4-16. The thumbnail image style configuration screen

On the configuration page, you’ll see a message that the style you’re
currently editing is being provided by a module. This means you
can override the style, but you can also revert to the default style
provided by the module later (i.e., delete whatever changes you
made to the style), since the style is defined by the module’s code.
The ability to store site configuration to code is useful in deploy-
ments from one server to another. For information about this con-
cept, see http://drupal.org/node/580026.

3. At the bottom of the configuration page, click “Override defaults.” Once you’ve
clicked that button, the form is unlocked and you can begin making changes.

4. We want to change the existing thumbnail from a rectangle into a square. To ac-
complish this, rather than using just the Scale effect, we’ll use the “Scale and crop”
effect to round off the rough edges. So first, go ahead and delete the “Scale
100×100” effect from the style by clicking “delete” next to that effect. Watch how
the preview image changes in response.

5. Next, select “Scale and crop” from the effect drop-down menu and click Add.

Hands-On: Image Styles | 161

http://drupal.org/node/580026

6. On the next page, configure the “Scale and crop” effect. Enter the values from
Table 4-1 and as shown on Figure 4-17 for the scale and crop effect, to create image
thumbnails as 100-pixel-wide squares. Click “Add effect” when finished.

Table 4-1. Settings for the “thumbnail” scale and crop effect

Setting Value

Width 100

Height 100

Figure 4-17. Settings for the image style effects

That completes the configuration of the thumbnail style. When you return to the style’s
configuration page after adding the “Scale and crop” effect, you’ll see that the preview
image displays a thumbnail of the correct size, as shown in Figure 4-18.

Figure 4-18. Preview for the thumbnail image style

The other two styles that come out of the box with “Image styles” are also scaling
styles—just like the thumbnail style we’ve just overridden. This is fine, since we’ll want
to display scaled-down photos on the review pages. The existing “large” style, which
we’ll use on review node pages, needs a little tweaking, though: we want to display our
photos a little bigger than these styles allow.

162 | Chapter 4: Media Management

Changing this is easy: the only things we need to change are the width and height values
for the styles:

1. Return to the main “Image styles” page either via the breadcrumb, or by navigating
back to Configuration→Media→“Image styles” (admin/config/media/image-styles).
Next to the “medium” style, click “edit.”

2. Once again, override the default style, as we’ve just learned with the thumbnail
style. Afterward, tweak the existing “Scale 480×480” effect by clicking “edit” next
to it and using the values in Table 4-2 for the scale action to limit medium images
to a maximum of 500 pixels wide. Uncheck the Allow Upscaling checkbox. Click
“Add effect” to save the changes you’ve made.

Table 4-2. Settings for the “medium” scale effect

Setting Value

Width 500

Height 500

Allow Upscaling Unchecked

In this section, we’ve overridden default styles provided by “Image
styles.” If you want to create your own custom image style from scratch,
click “Add style” when on the main “Image styles” page (admin/config/
media/image-styles), provide a name for your style, and click “Create
new style.” From there, the configuration is very similar as we’ve seen
in this section: add effects and tweak them to your heart’s content.

All our image styles are complete! We’ve set up two styles: a “thumbnail” style for use
in listings of many images, and a “large” style to use on review node pages. We’ll use
these styles later in the chapter to configure how image files will be displayed on the site.

Improve Image Quality
If you were to look at a sample thumbnail generated by “Image styles” at this point,
you might notice the quality of the image is a bit low and overcompressed. “Image
styles” uses Drupal core’s setting for image quality when processing JPEG images,
which defaults to 75%. Increasing this level will generate much higher-quality images.

The steps are:

1. Go to the Image toolkit configuration for Drupal by clicking Configuration→
Media→“Image toolkit” (admin/config/media/image-toolkit).

2. Set the JPEG quality to 90% or higher and click “Save configuration.”

Hands-On: Image Styles | 163

3. To see this effect on existing thumbnails, return to the “Image styles” administra-
tion page by going back to Configuration→Media→“Image styles” (admin/config/
media/image-styles).

4. Next to the “large” style, for example, click “edit” to see the newly created preview
images, which should appear slightly sharper.

Spotlight: Media
The Media module for Drupal 7 solves a number of long-standing media-related prob-
lems in Drupal (see “Media in Drupal: A Historical Perspective” below). At its core,
Media provides a framework to manage media assets on a Drupal site, regardless of
whether those assets exist on the site’s server or somewhere else on the Internet; the
Media Internet module, which is part of the Media module and is covered in “Spotlight:
Media Internet Sources” on page 189, makes it possible to use remote files the same
way as files on your server.

Media is built to be extended—a number of modules that build upon Media already
exist, with a lot more to come. For example, Workbench Media integrates the Media
module with Workbench (covered in Chapter 7) to improve media management for
editors. You’ll find a full list of modules that integrate with Media and extend it at http:
//groups.drupal.org/node/168009.

Media in Drupal: A Historical Perspective
Previously, in Drupal 4.6/4.7, media assets (images, video and audio files) were treated
as individual nodes in Drupal, which led to various limitations on using media on a
site. Because every single media file had all the overhead of being a full node (and not
simply a field like in Drupal 7), it was pretty hard to build a user-friendly interface to
integrate text and multimedia—not to mention how hard it was to use the same media
assets in different nodes. More often that not, users had to upload the same picture
multiple times to use it in different places on their website. Or they had to battle with
complex forms if they wanted to add a video to their article.

There were several modules that tried very hard to get around those limitations, and
some of them worked well. But because you had to bend Drupal so hard to get decent
multimedia support, it wasn’t easy to migrate to a new module when one came along,
or when wider developments in Drupal gave way to new approaches to handle
multimedia.

With the advent of fields and CCK, several modules appeared that leveraged this new,
more flexible system. In Drupal 5 and 6, the Drupal community’s development trends
headed toward websites built around CCK and Views. This meant that it became com-
mon to upload a media file through a field, instead of through its own separate node
form. This made it easier to build usable interfaces for users, although uploading and
actually using media assets on a Drupal site was still often a hairy user experience.

164 | Chapter 4: Media Management

http://drupal.org/project/workbench_media
http://groups.drupal.org/node/168009
http://groups.drupal.org/node/168009

Because the weight shifted from nodes to fields, a number of modules succeeded fairly
well in allowing the reuse of media assets across a website. However, the lack of a
centralized way to manage files in Drupal core still made it very hard to do this con-
sistently and to switch modules if you wanted to: it was either one way or the other.

Several improvements in Drupal 7, together with the high number of developers who
wanted to solve “Drupal’s Media problem” (instead of reinventing the wheel again and
again), gave rise to the Media module. It is a solution that leverages Drupal 7’s Field
module and its file handling capabilities, and takes advantage of the usability improve-
ments that were introduced in Drupal 7.

Drupal 7’s new file handling system enables developers to work with files as “first-class
citizens” in Drupal; they are entities, just like nodes or users. Files aren’t just attach-
ments to a node anymore, or a field in a node form: they are an independent object in
Drupal, which means they can be used in different nodes, have fields of their own, and
much more. The Media module uses this new approach to bring top-notch multimedia
support to Drupal.

Media Files
Remember the file field that Drupal uses, which we learned about in Chapter 3? The
Media module extends this field by allowing you to use it to upload and reuse media
files through a media browser, as shown in Figure 4-19. Like other fields, you can
configure file fields to allow multiple values, so any number of media assets can be
uploaded to a single node. You can even add multiple fields to a single content type,
in case you want to use a separate field for an audio file, and another for an album
cover. Since we’re dealing with a normal file field, it can take any type of media file you
throw at it, as long as you allow the file types in your field’s settings.

Figure 4-19. The Media module extends Drupal core’s file field

Using a predefined field to handle media is a good solution for a lot of use cases, but
sometimes the user needs more control over the final display of media assets in content.

Spotlight: Media | 165

To cater to this need, the Media module provides integration with WYSIWYG editors.
This makes it possible to insert media assets directly into a text area and to place them
where you wish in your content, instead of having your images and videos appear in a
spot predefined by your site’s theme. If you’re not sure what a WYSIWYG editor is,
don’t worry: we’ll learn all about it (and its integration with the Media module) later
in this chapter.

When you’re starting a new site, it is often handy to be able to import
a whole bunch of files at once, instead of having to upload them all one
by one—for example, when you have files on your computer that you
want to upload, or a previous website that hosted media files. The Media
module provides a way to do this. If you navigate to Content→Files, and
then click the “Import media” link (admin/content/file/import), you’ll
see a field where you can enter a directory from which to import files,
as shown on Figure 4-20 (you can also use a file matching pattern to
limit the files that will be uploaded). Enter the name of the directory (for
example, sites/default/files/my_pictures) where your files are, click Pre-
view, and then click Confirm to pull all those files into Drupal. The files
will immediately be ready for use in the media browser. Note that you
need the “Import media files from the local filesystem” permission to
be able to import media files this way.

Figure 4-20. The Media module can import an entire directory of files at once to save time on data entry

Media Browser
The Media module not only provides a way to add media assets to a Drupal site, but
an easy means to manage them. Centralized media management and reuse of media
assets outside the context of a given node has always been a pain point within Drupal.
The media browser, as shown in Figure 4-21, is a solution for this problem.

166 | Chapter 4: Media Management

The media browser allows users to browse through existing media items on a site and
reuse them in their own posts. By clicking the View Library tab in the pop-up window
that appears when you click “Select media,” you can look through media assets that
users have previously added to the site. Using an existing media asset in a post is as
simple as selecting it and clicking Submit.

Note that the media browser is powered entirely by the Views module, which we cov-
ered in Chapter 3. That means you can change the media browser in a number of ways.
For example, you could change the filters that are displayed on the media browser.
With Views’ exposed filters settings, it’s fairly easy to add filters for file size, or add a
filter for the date a file was uploaded.

Another really interesting feature that comes with Media’s Views integration is the
ability to add your own tabs to the media browser. For example, a site might want to
use a separate tab for video files, or a tab specifically to display newer media files. Just
add a “Media browser tab” to the media browser view and tweak its filters.

Figure 4-21. The media browser allows users to manage and reuse media assets throughout a site

Spotlight: Media | 167

File Entity, or Adding Different File Types to Drupal
If you allow users to add different types of files (for example, photos and videos) to
your site, it’s important that each of those file types can be used in an appropriate way.
A photo might need a caption field, while a video may need a field where a user can
indicate its duration. Photos may need to be cropped in various ways, while videos need
a player to be watched directly on a website.

This is where the File Entity module, a required module for the Media module, comes
in. It extends Drupal core’s basic file entity, so that it becomes possible to define dif-
ferent file types. The Media module uses this functionality to provide several media file
types, like image, audio, and video, as shown in Figure 4-22.

Like content types, it is possible to add fields to a file type, and to configure how it will
be displayed in various places on your site. We’ll see this in action in “Displaying Media
Files” on page 173.

Figure 4-22. The File Entity module provides several media file types

Hands-On: Music Reviews
To begin, we need to handle some basics: creating a form with which to create reviews,
and a way to tag reviews of the same band.

Review Content Type
The first thing that we’ll need for our music review site is a new content type. This
content type will let users enter reviews and add media assets to them. A file field will
allow users to add a photo that is used as a thumbnail in teasers, and shown on the full
node page in a cropped version. Later in this chapter, we will configure the content

168 | Chapter 4: Media Management

type’s Body field in a way that allows users to insert media assets directly into the text
area.

To help you get started, this chapter’s source code provides a basic Review content
type, with nothing but a Title and a Body field (if you’re not using the book’s source
code, go ahead and create a new content type now, using the skills you learned in
Chapter 3). In this section, we’ll enrich our basic Review type with a file field that allows
you to upload and use several types of media files through the media browser.

1. In the administrative toolbar, click Modules (admin/modules) and enable the fol-
lowing modules:

• Chaos tool suite

— Chaos tools

• Media

— File entity

— Media

• Views

— Views

2. Go to the content type configuration page at Structure→“Content types” (admin/
structure/types). Click the “manage fields” link next to the Review content type and
add a file field, using the settings indicated in Table 4-3. Note that we’ll use the
“Media file selector” as the widget, which allows a user to upload and reuse files
using the media browser.

Table 4-3. Basic settings for the file field on the Review content type

Field Value

Add new field

Label Intro photo

Name intro_photo

Field File

Widget Media file selector

3. After clicking Save to add the new field, you’ll end up on the field’s settings page,
where you can configure the upload destination for this file field. Since we’re using
Drupal’s default public filesystem (which we learned about in Chapter 3), there is
nothing we need to do here. Click the “Save field settings” button to further con-
figure the file field, and enter the values shown in Table 4-4.

The settings form allows you to enable several media browser plug-ins: these are
the tabs that will show up on the media browser, which you can configure for each
field. Also important is the configuration of the allowed file extensions used for
this field: this will make sure users can only upload photos to this field.

Hands-On: Music Reviews | 169

Table 4-4. Configuration for the file field on the Review content type

Field Value

Review settings

Label Intro photo (default)

Required field Unchecked (default)

Help text Add or select a photo to be used as thumbnail and displayed on the
node page (cropped).

Enabled browser plugins Upload, Library, View Library

Allowed file extensions for uploaded files jpg, jpeg, png

Allowed URI schemes public:// (Public files) (default)

File directory Leave empty (default)

Maximum upload size 500 KB

Intro photo field settings

Number of values 1 (default)

4. After submitting the form, you’ll be returned to the list of all the fields in the Review
content type. Let’s add a tagging field to our content type now, so users can tag
reviews of the same bands in order to display them together on overview pages. If
you’re using the source code for this chapter, there is already a Tags field that you
can use here. Under “Add existing field,” add the Tags field, using the settings
indicated in Table 4-5. Note: make sure to select the existing field first in the Name
column, before you add a label.

Table 4-5. Basic settings for the Tags field on the Review content type

Field Value

Add existing field

Label Tags

Name Term reference: field_tags (Tags)

Widget Autocomplete term widget (tag-
ging)

5. After clicking Save to add the Tags field, you can configure the field using the
settings in Table 4-6. Since we are sharing this field with other content types (the
Article content type, which is also created by the book’s source code, uses this field
as well), some settings apply to all content types using this field, and some settings
are specific to the Review content type. We only want to touch the latter; we’ll
leave the settings applying to all content types alone.

170 | Chapter 4: Media Management

Table 4-6. Configuration for the Tags field on the Review content type

Field Value

Review settings

Label Tags (default)

Required field Unchecked (default)

Help text The band name(s) this review is
about.

Default value Leave empty (default)

6. After submitting the form, you’ll be returned to the list of all the fields in the Review
content type again. Order the fields as follows by dragging them in the correct
position, and click Save:

• Title

• Tags

• Intro photo

• Body

When finished, your screen should match Figure 4-23.

Figure 4-23. The completed Review content type with photo and tags fields

Hands-On: Music Reviews | 171

7. We’re almost there. We still need to make it so that users can publish a review on
the site, though. Go to People→Permissions (admin/people/permissions), and give
each role the permissions indicated in Table 4-7.

Table 4-7. User permissions for the new Review content type

Permission anonymous user authenticated user editor administrator

Node

Review: Create new content Checked

Review: Edit own content Checked

Review: Edit any content Checked Checked

Review: Delete own content Checked

Review: Delete any content Checked Checked

While we’re on the Permissions page, we’ll also make sure users can add media to
the site. Assign each role the permissions indicated in Table 4-8.

Table 4-8. User permissions for the Media module

Permission anonymous user authenticated user editor administrator

File entity

Administer files Checked Checked

View file Checked Checked Checked Checked

Edit file Checked Checked Checked

Media

Import media files from the local
filesystem

 Checked Checked

This completes the basic configuration for the Review content type. A basic user can
now add reviews to the site, using a form similar to that in Figure 4-24.

To upload a photo, click the “Select media” link and select the photo to upload using
the form shown in Figure 4-25. Click Submit when finished. Photos uploaded through
this field are also available to other users of the site; this is really handy, as users don’t
have to upload the same picture over and over again if they want to use it in different
reviews, for example.

Before reviews can be successfully published on the site, a few important things remain
to be done, like the configuration of our intro photo’s display—if you were to publish
a review now, you’ll notice the photo you uploaded isn’t shown on the site with our
fancy image styles yet! We’ll deal with this in the next section.

172 | Chapter 4: Media Management

Figure 4-24. How our new review submission form appears when we’re logged in as an authenticated
user

Hands-On: Music Reviews | 173

Displaying Media Files
Now that users can post reviews on the Band Wagon site, we need to make sure that
the content they publish, including their intro photos, is displayed correctly. We’ll do
this by configuring the fields’ display settings.

1. In the administrative toolbar, click Structure→“Content types,” then click the
“manage display” link for the Review content type (admin/structure/types/manage/
review/display).

2. At the bottom of the page, expand the “Custom display settings” fieldset, check
the box for “Full content,” and click Save. Once you check that box, it’s now
possible to define a separate display configuration for content when it’s viewed
directly, at a URL like http://example.com/node/1. This allows us to, for example,
use a different image style for photos in teasers (shown on the front page) than for
photos on the node page (shown when you click to view a single review).

3. The small buttons in the top-right corner of the page you’re on indicate that we’re
using custom displays for the full content and the teaser, as shown in Fig-
ure 4-26. This means we’re now able to define what content will be shown on
review teasers and on review node pages, and how that content will be displayed.
Leave the Body field as it is by default for all available displays.

4. To configure how photos will be displayed on node pages, click the “Full content”
link in the secondary navigation (admin/structure/types/manage/review/display/
full). Hide the intro photo’s field label by setting it to Hidden, and set its format
to “Rendered file” as indicated in Table 4-9. This will output the image as HTML
tags.

5. After you’ve changed the format setting for the “Intro photo” field, you’ll see an
extra option appear, called “View mode”: this determines how the photo will be
displayed on the review node page. Change the view mode by clicking on the gear

Figure 4-25. A user can upload a photo using the new file field

174 | Chapter 4: Media Management

icon (shown in Figure 4-27), and then select Large, as indicated in Table 4-9. Click
Update, then Save, to store your changes.

Figure 4-27. File view settings for the “Intro photo” field

Table 4-9. Full content display settings for the Review content type

Field Value

Intro photo

Label <Hidden>

Format Rendered file; View mode: Large
(click the gear icon to change this)

6. Next, go to the display configuration page for the Teaser display (admin/structure/
types/manage/review/display/teaser) to configure the display settings for review
teasers. The steps are the same as with the “Full content” display configuration.
Drag the “Intro photo” field from Hidden to just below the Body field. Set the intro
photo’s label to Hidden, as indicated in Table 4-10, and set its format to “Rendered
file,” and its view mode to Small, by clicking the gear icon and selecting that option.
Don’t forget to save the field’s display settings page afterward.

Figure 4-26. Display settings for the Review content type

Hands-On: Music Reviews | 175

Table 4-10. Teaser display settings for the Review content type

Field Value

Intro photo

Label <Hidden>

Format Rendered file; View mode: Small
(click the gear icon to change this)

Now that we’ve told Drupal which display settings to use for the “Intro photo” field,
we still need to configure how those displays will actually work.

Remember the image styles and the file types we learned about earlier in this chapter?
This is where those come together. We’re going to configure how the Image file type
will be displayed, using image styles:

1. To configure the display settings for the image file type, go to Configura-
tion→Media→File Types (admin/config/media/file-types). This screen looks very
similar to the “Content types” screen you’re already familiar with.

2. Click the “manage display” link (not to be confused with the “manage file display”
link) for the Image file type (admin/config/media/file-types/manage/image/display).
You’ll see a series of buttons in the top-right corner of the overlay, similar to the
ones you saw when configuring field display settings on the Review content type.
These buttons allow us to configure the display of the file types: every view mode
of images can have its own configuration.

3. Click the Small button (admin/config/media/file-types/manage/image/display/me-
dia_small) and change the file’s visibility by selecting Visible in the Format list and
saving the page. This will ensure that the image file will be visible in the Small view
mode (which we’ve chosen for the “Intro photo” field in our content type’s teaser
display). Save the form.

4. Next, return to the file types overview screen and click the “manage file display”
link next to Image (admin/config/media/file-types/manage/image/file-display). This
is where you configure the display of the file itself for the Small view mode. Check
the box next to Image to enable and configure image display settings, and set its
image style to “thumbnail” at the bottom of the page, as indicated in Table 4-11
and shown in Figure 4-28.

Table 4-11. Small display settings for the Image file type

Field Value

Enabled displays

Image Checked

Display settings

Image Image style: thumbnail

176 | Chapter 4: Media Management

Figure 4-28. File display settings for the Image file type

5. For the Large file view mode, the Media module provides us with good default
settings, so we’ll leave those alone.

Sweet! We’ve set up our content type, added a file field for intro photos, and configured
everything to display correctly. Go ahead and add some reviews (node/add/review) and
see the power of the Media module, the media browser, and image styles in action. In
particular, you should notice that when you’re viewing a review on its main review
page, the image is large, but on the front page it’s much smaller.

Furthermore, if you add one or more tags to your reviews using the Tags field on the
node form, you’ll see the tags appear on the node page after you submit the form.
Clicking one of those tags will take you to the page listing all the nodes that have that
tag attached. Tagging is explained in detail in Chapter 7.

Spotlight: Content Editing and Image Handling
We now have a site with most of the basic functionality the Band Wagon project needs
to start. However, one important piece remains: streamlining the content editing pro-
cess, and allowing easy image and video integration in posts.

Spotlight: Content Editing and Image Handling | 177

Content Editing
By default, Drupal’s content entry is done with HTML. Like most Earthlings, the ma-
jority of John and Lisa’s music fan friends aren’t fluent in code, so it’s important that
they are able to format their content and add images without seeing any spooky HTML.
Not surprisingly, a number of community solutions to this issue have cropped up over
the years:

Toolbars
Some users can use HTML fine if they’re given a toolbar that inserts the tags on
their behalf. The BUEditor module, pictured in Figure 4-29, is an example of a
module that provides such a toolbar.

Figure 4-29. The BUEditor module provides a toolbar to assist with HTML

Text-to-HTML translators
Modules such as Markdown Filter or Textile provide the ability to take simple text
such as **bold** and transform it into its HTML equivalent (bold</
strong>). This syntax, once learned, is much easier and faster to type in than raw
HTML.

What You See Is What You Get (WYSIWYG) editors
WYSIWYG editors not only provide a toolbar, but also display the formatting
directly in the text area, which looks similar to a word processor, as pictured in
Figure 4-30. There are two ways of adding a WYSIWYG editor to a Drupal site.
You can either add a module that supports a specific editor, like CKeditor, or you
can use the WYSIWYG module, which integrates a large number of existing WY-
SIWYG editors with Drupal. For the Band Wagon site, we’ll be using the WYSI-
WYG module option to ease the content editing process.

Figure 4-30. The WYSIWYG module, with the CKeditor enabled

178 | Chapter 4: Media Management

http://drupal.org/project/bueditor
http://drupal.org/project/markdown
http://drupal.org/project/textile
http://drupal.org/project/ckeditor
http://drupal.org/project/wysiwyg

The further away from raw HTML entry you go, the greater chance there
is that the “smart” WYSIWYG editing plug-in will get confused and
choke on complex formatting. Subtle differences between web brows-
ers, incompatibilities with the CSS that you’re using to customize your
site, and other problems are all possible—if not common. Many times,
the trade-off is still worth it, because the users of your site aren’t inter-
ested in learning the subtleties of HTML to make something bold or
italic. But due to the pitfalls, it’s often best to ask, “Does my site really
need this?” before dropping in a “pretty” HTML editor module.

Integrating Media in Content
In the past, one of the biggest criticisms of Drupal, apart from the fact that it didn’t
(and unfortunately, still doesn’t) come with a WYSIWYG editor built in, was that it
had no built-in image handling. Users had to either manually insert images in their
posts, or choose one of the many available contributed modules to support images (and
other media) on their site.

As we’ve seen earlier in this chapter, Drupal 7 has changed this. Out of the box, Drupal
core now comes with an image field that allows users to upload images. For a lot of
sites, this is exactly what they need: a way to add images to nodes and display them in
a predefined size and position. An example might be an Album content type, which
always has an Album Cover image on each individual node, placed in exactly the same
place every time.

However, the Band Wagon site needs something more advanced. John and Lisa want
to allow their friends to be able to freely mix photos and videos with their written
content. This requires the ability to insert images in a text area, rather then in a fixed
position on the node page. Luckily, the Media module that we use for photo and video
support provides integration with the WYSIWYG module. We’ll learn more about this
when we set up the WYSIWYG editor later in this chapter.

Spotlight: Text Formats and Filters
You may have noticed a funny fieldset on node and block body fields that we keep
ignoring, called “Text format,” pictured in Figure 4-31. The text format you select for
the content will affect how that content is displayed on the site. Text formats are an
important security feature of Drupal, so it pays to understand them. A text format will
“scan” your content and make HTML formatting changes to it before sending it to the
browser for display. Each piece of content will be associated with a text format so that
Drupal always knows what it is looking for and modifying, on a case-by-case basis.

Spotlight: Text Formats and Filters | 179

Figure 4-31. Text formats attached to a node body

The Text format select list in Figure 4-31 provides three choices, Filtered HTML, Full
HTML, and “Plain text.” These are the default text formats that come with Drupal
core. Sites can have several text formats to choose from; some can be provided by
modules, like Drupal core’s PHP filter module, and you can also create custom formats.
Text formats are restricted by roles so that you can allow everyone to use one text
format, like Filtered HTML, but also make a more permissive text format, like Full
HTML, available only to your most trusted users (e.g., the “site administrator” role).

If a user reports a node’s edit tab as mysteriously missing when she
should otherwise have access to it, check its text format. Drupal will
disallow editing on content if the user’s role does not have access to the
text format of the content. This behavior can be used to your advantage
if you want to protect certain pages from editing by users who would
otherwise have access to do so.

Text formats are composed of filters. Figure 4-32 shows the list of filters that are used
in the Filtered HTML text format. The filters are doing the real work; the text format
is simply a group of filters. A filter modifies content and outputs the proper HTML for
display. Filters can transform new lines (carriage returns) into
 and <p> tags;
transform a text URL such as http://www.example.com into a clickable link, like http://www.example.com; and a whole lot more.
The Media module uses its own filter to allow users to securely add media assets directly
in text fields.

Filters are really important for security on your site. People can do all kinds of malicious
things when given a text entry box in a web browser. Using the filters that are specifically
designed to help strip out malicious content, like the “Limit allowed HTML tags” filter,
can save your site from being compromised.

180 | Chapter 4: Media Management

http://www.example.com

The most important filter of all is “Limit allowed HTML tags.” It strips
out dangerous HTML tags such as <script> and <object> and protects
your site from various sneaky attacks that could trick a browser into
embedding malicious JavaScript or other executable code. This filter is
enabled by default only on the Filtered HTML and “Plain text” formats.
Make sure that you implicitly trust anyone who has access to a format
without this filter included, such as Full HTML.

Figure 4-32. Filters for the Filtered HTML text format

You order filters within text formats by assigning them “weights,” and the filter mod-
ifications happen in that sequence. You can see the default order for the Filtered HTML
format in Figure 4-33. Many contributed modules let you add more filters to your site,
and you can mix and match them as you like, either adding them to the existing text
formats or making your own.

Figure 4-33. Reordering filters for the Filtered HTML text format

A very important point to understand about text formats is that they are applied only
when the content is leaving the database and about to be displayed on the page. When
a user enters content into a form and saves it, that content is stored in the database
exactly the way it was written. When someone visits the page to view it, Drupal retrieves
the raw information from the database; applies the text format that is associated with
it, running through each filter in turn; and then displays the final result to the browser,
as shown in Figure 4-34.

Spotlight: Text Formats and Filters | 181

Figure 4-34. How Drupal’s filter system removes potentially dangerous content before displaying it

182 | Chapter 4: Media Management

The order of the filters is extremely important. If your text doesn’t seem
to be outputting properly, always check that the filters are in a logical
sequence.

You should note that each filter is applying its own rules, in turn, to get to the finished
display. If we had set this particular piece of content to use the Full HTML text format,
instead of Filtered HTML, then the end result would be a bit different. With Filtered
HTML, the text “alert(‘But I am a script, and I can do really bad damage to your site!’);”
is printed out to the screen because the <script> tags are removed prior to display. With
Full HTML, these tags would not be stripped and the script in the text would be
executed rather than displayed as plain text. In this example, that script would cause a
harmless JavaScript window to pop up that has some text in it, but it could just as easily
be a malicious script that could wreak havoc.

Because Drupal strips only on output, if you are using something in your
content that is not allowed, you will still see it there when you go to edit
it; it is just stripped on display. If you notice this happening and think
you are going crazy, you should check the text format for the content
and make sure it is not set to one that is designed to strip what you want
to display. The most common instance of this behavior is when you’re
trying to display an image using the Filtered HTML text format.

Hands-On: Setting Up WYSIWYG
Let’s set up the WYSYWIG editor for the Band Wagon website, using the WYSIWYG
module and CKEditor. Note that if you prefer a different WYSIWYG editor, such as
TinyMCE or Aloha, the installation instructions are very similar.

Set Up and Configuration
1. In the administrative toolbar, click Modules (admin/modules), and enable the fol-

lowing modules:

• User interface

— WYSIWYG

Users with the administrative role have access to the WYSIWYG
configuration page. Permission for the actual WYSIWYG editor on
node forms is regulated by the user’s permission to use the text
format for which the editor is configured.

2. In the administrative toolbar, click Configuration→“Content authoring”→“Wysi-
wig profiles” (admin/config/content/wysiwyg).

Hands-On: Setting Up WYSIWYG | 183

http://drupal.org/project/wysiwyg
http://drupal.org/project/wysiwyg
http://ckeditor.com/

3. You’ll be presented with a screen that prompts you to download an editor for use
in the WYSIWYG module, as pictured in Figure 4-35. The WYSIWYG module
actually supports a number of different editors, as well as the ability to use many
of them at a time and mix and match editors per text format. However, for our site,
we’re going to keep things simple and just use one editor everywhere. Click the
Download link next to CKEditor.

Figure 4-35. When first visiting the WYSIWYG module configuration page, you are prompted to
download an editor

4. You’ll now be on the CKEditor website’s download page. Download the plain
CKEditor library, not the “CKEditor for Drupal” version (which is a standalone
module + plug-in package), pictured in Figure 4-36.

184 | Chapter 4: Media Management

Figure 4-36. The CKEditor download page

In “real life,” you may actually want to use the bundled module
and editor plug-in that CKEditor itself provides. It has a few addi-
tional features and deeper integration with the editor, so is worth
evaluating for your needs. Sticking with the WYSIWYG module,
however, gives you the flexibility to switch editors if you discover
in testing that your users prefer a different one, and also helps en-
sure that the instructions in this book will work for readers with
other editor interests as well.

5. In your root Drupal directory, navigate to the sites/all directory. Create a new folder
called libraries within that directory. Inside the new sites/all/libraries directory,
extract the .zip file you just downloaded within the folder to create a sites/all/li-
braries/ckeditor directory, with a ckeditor.js inside. When you’re finished with this
process, your sites directory should now look as pictured in Figure 4-37.

Using the sites/all/libraries directory for third-party dependencies
is a common pattern used in many contributed modules.

Hands-On: Setting Up WYSIWYG | 185

Figure 4-37. Drupal’s new directory structure after you extract the CKEditor script to sites/all/libraries

6. If these steps were completed correctly, when you return to the WYSIWYG settings
page in Drupal at Configuration→“”Content authoring”→“Wysiwig profiles” (ad-
min/config/content/wysiwyg), you should now see a table with a selection of text
formats instead of the screen you saw before. If you expand the “Installation in-
structions” fieldset below, you should see CKEditor at the top of the list in green.

7. The WYSIWYG module allows us to create a separate profile for each of those
formats. If we want to, we could even use a different editor per text format. For
the Band Wagon site, we’ll create a profile for the Filtered HTML text format, using
the CKEditor. Next to the Filtered HTML text format, select CKEditor, as pictured
in Figure 4-38, and click Save. Next, click Edit under Operations to configure the
profile.

8. The next screen provides oodles of configuration options for your editor to cus-
tomize its look and behavior. The default settings that the profile provides us with
are pretty good for what the Band Wagon website needs. The only thing we need
to configure are the buttons the users will be able to use when editing content.
Click “Buttons and plugins” to open the fieldset, and enable the buttons shown in
Table 4-12 and pictured in Figure 4-39.

186 | Chapter 4: Media Management

Figure 4-38. If CKEditor is successfully installed, when returning to the WYSIWYG module
configuration form, a table will appear with text formats and editor options

Figure 4-39. The WYSIWYG module allows you to easily enable editor buttons by checking the
relevant boxes

Hands-On: Setting Up WYSIWYG | 187

Table 4-12. Buttons for the CKeditor profile

Field Value

Bold Checked

Italic Checked

Bullet list Checked

Numbered list Checked

Link Checked

Unlink Checked

HTML block format Checked

Media browser Checked

If you return to the review creation form at “Create content”→Review (node/add/re-
view), you’ll see that we now have a nice WYSIWYG toolbar on our body field, as
shown in Figure 4-40. Awesome! You can click the “Add media” button on the far right,
select a picture from your desktop, and see it drop right in, in all its image-y glory.

Figure 4-40. WYSIWYG editor, including the Media browser button

188 | Chapter 4: Media Management

Enabling the Media Filter
Hooray! We’re all done now, right? Right? BZZT. Wrong! Try saving the form. What
the? If your review looks full of gibberish like [{"type":"media","view_mode":"media_
large","fid":"2","attributes":{"alt":"","class":"media-image","height":"402",
"typeof":"foaf:Image","width":"314"}}]] instead of like what the supposedly WYSI-
WYG editor showed you, you might understandably be confused. Perhaps even upset.
Worry not! We’re just missing one last configuration detail.

What’s being shown here is the actual raw output provided by the “Add media” button.
The Media module can read the gibberish strings and turn them into its own smart,
sanitized creation of potentially dangerous tags, which the “Limit allowed HTML tags”
filter normally strips out. But in order for this magic to work, we need to add Media’s
filter to the Filtered HTML text format.

1. In the administrative toolbar, click Configuration→“Content authoring”→“Text
formats” (admin/config/content/formats). You will see the available text formats
listed.

2. Click the configure link for the Filtered HTML format (admin/config/content/for-
mats/filtered_html).

3. Under “Enabled filters,” check the box for “Converts Media tags to Markup” and
save the text format’s configuration. Media filter tags will now work properly.

This same page is also how you expand the list of allowed tags that
Filtered HTML will let through its clutches. Underneath “Filter
settings,” click the “Limit allowed HTML tags” vertical tab to add
more white-listed tags. Once again, though, since this filter repre-
sents a major component of the security of your site, be very cau-
tious about which tags you allow here.

If you navigate back to the review you created earlier, you’ll see your picture now shows
up as expected. Awesome!

Spotlight: Media Internet Sources
The Media module for Drupal 7 not only supports adding and managing media that is
uploaded from a user’s computer into Drupal, but it also comes with a submodule,
called Media Internet Sources, that allows using media assets from various Internet
locations. Media Internet Sources provides the interface and the central piece of func-
tionality that other contributed modules can leverage to allow usage of media files in
specific places.

For example, the Media: YouTube module allows users to post YouTube videos on a
Drupal site by using the video’s URL or embed code. While Media: YouTube makes
sure that Drupal can talk to YouTube, in order to fetch the correct video, Media Internet
Sources provides the interface to add the video in Drupal.

Spotlight: Media Internet Sources | 189

http://drupal.org/project/media_youtube

There are several “provider modules” available. Media: Flickr allows users to post
photos that are hosted on Flickr in Drupal, and Media: Vimeo allows the same for
videos on Vimeo. The full list of provider modules can be found at http://groups.drupal
.org/node/168009, under “Provider projects.” Check back regularly; developers con-
tinue to add support for various sites and services.

Stream Wrappers: Enabling a File Browser for the Internet
The Media Internet Sources module uses so-called stream wrappers to do its magic.
Stream wrappers, a feature of PHP and supported in Drupal 7, make it possible to access
external files as if they were stored on the local server, the server where Drupal is in-
stalled. Drupal identifies stream wrappers (and individual files) by their URI scheme
(the first part of a file’s URL, like http://). Public files in Drupal are known by pub-
lic://, private files by private://. YouTube videos that are added using the Media: You-
Tube module are identified in Drupal by their youtube:// scheme. Because it handles
remote files as if they were on your own server, the Media module is sometimes dubbed
“a file browser for the Internet.”

If you have a provider module enabled, like the Media: YouTube module, adding a
video from YouTube (or whichever external service the module supports) is child’s
play. In the Media Browser, there is a tab called Web, as shown in Figure 4-41. If you
click it, you’ll see a simple form where you can paste the media asset’s external URL
or its embed code (the code typically used to add external videos or photos to a site).
The provider module will find the remote media asset and display it on your site. Since
you added the external asset using Internet Media Sources, the asset will also be avail-
able to other users on the Drupal site.

Figure 4-41. The Media Internet Sources module allows you to add external media assets as if they
existed on the local server

190 | Chapter 4: Media Management

http://drupal.org/project/media_flickr
http://drupal.org/project/media_vimeo
http://groups.drupal.org/node/168009
http://groups.drupal.org/node/168009

If you configure a file field to add media using the media browser, that field’s settings
let you limit the remote media types to allow in the field. For example, you might only
want to allow remote image files for a field that should only handle photos, or remote
video files for a field where you want users to add a video from a third-party site. On
top of that, you can control which providers a user can add remote media from by
configuring the “Allowed URI schemes,” as shown in Figure 4-42.

Figure 4-42. File field settings allow you to control which media types and sources users are allowed
to use

Hands-On: Posting Videos
Because we already installed the Media module, it’s really easy to enable support to
post videos from YouTube on the Band Wagon site.

In the administrative toolbar, click Modules (admin/modules), and enable the following
modules:

• Media

— Media Internet Sources

— Media: YouTube

Go ahead and add a new review (node/add/review), and click the Media button in the
WYSIWYG toolbar. Click the Web tab, paste the URL of your favorite YouTube video
in the “URL or Embed code” field, and click Submit. When you save the new node,
the YouTube video should appear, as pictured in Figure 4-43.

Hands-On: Posting Videos | 191

Figure 4-43. With the Media Internet Sources module, adding third party video and other media to
your site is a breeze

You can configure the display of remote video files in the file display settings that we
learned about in “Displaying Media Files” on page 174. The Media: YouTube module
allows you to configure the size of the video player for each display, and specify whether
to automatically start the video when the content page loads.

Great! We have included support for adding remote media files, so users can post
YouTube videos of their favorite bands. Note that you can mix and match text, videos,
and photos, all by using the Media button in the WYSIWYG editor. This is a great way
to create the attractive, multimedia-rich review pages that John and Lisa wanted.

Taking It Further
If you’ve completed the Band Wagon site to this point, you’ve built a solid foundation
for a Drupal-based music fan site! However, there’s no need to stop here. One of the
great things about building a site with Drupal is that you can continuously refine it,
adding new features to any part of your site. This section details a few additional pieces
of functionality that are common in photo- and video-sharing websites. Also make sure
to keep an eye on the list of modules that extend the Media module on http://groups
.drupal.org/node/168009.

192 | Chapter 4: Media Management

http://groups.drupal.org/node/168009
http://groups.drupal.org/node/168009

Views Slideshow (http://drupal.org/project/views_slideshow)
Views Slideshow, a plug-in for the Views module, allows you to build fancy slide-
shows using any content you can display in a view. The module supports a lot of
transition effects, options to set slide timing and to use different control widgets.
Once the Media 7.x-2-x branch is released (which provides Views integration),
combining it with Views Slideshow will open up a lot of possibilities.

Fivestar (http://drupal.org/project/fivestar)
The Fivestar module allows users to vote on content using a star-voting widget.
Several widget designs are available out of the box, with the ability to add your
own. The Band Wagon could use this to allow visitors to vote on reviews and
individual photos. Fortunately, this module is covered in the very next chapter,
Chapter 5.

Service Links (http://drupal.org/project/service_links)
Adding social network integration is a breeze with the Service Links module: it
adds links or buttons to node pages to share content in Drupal on social network
sites (Twitter, Facebook, Google+, etc.). There is support available for just about
every existing social network, and with some PHP skills, you can add support for
other services if necessary.

Summary
In this chapter, we introduced the Media and WYSIWYG modules to build a music fan
site that allows users with limited technical knowledge to publish music reviews. We
also used the image styles functionality of Drupal core’s Image module to crop and
scale our photos so they look nice on our site. We discussed the option to enrich our
community site with voting, slideshows, and social network integration.

Here are the modules that we referenced in this chapter:

• Fivestar: http://drupal.org/project/fivestar

• Image (core)

• ImageCache Actions module: http://drupal.org/project/imagecache_actions

• Media: http://drupal.org/project/media

• Media: Flickr: http://drupal.org/project/media_flickr

• Media: YouTube: http://drupal.org/project/media_youtube

• Service Links: http://drupal.org/project/service_links

• Views Slideshow: http://drupal.org/project/views_slideshow

• WYSIWYG: http://drupal.org/project/wysiwyg

Summary | 193

http://drupal.org/project/views_slideshow
http://drupal.org/project/fivestar
http://drupal.org/project/service_links
http://drupal.org/project/fivestar
http://drupal.org/project/imagecache_actions
http://drupal.org/project/media
http://drupal.org/project/media_flickr
http://drupal.org/project/media_youtube
http://drupal.org/project/service_links
http://drupal.org/project/views_slideshow
http://drupal.org/project/wysiwyg

CHAPTER 5

Product Reviews

With more and more options for shoppers arriving on the Internet every day, finding
the right products can be a challenge. Special interest websites that feature specific
kinds of products and reviews by dedicated hobbyists are a popular way to help con-
sumers sort through all of the options and find the right stuff. In this chapter, we’re
going to use a handful of Drupal modules to build a product review website that lets
community members give their opinions on every featured product.

This chapter introduces the following modules:

Field Group
Allows fields to be grouped into fieldsets

Amazon
Gathers product information from Amazon.com

Voting API
Provides a framework for standardizing voting data

Fivestar
Allows rating of content

Search (core)
Indexes content and allows searching within a site

CSS Injector
Allows administrators to easily add CSS styling to the site

If you would like to participate in the hands-on exercises in this chapter, install Drupal
using the Reviews installation profile from the book’s sample code. This will create the
example website on your web server. The completed website will look as pictured in
Figure 5-1 and found at http://reviews.usingdrupal.com. For more information on using
the book’s sample code, see the Preface.

195

http://drupal.org/project/field_group
http://drupal.org/project/amazon
http://www.amazon.com
http://drupal.org/project/votingapi
http://drupal.org/project/fivestar
http://drupal.org/project/css_injector
http://reviews.usingdrupal.com

Figure 5-1. The completed Super Duper Chefs website

Case Study
Bob and Sarah are coworkers and food lovers who’ve both built up impressive kitchens
full of gadgets, pots and pans, and other cooking tools. Supporting a culinary habit can
be expensive, though, and they usually turn to fellow foodies for advice before pur-
chasing new gear. They’ve decided to set up Super Duper Chefs, a website where they
and their friends can write recommendations about the cooking equipment they use,
share tips, and brag about their latest culinary achievements. They’d like it to be the
kind of site they wanted when they were getting started: a fun place that highlights the
most useful products and advice.

After talking things over with their friends, Bob and Sarah think they have a handle on
what the site should offer. The most important feature is that kitchen products reviewed
by the site’s official contributors should be listed with ratings and quick summaries of
their best and worst features. Each review should also provide up-to-date pricing in-
formation. In addition to the official reviews, visitors to the site should be able to offer
their opinions on the products and compare the official ratings with the opinions of
other visitors who’ve read the reviews. Everyone who uses the site should also be able
to search for reviews that match certain criteria. For example, it should be easy to find
reviews of products by a particular manufacturer, or products that mention waffles.

196 | Chapter 5: Product Reviews

Implementation Notes
The next step is figuring out how to translate that set of features into a shopping list of
Drupal functionality. Bob and Sarah are fortunate: the core Drupal software can provide
most of what they’re looking for without any additions. We’ll use Drupal’s adminis-
trative tools to create a custom “Product review” content type, and set up special per-
missions for contributors. Those product reviews will be the meat of the site’s content.
Core also provides a way to add custom fields to the “Product review” content type for
the various bits of information we want to record, with the Field module. We’ll use the
Views module to build a listing page of products for quick scanning.

Three requirements for Bob and Sarah’s website, though, will require functionality that
we haven’t seen yet: importing product information from another website, allowing
users to rate and review content, and building a custom search page.

Product information

First, the site will need to display information about the product that is being reviewed.
Who manufactured it? How much does it cost? Where can a visitor to the website
purchase it? Although it’s possible to set up custom fields for each of these pieces of
information with the core Field module, it’s a real hassle for the site’s editors to fill out
all of them for every review. In addition, keeping the pricing information up-to-date
can be a chore as the site grows older.

The easiest solution is to let someone else do the work! Amazon.com provides access
to its full database of product information, including kitchen gadgets (shown in
Figure 5-2), using the Amazon Product Advertising API. The Amazon module lets sites
access that product information. That means that writers on the site can fill out one
field about the product, and the rest will be handled behind the scenes.

In addition to saving time and energy spent entering in the product details, using the
Amazon API means that Bob and Sarah can get referral fees whenever someone clicks
from their website and purchases an item on Amazon.com. It’s a simple way of earning
revenue, and for high-traffic sites, the commissions can add up quickly.

Product ratings

The second challenge is product ratings. The site will need every product to have an
official review by an editor, but visitors reading the site need to be able to rate the
products as well. Displaying the official rating and the users’ ratings separately will give
a more trustworthy representation of how the products perform, reassuring new visitors
that the site’s ratings aren’t dominated by a one-sided editor.

The Drupal community has built dozens of plug-in modules that add rating and voting
capabilities to sites. A full list is available at http://drupal.org/project/modules?filters=
tid:60. Modules such as the Plus1 module add the ability to vote items up in a queue,
like the popular sites Reddit and Digg. Others allow each reader to rate content on a

Case Study | 197

http://drupal.org/project/amazon
http://drupal.org/project/modules?filters=tid:60
http://drupal.org/project/modules?filters=tid:60
http://drupal.org/project/plus1
http://www.reddit.com
http://digg.com

scale, then display the average to new visitors. Because it is this average rating capability
that we’re interested in, we’re going to use the Fivestar module.

In addition to letting users vote on content, Fivestar provides a Field to separate “official
ratings” by a site editor from the normal ratings given by visitors. We can use the Views
module to list the two kinds of ratings side by side for comparison. The Fivestar module,
like most rating and evaluation modules, is based on Voting API, another Drupal mod-
ule that handles storage and presentation of voting and rating information for content.
We’ll need to install it to use Fivestar.

Custom searching

The third piece of the puzzle is the custom search page that will let visitors to the site
find the product reviews they’re looking for. Drupal’s built-in Search module can index
the contents of each post, and give visitors a general search page to find posts that
contain specific keywords. However, it’s difficult to customize how search results are
presented to users, and difficult to control exactly what kinds of content are searched.
For example, finding reviews of kitchen appliances written by Bob and sorting them
by price would be tricky. Fortunately, the Views module allows us to tie into that search
index as well, giving full control over how the results are displayed. We’ll use it to build
our custom product search page.

Figure 5-2. The Amazon.com website, displaying kitchen products

198 | Chapter 5: Product Reviews

http://drupal.org/project/fivestar
http://drupal.org/project/votingapi

Hands-On: Basic Product Reviews
Before we get started, log into the site with the admin account. We’ll begin with a few
things that we are going to need.

The first is a new content type for the product reviews. Based on the Super Duper Chefs
requirements, we’ll need the following for each review:

• A Pros field and a Cons field to list quick summaries of each product’s strengths
and weaknesses

• An Amazon Product field to hold detailed product information

• A Rating field, so that visitors can quickly find the cream of the crop

• A Field Group that combines the rating with the pros and cons for a more attractive
presentation

• Comments so that visitors can weigh in with their own opinions

Creating the Product Review Content Type
We’ll start by creating the base content type and adding the simplest pieces: the basic
text fields needed for the Pros and Cons, grouping those fields together, and allowing
comments:

1. First, in the administrative toolbar, click Modules (admin/modules) and enable the
following modules:

• Chaos Tools Suite package

— Chaos tools

• Fields package

— Fieldgroup

2. Next, in the administrative toolbar, click Structure→“Content types” (admin/struc-
ture/types) and add a new content type called “Product review,” using the settings
indicated in Table 5-1.

Table 5-1. Settings for the “Product review” content type

Setting Value

Name Product review

Description A featured Product review by a contributing editor.

Submission form settings

Title field label Headline

Comment settings

Allow comment title Unchecked

Hands-On: Basic Product Reviews | 199

3. Save the changes you’ve made by clicking the “Save and add fields” button, and
you’ll be taken to the “Product review fields” screen to begin setting up the rest of
our fields.

4. First, let’s change the label on the Body field to something that makes more sense
for our editors. Click the “edit” link for the Body field and change the Label to
Review. Click the “Save settings” button, and we’ll be returned to the fields
listing.

5. Because we want to group several of the fields in this content type together (the
Pros and Cons, ratings, and so on), we’ll first create a Field group to organize them.
Under “Add new group,” create a new group with a label of Summary and a group
name of “summary”; leave the widget at the default, Fieldset; and then save the
form.

6. Next, create a new field using the settings indicated in Table 5-2 and click the Save
button.

Table 5-2. Settings for the Pros field

Setting Value

Label Pros

Field name pros

Field type Long text

Widget type Text area (multiple rows)

7. On the following screen, click the “Save field settings” button to move on to the
full field settings screen. All of the additional settings for the new field can be left
at their default values; click the “Save settings” button. Next, repeat the process to
create a second field using the same settings, but using the label Cons and the field
name “cons.”

8. We have added the fields and a group to the content type. Now let’s group the Pros
and Cons together in the Summary group and move them to the top of the form.
Drag the fields into the following order (make sure to drag Pros and Cons to the
right in order to indent them):

• Headline

• Summary

— Pros

— Cons

• Review

When you’re finished, click the Save button. Your screen should look as pictured
in Figure 5-3.

200 | Chapter 5: Product Reviews

Figure 5-3. The Fieldgroup module allows grouping multiple fields together

Now that we have the “Product review” content type started, we need to add permis-
sions to allow the right people to create them. Bob and Sarah’s friends will each have
their own account and be able to post and edit their own reviews as editors of the site.
Bob and Sarah themselves will be the administrators of the site and will therefore be
able to edit or delete anyone’s posts so that they can keep the site tidy, if needed. In the
administrative toolbar, click People, then the Permissions tab (admin/people/permis-
sions), and fill in the values shown in Table 5-3. Click “Save permissions” when you
are done.

Table 5-3. Permissions for the “Product review” content type

Permission anonymous user authenticated user editor administrator

Node

Product review: Create new content Checked Checked

Product review: Edit own content Checked Checked

Product review: Edit any content Checked

Product review: Delete own content Checked Checked

Product review: Delete any content Checked

Once you have everything set up, go to Create Content→“Product review” (node/add/
review) and enter a simple review. Your new review creation form should look like
Figure 5-4.

Hands-On: Basic Product Reviews | 201

Figure 5-4. Creating a product review

The “Product review” content type is well on its way—it’s now possible to create a new
review, fill out the pros and cons, and display the results on the front page of the site.
The finished review should look something like Figure 5-5. In the next section, we’ll
be adding more complete product information, straight from Amazon.com.

Figure 5-5. A completed review with basic information

202 | Chapter 5: Product Reviews

Spotlight: Amazon Module
Amazon.com is one of a large number of web-based businesses that have opened up
their product information databases for other sites to access. In the case of Super Duper
Chefs, we want to retrieve useful data like product photos, pricing, and manufacturer
information for display on our own website. The Amazon module for Drupal allows
us to do just that.

What’s Included?
The Amazon module is actually a collection of modules, each with its own purpose:

• The core Amazon API module handles communication with the Amazon.com
website and ensures that pricing information on products stays up-to-date. All of
the other modules included in the package require this one.

• The Amazon Field module allows administrators to add a field to any content type
that stores an Amazon product ID, and displays a photo of the product straight
from Amazon.com. This module is the one that we’ll be using to enhance our
“Product review” content type.

• The Amazon Filter module allows writers to insert product images and information
into the text of any piece of content using the [amazon] tag. It’s useful for bloggers
or writers who want to link to products occasionally but don’t need the structure
of an explicit field just for product links.

• The Amazon Media module stores extra information about certain types of prod-
ucts. For example, it’s responsible for storing and displaying the MPAA rating for
movies and the console that video games run on.

• The Amazon Search module adds the ability to search for Amazon.com products
from Drupal’s default Search page.

Additionally, the Amazon module’s configuration page exposes a number of settings.
Next, we’ll provide an overview of a few of them before we dive into the hands-on steps.

Web Service Tools
The Amazon module is what’s known as an API module—it uses an application pro-
gramming interface to give Drupal developers access to another website’s data or an-
other program’s functionality. Similar modules allow Drupal sites to retrieve maps from
the Google Maps web service, post messages to the Twitter microblogging service, log
in with Facebook Connect, and more.

Hundreds of these API modules are available in the “Third-party integration” cate-
gory of the Downloads section. If you’d like to connect your Drupal site to a popular
website, it’s worth checking that page out.

Spotlight: Amazon Module | 203

http://drupal.org/project/modules?filters=tid%3A52
http://drupal.org/project/modules?filters=tid%3A52

Locale
Because each country that Amazon operates in has a separate database of products,
prices, and availability information, you’ll want to choose the locale where your web-
site’s users reside in the Amazon module’s configuration settings. This setting will de-
termine which Amazon website (http://www.amazon.com, http://www.amazon.jp, and
so on) will be used to look up the information for a given product. In addition, whenever
links from your site to Amazon.com are generated, they’ll point to the local Amazon
site for the locale you’ve chosen. If you don’t choose a specific locale, the Amazon
module will assume that your site is operating in the United States.

Referral Settings
Although it’s not required, setting up an Associate ID at http://affiliate-program.amazon
.com/gp/associates/join allows Amazon to credit your site when your visitors click on
an Amazon.com link and purchase a product. If you’re feeling generous, the Amazon
module also allows you to use the Drupal Association’s ID, automatically donating any
commissions from purchases to support the Drupal project.

Amazon Keys
To have our Drupal site communicate with Amazon’s API, we will need to get an
Amazon AWS account. This is a free account and service provided by Amazon. Once
you create an account, Amazon will provide you with the keys you need to enter into
these fields on the configuration page. You can find more information on getting an
AWS account at http://aws.amazon.com.

Hands-On: Adding an Amazon Field
In the previous section of this chapter, we set up a content type for our product reviews.
Now, we’re ready to add a field to store a link to the product on Amazon.com. We
need to do a few things to get set up before we add the field to our content type:

1. First, in the administrative toolbar, click Modules (admin/modules) and enable the
following modules:

• Amazon package

— Amazon API

— Amazon Field

204 | Chapter 5: Product Reviews

http://www.amazon.com
http://www.amazon.jp
http://affiliate-program.amazon.com/gp/associates/join
http://affiliate-program.amazon.com/gp/associates/join
http://aws.amazon.com

2. Next, in the administrative toolbar, click Configuration→Amazon Settings→Ama-
zon API (admin/config/amazon_settings/amazon), pictured in Figure 5-6. Select
your locale and set the Amazon Associate ID to the one you wish to use. If you are
in the United States and do not have an Amazon Associate ID, you can use the
default settings for the first two settings on the page. This gives the Drupal
Association, the nonprofit organization that supports the Drupal community, a
tiny financial kickback.

Figure 5-6. The Amazon module’s settings page

3. Log into (or create) your Amazon AWS account at http://aws.amazon.com and
navigate to the Security Credentials section (there is also a direct link to this page
in the key field descriptions on the Amazon module’s configuration page). In the
Access Credentials area of the page, there is a tab for Access Keys, which will
provide you with the keys you need to copy into the Drupal site, as shown in
Figure 5-7. Copy these into the appropriate fields back in Drupal, and click the
“Save configuration” button.

4. To test that the Amazon module is working properly, click the Test tab (admin/
config/amazon_settings/amazon/test) and enter a valid Amazon Product ID such as
“9781449390525” to ensure that a result comes back without errors.

Hands-On: Adding an Amazon Field | 205

http://aws.amazon.com

Figure 5-7. AWS access credential information

Adding the Product Field
Having set up the Amazon module, we’re ready to continue customizing the “Product
review” content type:

1. In the administrative toolbar, click Structure→“Content types” (admin/structure/
types) and click the “manage fields” link (admin/structure/types/manage/product-
review/fields) for the “Product review” content type. Create a new field using the
settings indicated in Table 5-4.

Table 5-4. Creating the Product ID field

Setting Value

Label Amazon Product ID

Name product_id

Field type Amazon item

Widget Amazon ASIN text field

2. Click the Save button to create the field and then click the “Save field settings”
button to proceed. You’ll be taken to the next screen to fill out the product review
field settings. Add some Help text, like “Enter the Amazon product ID of the item
you’re reviewing. Often indicated by an ASIN, ISBN, or other field in the product
details of an Amazon product page.”

206 | Chapter 5: Product Reviews

Finding Product IDs
Our Amazon field will automatically load product photos and pricing information
whenever we enter a product ID. That’s great—but how will the site’s reviewers find
those product IDs in the first place?

The simplest way is to find the product on the Amazon.com website using its own
search function. Each product has its own page on Amazon.com, and the product ID
usually appears there in two locations: the URL of the page itself, and the “Product
details” section of the page, listed as the ASIN (short for Amazon Standard Identifica-
tion Number). See Figures 5-8 and 5-9 for examples.

Figure 5-8. An Amazon product page’s URL, with the product ID highlighted

Figure 5-9. An Amazon product page’s details section

3. Click the “Save settings” button to complete the process, and you’ll be returned to
the “Manage fields” page for the “Product review” content type.

4. On the “Manage fields” page (admin/structure/types/manage/product-review/
fields), rearrange the new Amazon field so that it is listed just above the Review
field, like so:

• Headline

• Summary

— Pros

— Cons

Hands-On: Adding an Amazon Field | 207

• Amazon product ID

• Review

5. Click the Save button to save your ordering. In the administrative toolbar, click
“Add content”→“Product review” (node/add/product-review) and add a new re-
view. This time, fill out the Amazon Product field as well as the normal Headline,
Pros and Cons, and Review fields. Your new review should look something like
Figure 5-10 (showing Amazon product ID B0007GAWRS).

Figure 5-10. A review with Amazon.com product details

Later, we’ll use the field display settings to control what information is output by
Amazon on these nodes, as well as the order in which it is displayed with the other
review information.

For even more fine-grained control over the display of Amazon product data, particu-
larly on more standard “media” products such as books and software, the Amazon
Media module we touched on in “Spotlight: Amazon Module” on page 203 includes a
series of template files that can be customized to grab the specific fields you want for
your site.

208 | Chapter 5: Product Reviews

Our product reviews now contain fields for product pros and cons, and a link to
Amazon.com for each product. What’s left? We need some way to capture the editorial
rating for each product that’s reviewed, and a way for visitors to the site to add their
own ratings as well. For that, we’ll take a look at the Voting API and Fivestar modules.

Spotlight: Voting API and Fivestar
Giving visitors a chance to evaluate and rate content is an extremely common pattern
on content-rich websites. In addition to giving visitors a way to jump to the best content,
it can give you—the site’s administrator—a way to determine what content on your
site is most effective.

Almost all rating and evaluation modules for Drupal rely on a shared module called
Voting API. Though it offers no features for your site on its own, it gives developers a
set of tools for building rating systems and provides a common format for storing votes
and calculating the results. This allows developers to focus on what makes their work
unique (presenting vote results in a novel way, for example) while Voting API handles
the grunt work.

The Fivestar module offers numerous configuration options, from the style and color
of stars that it uses to display ratings to how results are presented when visitors look
at a new piece of content. Figure 5-11 shows the Fivestar module’s selection of rating
widgets. The widget visitors use to rate each post can be displayed in the post itself, in
a floating sidebar block, or even in the commenting form when visitors submit a reply.

Figure 5-11. The Fivestar module’s selection of rating widgets, available on its configuration screen

Spotlight: Voting API and Fivestar | 209

Despite what its name suggests, Fivestar can display any number of stars: 10 stars, 3
stars—even 1-star scales can be used. In addition, it provides a custom field type: a
simple numeric field on any piece of content can be displayed using Fivestar’s custom
widget, separate from the ratings cast with Voting API.

Hands-On: Adding Ratings
For the Super Duper Chefs site, we’ll be using both of the Fivestar module’s unique
features: adding a static Rating field to the “Product review” content type for the editors
to use, and attaching a voting widget to the comment form on each review for the site
readers to use. That approach will keep the official rating on each review separate from
the reader ratings.

First, in the administrative toolbar, click Modules (admin/modules) and enable the fol-
lowing modules:

• Voting package

— Fivestar

— Voting API

Adding the Product Rating Field
1. In the administrative toolbar, click Structure→“Content types” (admin/structure/

types), click the “manage fields” link for the “Product review” content type (admin/
structure/types/manage/product-review/fields), and create a new field using the set-
tings indicated in Table 5-5.

Table 5-5. Creating the Rating field

Setting Value

Label Editor Rating

Name editor_rating

Field type Fivestar Rating

Widget Stars

2. Click the Save button to create the field, and you’ll be taken to the field settings
page. Leave the default settings and click the “Save field settings” button. On the
following screen, check the Required checkbox and click “Save settings” to add
the field.

3. We’ll also add this field to the Summary group so that it’s displayed with the pros
and cons. When you return to the “Manage fields” tab (admin/structure/types/
manage/product-review/fields), rearrange the new Rating field above Pros and Cons
in the Summary group. After you click the Save button, the list should look like this:

210 | Chapter 5: Product Reviews

• Headline

• Summary

— Editor rating

— Pros

— Cons

• Amazon product ID

• Review

Adding the Reader Rating Field
As we’ve pointed out elsewhere in the book, fields can be added to anything in Drupal
that is exposed as an entity. Now we will make use of this in practice, by adding a Rating
field to the comments, so visitors can comment and rate the products as well.

1. In the administrative toolbar, click Structure→“Content types” (admin/structure/
types), click the “edit” link for the “Product review” content type (admin/structure/
types/manage/product-review), and then click the Comment Fields tab (admin/
structure/types/manage/product-review/comment/fields). Add a new field using the
settings in Table 5-6.

Table 5-6. Creating the Rating field for comments

Setting Value

Label Reader Rating

Name reader_rating

Field type Fivestar Rating

Widget Stars

2. Click the Save button. On the field settings screen, it is important to set the “Voting
target” to “Parent node,” so that these votes will add ratings to the node; then,
click the “Save field settings” button. We’ll use the defaults on the “Product review”
comment settings page, so just click “Save settings” to finish.

3. When you return to the Comment Fields screen, reorder the fields so that the
“Reader rating” field is at the top and then click Save.

Remember that you can play with the settings by going to the ad-
ministrative toolbar, then Configuration→Fivestar (admin/config/
content/fivestar), to choose fun icons such as hearts or flames that
readers can use to rate content. If you choose a widget listed under
“Custom color widgets,” you can even choose a color scheme that
matches your site.

Hands-On: Adding Ratings | 211

4. With the ratings in place, we need to allow the site users to actually rate things. In
the administrative toolbar, click People, then the Permissions tab (admin/people/
permissions), and set the permissions shown in Table 5-7. Click the “Save permis-
sions” button to finish up.

Table 5-7. Permissions for Fivestar ratings

Permission anonymous user authenticated user editor administrator

Fivestar

Rate content Checked Checked Checked

Use PHP for Fivestar target Checked

Recall from “Hands-On: Configuring Permissions” on page 62 that
any permission name with “PHP” in it should only be given to
extremely trusted users.

All of the essentials for the reviews are now in place. Editors on the site can write reviews
that include pros and cons about the product, rate the product using an intuitive five-
star scale, and pull in product information from Amazon.com. In addition, visitors can
post their own comments about the product and rate it themselves. Figure 5-12 shows
our new Fivestar ratings in action.

Spotlight: CSS Injector
Drupal’s theming system gives designers complete control over how a site’s content is
rendered for a web browser, and custom themes (like the Tarski theme that we’re using
for the Super Duper Chefs site) can give any site a distinctive look. But sometimes it’s
useful to make minor tweaks to a site’s appearance using nothing but CSS rules. They
allow designers to tweak font sizes, colors, and so on without altering the underlying
HTML that defines the site’s structure.

The CSS Injector module gives administrators the ability to add those snippets in an
administration screen within your site, without having to make changes to the current
theme’s files. This feature can be useful when a new version of your site’s theme is
released on Drupal.org—if you change the theme to add your own CSS, it’s easy to lose
those modifications when you download the new version. Keeping them in CSS Injector
will preserve them even if you change themes.

CSS Injector offers a number of advanced options, including the ability to add the CSS
rules conditionally on certain pages. If your CSS tweaks only apply to the front page,
for example, you can ensure that it won’t add the unnecessary rules to the entire site.
You can also specify a media type for your CSS, which makes it possible to add styling
information that applies only when a page is being printed. Finally, each rule can use
the Preprocess CSS checkbox to control whether Drupal should merge its rules with

212 | Chapter 5: Product Reviews

http://drupal.org/project/css_injector

the current theme’s CSS. In most cases, this step saves time, because a visitor’s web
browser makes only a single trip to your site’s web server to download all the style-
sheets. If you’re adding extremely large amounts of CSS code that only apply to one or
two pages, it can be more efficient to keep that code separate by turning preprocessing
off. Otherwise, leave it enabled.

If you’re mystified by CSS, the Mozilla Developer Network documen-
tation provides information and tutorials for learning all types of web
technologies, including CSS. It’s a great resource to keep bookmarked.

Hands-On: Polishing the Presentation
In this section, we’ll do some final tweaking to make the review display look nice and
tidy, as pictured in Figure 5-13.

Figure 5-12. A product with an editorial rating, along with a user review in progress

Hands-On: Polishing the Presentation | 213

https://developer.mozilla.org/en-US/docs
https://developer.mozilla.org/en-US/docs

Figure 5-13. Completed review display

Setting Field Display Options
Although our “Product review” content type has all of the data we need, and our prod-
uct listing pages are looking great, the individual reviews still look a bit untidy. Fortu-
nately, we can use the Field module’s display settings to tweak how each type of field
is displayed in the reviews.

1. In the administrative toolbar, click Structure→“Content types” (admin/structure/
types) and click the “manage display” link for the “Product review” content type
(admin/structure/types/manage/product-review/display).

2. The first thing we want to do is to add a field group to the display for our Editor
Rating, Pros, and Cons fields, just like we did for the form input fields. This time,
we’ll make the HTML element a <div> for tidy markup. Fill out the “Add new
group” settings as shown in Table 5-8. Save the settings.

Table 5-8. Settings for the Summary fieldset

Field Setting

Label Summary

Group name summary

Format Div

214 | Chapter 5: Product Reviews

3. Click the gear icon next to the Summary format information and change the
“Fieldgroup settings” to Open. Click the Update button and then the Save button
to save the settings.

4. Drag the fields into the proper order so that they look like this:

• Summary

— Editor rating

— Pros

— Cons

• Amazon Product ID

• Review

5. Click the Teaser subtab (admin/structure/types/manage/product-review/display/
teaser) and repeat the preceding steps to create a Summary div (set to “open”) on
the teaser display as well. Then drag the fields so that you have the following fields
displayed in this order (note that the Review field should be moved down to the
Hidden part of the form):

• Summary

— Editor rating

— Pros

— Cons

• Amazon Product ID

• Review

6. Finally, fill out the settings as shown in Table 5-9 for the default and teaser displays,
respectively. Figure 5-14 shows the default display settings after we’ve made these
changes; the teaser display will look very similar. Click the Save button when you
are done.

Table 5-9. Display settings for the “Product review” content type

Field Label Format

Default

Editor Rating Inline As Stars (default)

Pros Inline Default (default)

Cons Inline Default (default)

Amazon Product ID <Hidden> Thumbnail with details

Review <Hidden> (default) Default (default)

Teaser

Editor Rating Inline As Stars

Pros Inline Default

Hands-On: Polishing the Presentation | 215

Field Label Format

Cons Inline Default

Amazon Product ID <Hidden> Thumbnail with title

Review <Hidden> <Hidden>

Figure 5-14. Settings for the default product review display; the teaser display will look very similar

If you navigate back to one of your reviews, the node view will look essentially the same
at this point. In the next section, though, we’ll add some fanciness!

Configuring CSS Injector
Changing the display settings for our reviews cleans things up quite a bit, but the Sum-
mary information still seems awkward. We can significantly improve things by adding
some CSS rules using CSS Injector. We’ll use it to reduce the width of the Summary
box and float it to the side of each review, turning it into a floating sidebar rather than
a header at the top of each review. Here’s how:

1. In the administrative toolbar, click Modules (admin/modules) and enable the
Other: CSS Injector module.

2. In the administrative toolbar, click Configuration→Development→CSS Injector
(admin/config/development/css_injector) and click the “Create a new rule” link to
add a new CSS rule.

216 | Chapter 5: Product Reviews

3. Name the rule “Floating Summary fields,” and enter the following text into the
CSS code field. You can see the completed form in Figure 5-15:

div.group_summary {
 border: 1px solid lightgrey;
 float: right;
 padding: 10px;
 width: 250px;
 font-size: .9em;
}

div.group_summary div.field-label {
 font-weight: bold;
}

div.field-type-asin {
 clear: none;
 width: 400px;
 margin-bottom: 10px;
 border: none;
}

div.field-type-asin img {
 float: left;
 padding-right: 10px;
}

Not a fan of typing? Not to worry. This code is also available in the
assets/ch05-reviews/amazon.css file in the book’s source code for
easy copying and pasting.

4. Click the Save button to add the new rule.

Depending on your web browser’s settings, you may need to clear the browser’s cache
to see the changes to the stylesheet. Once you’ve done that, return to one of the product
reviews added earlier. It should look quite a bit more attractive, as shown earlier in
Figure 5-13. What a difference a dash of CSS makes!

Hands-On: Building a Product List
Now that we have a few products, we really ought to add a listing page that lets visitors
look over all of the products that have been reviewed, comparing official ratings with
visitor ratings and sorting by various criteria, as pictured in Figure 5-16. This page will
be simple to build with the Views module.

Hands-On: Building a Product List | 217

Figure 5-16. Product Finder view

Figure 5-15. Adding a new CSS Injector rule

218 | Chapter 5: Product Reviews

1. In the administrative toolbar, click “Site building”→Modules (admin/build/mod-
ules) and enable the following modules:

• Other package

— Advanced help

• Views package

— Views

— Views UI

2. In the administrative toolbar, click Structure→Views (admin/structure/views), click
on the “Add new view” link (admin/structure/views/add), and fill in the new view
settings using Table 5-10.

Table 5-10. Settings for creating the Product Finder view

View setting Value

View name Product Finder

View description Checked: List of reviewed products

Show Content of type Product review sorted by Newest first

Display format Table of fields

Items to display 10 (default)

Use a pager Checked (default)

Create a menu link Checked

Menu: Navigation

Link text: Product finder (default)

Include an RSS feed Unchecked (default)

Create a block Unchecked (default)

3. After clicking the “Continue & edit” button, we want to add some more fields to
our view. We are going to go ahead and do that in a minute, but first we need to
create a relationship for our fields so that we can use Amazon-specific fields in the
view and display the average rating given to each product by visitors to the site.

Open the Advanced fieldset and click the “add” button in the Relationships sec-
tion. Check both the “Content: Amazon Product ID (field_product_id)” and
“Content: Vote results” relationships. Click the “Apply (all displays)” button to
add the relationships and then fill out the settings in Table 5-11 when prompted.
Click the “Apply (all displays)” button after each form is presented.

Hands-On: Building a Product List | 219

Table 5-11. “Vote results” relationship settings for the Product Finder view

Defaults: Relationships Value

Content: Amazon Product ID (field_product_id) Identifier: Product ID

Content: Vote results Value type: Percent

Vote tag: vote

Aggregate function: Average vote

4. In the Fields section of the View, click the “add” button, check the following fields,
and click “Add and configure fields.” This will give us the product title, price,
official rating, and reader rating:

• Amazon: Amazon price (formatted)

• Amazon: Title

• Content: Editor rating

• Vote results: Value

5. Configure the settings for each new field as shown in Table 5-12. Click “Apply (all
displays)” when you’re finished configuring each field’s settings.

Table 5-12. Field configuration settings for the Product Finder view

Defaults: Field configure setting Value

Amazon: Amazon price (formatted) Relationship: Product ID (default)
Label: List price

Amazon: Title Relationship: Product ID (default)

Label: Product

Link behavior: A link to the product’s Amazon page (default)

Content: Editor rating Keep all defaults

Vote results: Value Relationship: Vote results

Label: Reader rating

Appearance: Fivestar Stars (display only)

6. Let’s rearrange the fields into a different order and remove the review title from the
list. In the Fields section, click the drop-down next to the “add” button, and select
“rearrange.” Drag the “(Product ID) Amazon: Title Product” field to the top of the
list so that the product title is listed first. Then click “remove” for the “Content:
Title” field. Click Apply to save your changes.

7. Now that we have the fields, under Format, ensure the format is set to Table, then
click the Settings link next to it. Use the values listed in Table 5-13 for a sortable
table. Click Apply when finished.

220 | Chapter 5: Product Reviews

Table 5-13. Table style options for the Product Finder view

Defaults: Table style option Value

Sortable All checked

Default sort Editor rating

Editor rating: Default order Descending

When all those steps have been completed, save the view, which should look like
Figure 5-17.

Figure 5-17. Completed Product Finder view settings

With the settings we’ve used, you should now see a “Product finder” link (product-
finder) in the site’s Navigation menu. Upon clicking it, you should see a tidy listing of
all the reviews on the site, with official and reader ratings compared side by side, as
shown earlier in Figure 5-16.

Only one feature remains from our to-do list: build searching capabilities into our
product list so visitors can easily filter it down to find products that interest them.

Hands-On: Building a Product List | 221

Spotlight: The Search Module
Drupal’s built-in Search module offers powerful, flexible searching features and intel-
ligent ranking of results. Behind the scenes, it’s silently building an index of all the
words used in the site’s content. When users search for a phrase on the site, content is
ranked using customizable rules and displayed in order of relevance. On any Drupal
site, you can refine these rules by going to the administrative toolbar and clicking Con-
figuration→“Search and Metadata”→Search Settings (admin/config/search/settings) and
changing the Content Ranking weights, pictured in Figure 5-18.

Figure 5-18. The Search module’s content ranking settings

The Search module also offers more detailed options for sites with large amounts of
content. The Advanced Search screen, pictured in Figure 5-19, allows users to choose
exactly what content they want to search, filtering based on content type, free tagging
terms, and other criteria.

Figure 5-19. The Advanced Search page in action

222 | Chapter 5: Product Reviews

The Importance of Cron
The indexing process used by Drupal’s Search module only works when the “cron”
utility has been properly configured. cron is a utility used to run various commands at
scheduled intervals on your web server. It is responsible for performing maintenance
tasks on a Drupal site like clearing old log entries, as well as scheduling bulk email and
other tasks that happen with regular frequency.

Drupal 7 comes with a built-in cron process, which passes along the task of checking
to see whether scheduled events need to happen to your website’s visitors, transparently
(the same functionality is offered by a module called Poormanscron in Drupal 6 and
previous versions). Each time a visitor hits the website, core will check to see if the
allotted time has passed since the last time cron ran. If enough time has passed, core
will then see whether it needs to do anything new since the last time it ran and, if so,
will perform the cron actions. This check triggers events after the page is loaded, so the
visitor doesn’t know the difference. You can configure how often cron will run by going
to the administrative toolbar and clicking Configuration→System→Cron (admin/config/
system/cron). Of course, this works only if your site gets regular traffic. But then again,
if it isn’t getting traffic, it probably doesn’t matter how often your search index is
updated.

While this automated “lazy” cron functionality is great for making sure that basic clean-
up tasks are performed, and is sometimes the only option available to you in some
hosting environments, it is recommended that you set up a cron task on your site’s
server, as this will be much more regular and reliable than site traffic for making sure
the tasks are completed. For more information on setting up cron for your site, see http:
//drupal.org/cron.

Each time cron runs, Drupal will catalog some of the site’s content; by default, it indexes
200 posts each time. If your site has a large number of posts already, the speed of the
indexing will depend on how frequently cron is configured to run on your server.

You can tell Drupal to perform its cron tasks manually by going to the administrative
toolbar, clicking Configuration→System→Cron (admin/config/system/cron), and then
clicking the “Run cron” button. This is particularly handy when you are working and
testing on your local site and want to see the results of a cron process immediately.

Searching with Views
Although the Advanced Search form allows quite a bit of control for users, it’s very
difficult to change how that page appears and how the results are displayed. It also can
present a daunting array of options, especially when a site has lots of taxonomy terms.

The Views module is one way to exercise more control over searching: its filters can
narrow down lists of content based on words indexed by the search system. A view
might list only blog posts mentioning kittens, for example. For the Super Duper Chefs
site, we’ll be using this module to add custom filtering to our Product Finder page.

Spotlight: The Search Module | 223

http://drupal.org/cron
http://drupal.org/cron

Hands-On: Make the Product List Searchable
To transform the Product Finder page into a searchable index, we’ll be adding two new
filters to the view: one that restricts the results by manufacturer and another that re-
stricts results to reviews that mention specific words.

Normally, these filters are locked in place and can’t be modified except by the site’s
administrator. We need users to enter their own criteria, however. Fortunately, Views
allows us to “expose” any of its normal filters. Doing so adds a small form to the heading
of the view’s display page. Visitors to the site can use it to change how Views filters its
results, turning any view into a simple search tool, as pictured in Figure 5-20.

Figure 5-20. Searchable Product Finder view

Here are the steps to get your searchable list:

1. In the administrative toolbar, click Structure→Views (admin/structure/views) and
click the “edit” button for our Product Finder view (admin/structure/views/view/
product_finder/edit).

2. Click the “add” button in the “Filter criteria” section to check the “Amazon: Man-
ufacturer” and “Search: Search Terms” filters, and click the “Apply (all displays)”
button.

3. On the settings form for each of the filters, click the “Expose this filter to visitors,
to allow them to change it” checkbox, which will present the filter as a form field
that a site visitor can interact with. Configure the exposed filter settings for each
filter using the values in Table 5-14. As usual, click “Apply (all displays)” to move
between the configuration forms.

Table 5-14. Settings for the search filters

Defaults: Configure filter setting Value

Amazon: Manufacturer Operator: Contains

Search: Search Terms Label: Keywords

On Empty Input: Show All (default)

224 | Chapter 5: Product Reviews

4. Click the drop-down next to the “add” button in the “Filter criteria” section and
select “and/or, rearrange.” Move “Search: Search Terms” above “Amazon: Man-
ufacturer” so that its box will appear first.

By creating filter groups here, we can do very complex conditions,
like “Product has this search keyword OR this manufacturer AND
this price.” For the purpose of our search form, though, a straight-
up “AND” between all filter criteria will work fine.

5. Save the view, which should now look like Figure 5-21.

Figure 5-21. Completed Product Finder view settings

Before we test our new search feature, we need to make sure that we give search per-
missions to the users. We want everyone who visits the site to be able to search. In the
administrative toolbar, click People, then the Permissions tab (admin/people/permis-
sions), and set the permissions as indicated in Table 5-15, which will give the option to
all users, both logged in and anonymous. Save the permissions.

Hands-On: Make the Product List Searchable | 225

Table 5-15. Permissions for searching

Permission anonymous user authenticated user editor administrator

Search

Administer search Checked

Use search Checked Checked Checked Checked

Use advanced search Checked Checked

If you search for a keyword like “whistle” that ought to be returning results but find
that it is not, fear not! The last thing we need to do is make sure that our site has been
indexed, so that when we do a search the keywords will be accessible. While testing
things out, we will manually update our site so we can see that our search is working
properly. In the administrative toolbar, click Configuration→System→Cron (admin/
config/system/cron), and click the “Run cron” button.

Now go to our Product Finder page (http://example.com/product-finder). You should
see the normal page full of products, this time with filter fields above the list. Enter a
phrase that appears in one of your reviews, and click the Apply button. You should see
an attractive list of the top results that contain the phrase, as we saw earlier in
Figure 5-20.

Rewriting Views Field Output
We’re almost done! The only problem with our view now is that clicking the titles in
the view links to Amazon.com instead of to our own website. Fortunately, Views pro-
vides a handy trick for just this sort of situation; we can “rewrite” the output of the
Title field to create a link back to its referring node instead.

Doing this requires two steps: first, adding the field(s) you want to use as a replacement
value, and then configuring the output settings for the field:

1. Return back to the Product Finder view settings—either by clicking “edit view” in
the Product Finder’s contextual links, or by navigating to Structure→Views—then
click “edit” next to Product Finder (admin/structure/views/view/product_finder/
edit).

2. Under Fields, click “add” and add the “Content: Nid” field. Check the “Exclude
from display” checkbox on the field’s settings screen, which will ensure the output
of this field is hidden from view. We don’t actually want “1” and “63” showing up
in the table; we merely need that value to create the URL node/NODE_ID. Click
“Apply (all values)” to save.

3. Next, click the drop-down next to the “add” button in the Fields section, and click
“rearrange.” Move the new “Content: Nid” field to the top and click Apply. This
field needs to precede the “Amazon: Title Product” field so that we can use the
node ID as a replacement value. Click “Apply (all values)” to save.

226 | Chapter 5: Product Reviews

4. Next, click on the “(Product ID) Amazon: Title (Product)” field to change its set-
tings. Change “Link behavior” to “No link” to remove the automatic linking to
Amazon.com. Expand the “Rewrite results” fieldset and check the “Output this
field as a link” checkbox. Checking this box will expose a new field, “Link path,”
for the link destination.

5. Scroll down to the “Replacement patterns” collapsed fieldset below, and expand
it to see a list of possible dynamic tokens you can choose from, including [nid] for
the node ID, and [title_1] for the Amazon product title. Scroll back up to the “Link
path” field and enter “node/[nid]” as the value, as shown in Figure 5-22. Click
“Apply (all displays)” to save changes.

6. Finally, save the view when finished. Now, when you click on the titles in the view,
you should be taken to the product review, not the Amazon.com product page.

Figure 5-22. The Views module allows you to rewrite field output using dynamic values

Rewriting Views Field Output | 227

Taking It Further
Congratulations! All of the major features for the site are in place. If you’re interested
in experimenting further, there are quite a few opportunities for additional enhance-
ments using other Drupal modules:

AdSense
This module allows Bob and Sarah to place ads in the sidebar to offset the costs of
hosting the site.

Display Suite
For even more control over the layout of a content body than CSS Injector provides,
check out the Display Suite module, which provides regions within content that
fields can be moved around within.

Blog (core)
This module allows the site’s writers to each have their own blogs on which to
discuss their cooking tips, latest recipes, and other culinary exploits, even when
they’re not reviewing products.

Recipe
For taking our cooking site further, the Recipe module—one of the longest-running
modules on Drupal.org—might be a welcome addition. It provides a means of
adding detailed ingredient information and can show details like overall cooking
time.

Summary
After all that work, where have we arrived? We’ve hit all of the major pieces of func-
tionality that Bob and Sarah wanted. Using Field, Amazon, and Fivestar, writers can
post their reviews of cool kitchen products to the site. With Fivestar and Voting API,
visitors to the site can offer their opinions on those same products and participate in
the reviewing process. And with Views’ Search module integration, it’s easy for them
to find the exact products that they’re interested in. Finally, the CSS Injector module
allowed us to sprinkle on those finishing touches that make the site really shine.

Here are the modules that we referenced in this chapter:

• AdSense

• Amazon

• Chaos Tools

• CSS Injector

• Field Group

• Fivestar

228 | Chapter 5: Product Reviews

http://drupal.org/project/adsense
http://drupal.org/project/ds
http://drupal.org/project/recipe
http://drupal.org/project/adsense
http://drupal.org/project/amazon
http://drupal.org/project/ctools
http://drupal.org/project/css_injector
http://drupal.org/project/field_group
http://drupal.org/project/fivestar

• Views

• Voting API

Here are some other resources we referenced:

• Amazon Associates program

• Amazon Web Services

• Configuring cron jobs

• Evaluation and rating modules

• Third-party integration modules

• Voting Systems Drupal group

• Mozilla Developer Network documentation

Summary | 229

http://drupal.org/project/views
http://drupal.org/project/votingapi
http://affiliate-program.amazon.com/
http://aws.amazon.com/
http://drupal.org/cron
http://drupal.org/project/modules?filters=tid:60
http://drupal.org/project/modules?filters=tid:52
http://groups.drupal.org/voting-systems
https://developer.mozilla.org/en-US/docs

CHAPTER 6

Event Management

Managing online calendars and event registration can present a huge challenge.
Without a dynamic system, the task is nearly impossible. Generating the HTML re-
quired to display a calendar and all the various presentation options (day, week, month
views, and so on) is unreasonable; and worse, because the events are time-sensitive,
remembering to update “next” or “upcoming” event lists can be onerous. Nothing
looks worse than having last week’s meeting listed first on your Upcoming Events page.

Even with dynamic systems, you tend to be constrained to certain parameters with
fixed options. However, by taking advantage of the flexibility of Drupal and building
on the powerful base of Views, you can accommodate nearly any variation on event
listings for your site.

This chapter introduces the following modules:

Date
Provides a field for entering date and time information, as well as libraries to handle
operations like date math and time zone conversion

Calendar
A view style for displaying a list of site content in a rich calendar display

Flag
A flexible utility module that enables administrators to add on/off toggle switches
to entities such as nodes and comments

To follow along with the hands-on example in this chapter, you should install Drupal
using the Events installation profile. The completed website will look as pictured in
Figure 6-1 and at http://events7.usingdrupal.com. For more information on using the
book’s sample code, see the Preface.

231

http://drupal.org/project/date
http://drupal.org/project/calendar
http://drupal.org/project/flag
http://events7.usingdrupal.com

Case Study
The Aurora Book Club is a rather social group of local book enthusiasts. They hold
semiregular monthly meetings and events for both current and prospective members.
Members want to be able to see when and where the next meeting is happening. Ad-
ditionally, members should be allowed to post their own events to the site. Events
should have start and end times and dates, as well as information about the event and
where it will take place. To make it easy for members to see what is happening soon,
there should be a short list of upcoming events in addition to the full calendar. The
calendar needs to offer day, month, and annual views, and a way for members to sub-
scribe to the club’s calendar using Microsoft Outlook or Apple’s iCal. Finally, since the
club members would like to know how many cookies to bring and how many chairs
to have on hand, the club president has asked that we include a way to track who plans
to attend each event.

Implementation Notes
In order to build Aurora Book Club’s site, we need to investigate two main features:
event management and attendance tracking.

Figure 6-1. The completed Aurora Book Club site

232 | Chapter 6: Event Management

Event Management

At one time, doing event management in Drupal meant the choice between a module
called Event, which provided an out-of-the-box event handling solution with some
assumptions about how that handling should work, or a combination of the Date,
Calendar, and Views modules, a more flexible but also a more “elbow grease required”
solution to accomplish the same thing. Nowadays, however, the choice is pretty much
made for you. While the Event module was popular during the days of Drupal 5 and
earlier, in later years the Drupal community has clearly clustered around the flexibility
that the Field and Views modules offer, which enables site builders to tailor features to
their sites’ exact needs. Too bad that those old, historical modules that no one uses
anymore have claimed such great namespaces!

With the “building block” approach, the Date module will provide a date/time entry
field on our events, and the Views module will provide us with event listings. And with
the Calendar module layered on top of these views, we can deploy a feature-rich and
filterable calendar display in a few clicks.

Attendance Tracking

The Signup module is designed specifically for the purpose of tracking event attend-
ance, and has some nice features such as the ability to email reminders to attendees
prior to an event. However, this module was unavailable for Drupal 7 and was under-
going development at the time of this writing.

Instead, we will use this opportunity to highlight a helpful general-purpose module
called Flag. Flag allows users to mark or “flag” a piece of content. This functionality
can be used for a myriad of useful purposes, including marking content as offensive,
allowing users to bookmark interesting stories, and even letting users mark events as
“attending” or “not attending.”

Hands-On: First Steps
First, we’ll set up a few basics for our site just using Drupal core. The main thing that
we need to start is a content type to handle our events. Log into the Aurora Book Club
site with the username admin, password oreilly, if you are using the installation profile.

Creating an Event Content Type
We’ll start by creating a new, basic content type just for events. We just need the event
name and description along with an easy way to add the event location. We won’t
promote it to the front page, as we want more control over the display of events in our
forthcoming calendar. We will, however, leave comments enabled, for more of a “so-
cial” vibe for the site.

Hands-On: First Steps | 233

http://drupal.org/project/event
http://drupal.org/project/date
http://drupal.org/project/calendar
http://drupal.org/project/signup
http://drupal.org/project/flag

1. In the administrative toolbar, go to Structure→“Content types” (admin/structure/
types) and select “Add content type” (admin/structure/types/add) to create a new
content type called Event, using the settings from Table 6-1.

Table 6-1. Settings for the Event content type

Field Value

Name Event

Description A book club meeting or social event

Submission form settings

Title field label Name

Publishing options

Default options Uncheck “Promoted to front page”

2. When finished, click the “Save and add fields” button.

3. Now, add a text field to store the location of the event (that is, where the event
takes place). At the event field listing page (admin/structure/types/manage/event/
fields), complete the “Add new field” form using the values from Table 6-2.

Table 6-2. Settings for adding a location field to the Event content type

Field Value

Label Location

Field name location

Type of data Text

Form element Text field

4. Click Save. This will take us to the configuration settings page for the Location
field. We will just use the default settings here, so click the “Save field settings”
button, and then “Save settings” on the following form, to finish.

Access Control
Now that we’ve got the content type created and configured properly, we need to grant
permissions to our members to allow them to create events.

In the administrative toolbar, go to People→Permissions (admin/people/permissions)
and set the permissions as shown in Table 6-3. Click the “Save permissions” button
when you are done.

234 | Chapter 6: Event Management

Table 6-3. Permissions for the store

Permission anonymous user authenticated user editor

Node

Event Create new content Checked

Event Edit own content Checked

Event Edit any content Checked

Event Delete own content Checked

Event Delete any content Checked

Spotlight: Date Module
The main building block for the site is our new Event content type. The information
that we need it to provide us with is “where” and “when.” We have taken care of the
“where” part in our initial setup. The Date module helps us effectively answer the
“when” question, in an incredibly flexible manner.

As mentioned previously, our real interest in the Date module is the ability to add a
field to our Event content type to indicate date and time. However, looking at the Date
module more closely, there are a few extra pieces worth noting.

Date Submodules
A core requirement of all modules in the Date package is the Date API module. The
Date API module provides a set of underlying functionality for date handling. These
functions consist of things like utility functions for generating month and day names,
converting between date formats, and even generating date input select boxes. Though
covering the full extent of the API is outside the scope of this chapter, it is worth noting
that any module in Drupal that performs any sort of date handling or manipulation
could take advantage of this module.

The Date module also ships with modules to extend a basic date field functionality,
like Date All Day, which lets you specify that an event happens for an entire day, or
Date Repeat, which offers support for repeating dates, so you can schedule recurring
events (weekly, every third Monday, etc.).

Date Tools is a utility module in the package. It sports a Date Wizard, which can au-
tocreate a content type, date field, view, and calendar from a form you fill out. Once
you’ve read this chapter and understand how the underlying mechanics work, this
feature can be useful for shortcutting future site buildouts. The Date Tools module also
provides conversion tools that can change your data from one type of date field to
another, and import tools that can help migrate data from the legacy Event module to
date fields.

Spotlight: Date Module | 235

Finally, the Date module offers integration with other contributed modules through
the Date Context, Date Migration, and Date Views modules, which expose date field
data to the Context (http://drupal.org/project/context), Migrate (http://drupal.org/
project/migrate), and Views modules (http://drupal.org/project/views), respectively.

Date Field Types
At its most basic level, the Date module itself defines three field types for adding date
fields to content types, depending on how you care to represent them. The differences
among these fields are summarized in Table 6-4.

Table 6-4. Fields offered by the Date module

Name Description Example Database storage

Date Date field types are stored using the database system’s
internal “datetime” format for date handling. It has the
advantage of being able to use database-specific functions
for date handling, including ease of extracting a single part
of the date, but with the caveat of inconsistent support
across database systems.

2012-02-24 01:28:00 datetime

Date (ISO
format)

Store a date in the database as an ISO8601 date, used for
historical (pre-1000 A.D.) or partial dates (for example,
only a year and no day or month). This field type should
be avoided otherwise, as it’s extremely expensive to sort
and perform conversions on this style of date.

2012-02-24T01:28:00 varchar(20)

Date (Unix
timestamp)

Datestamp field types are stored using the common Unix
timestamp format containing the number of seconds since
January 1, 1970. As such, these have a limited date range
available (1901 A.D.–2038 A.D. on most systems) but are
quick to calculate time zone offsets and sort in listings. A
legacy format that is supported across all database
systems.

1330075725 int(11)

For much, much more than you ever wanted to know about the pros
and cons of various date storage formats, there’s an interesting discus-
sion on the Events working group at http://groups.drupal.org/node/731.

Because the Aurora Book Club has no intention of moving from MySQL, and all dates
will be well within “normal” ranges, we will be using the standard Date field type for
our site.

Date Form Elements
In addition to the base field types, the Date module also defines three form elements
for entering date information, which are pictured in Figure 6-2:

236 | Chapter 6: Event Management

http://drupal.org/project/context
http://drupal.org/project/migrate
http://drupal.org/project/migrate
http://drupal.org/project/views
http://groups.drupal.org/node/731

Figure 6-2. Date form elements

Select list
Presents a series of drop-down lists for each of year, month, day, hour, minute,
and second, based on the configured granularity for the date field defined by the
data settings.

Text field
Provides a simple text field for date entry that will then be converted to the appro-
priate storage format. The advantage of this widget is that it lets advanced users
enter dates much faster. However, for the uninitiated, it can be frustrating if your
natural date entry format is not properly recognized.

Pop-up calendar
Adds an elegant, user-friendly option for date value entry. This widget uses Java-
Script to present a calendar pop up when a user clicks in the date text field. The
user can then click the date on the calendar to select the date that he wants.

If the Date Repeat Field module is enabled, you will also see an extra option for each
element to add it with “Repeat options.” This will add another fieldset below the form
element, where you may configure it as a recurring event, as shown in Figure 6-3.

Spotlight: Date Module | 237

Figure 6-3. Date repeat options

Here, you may specify the frequency with which an event should recur: for example,
every week, the first Monday of the month, or daily except for statutory holidays. Rather
than making a separate Event node for each repetition of the event, which would get
costly in terms of data storage (not to mention annoying to update if a title or description
needed changing), Date Repeat Field stores the repetition patterns in a format called
RRULE from the iCalendar specification. The Calendar module can then read these
rules and display the events as intended, as well as generate feeds for easy import into
other calendar applications such as iCal or Outlook.

238 | Chapter 6: Event Management

http://www.ietf.org/rfc/rfc2445.txt

For Aurora Book Club’s purposes, meetings aren’t predictable enough to make them
repeating events. However, the “Pop-up calendar” form element offers improved usa-
bility for date selection, so we will incorporate it into our site.

Date Field Settings
There are quite a few settings available specific to date fields and different from other
field types, as shown in Figures 6-4 and 6-5.

Figure 6-4. Date field settings

Date attributes to collect
This setting dictates how much information will be retained about the dates sup-
plied. The check boxes for Year, Month, Day, Hour, Minute, and Second can be
selected independently to provide extreme flexibility. For instance, if we wanted
someone’s birthday (but not a full birth date), we could select only Month and Day
like “July 10.” For the purpose of event management, the default selection of Year,
Month, Day, Hour, Minute is suitable, which allows us to display the date like July
10, 2008 - 7:30.

Note that this setting will impact the date entry widget, in that only the appropriate
options will be displayed.

Collect an end date
Optionally, you can specify an end date for a given date, which we’ll want to do
for Aurora Book Club since we’re tracking events and when they begin and end.
However, for fields such as birthday, this setting would remain off.

Spotlight: Date Module | 239

Figure 6-5. Date field instance settings

Time zone handling
The time zone handling settings allow us to configure how time zones should affect
the stored date values and whether conversions should be performed. The options
are described in Table 6-5.

Table 6-5. Date field time zone options

Option Description

Site’s time zone The time zone specified for the entire site, specified in the administrative toolbar at
Configuration→“Regional and language”→Regional Settings (admin/config/regional/set-
tings). Useful for making sure each date field shares a consistent time throughout the site,
even if users are from different time zones.

Date’s time zone Adds a “Time zone” drop-down next to the date widget to specify the time zone for the
date. Useful for sites where many users from many different time zones will be creating
events across the globe.

240 | Chapter 6: Event Management

Option Description

User’s time zone The time zone specified in each user’s account settings (if the “Users may set their own
time zone” option is enabled under Configuration→“Regional and language”→Regional
Settings (admin/config/regional/settings). This option is useful if you mainly have events
in one time zone, but users from many different places, and want to ensure the start time
always appears correct for your visitors.

UTC Coordinated Universal Time (UTC), which is informally equivalent to GMT. This is a standard
time zone that is the same across all systems.

No time zone conversion For events with dates only, rather than dates and times, or for sites with both local events
and users. This option performs no time zone conversions on the date.

For the book club, we will not have to worry about doing time zone conversions,
as all members will be local.

You should set this time zone handling value with care, especially
when dealing with international events posted to an international
audience. The last thing you want is for your band’s rock concert
to show up on the wrong day of the week if it’s viewed by a reader
a few time zones away from you!

Repeating date
With the optional Date Repeat Field module enabled, you can specify a particular
date field to allow repeating events.

Cache dates
If you’re using date fields that can accept multiple or repeating values, this ad-
vanced setting can speed things up by precaching them for quicker retrieval. For
single date values, it has no effect. If you’re not actively experiencing date-related
performance problems—such as with the Full Calendar module—leave this un-
checked.

Date entry options
The “Date entry options” setting allows us to configure the format that will be used
when displaying the date value. A variety of international formats are supported.
There is also a “Custom format” option for the “Select list” and “Text field” widg-
ets, which allows an arbitrary date format to be used for ultimate flexibility. The
custom format is set using PHP’s date() formatting syntax (http://php.net/date).

Starting year/Ending year
This setting gives us control over how many years will be listed in the widget for a
user to select from. If the current year is 2012, you can allow people to choose
between 2009 (−3 years) and 2015 (+3). For our event site, there is probably little
point in using a wide range here, particularly to allow support for events in the
distant past. However, for something like a birthday field, this can be handy to
ensure validity of values.

Spotlight: Date Module | 241

http://drupal.org/project/fullcalendar
http://php.net/date

Time increments
The “Time increments” setting allows us to constrain the granularity of minutes
stored in a date field. By default, minutes may be entered in 15-minute increments,
which only exposes minute selections of 00, 15, 30, and 45.

Display all day
If you’re using the Date All Day module, this checkbox will appear, which lets you
expose an “All day” selection on the date widget.

Position of date part labels
With this advanced setting, you can customize where you would like to display the
label in relation to its field: above the field, within the field (either as an option in
a select list or inserted inside a text field), or not at all.

The “Select list” widget has a few more options. Despite its name, we can actually
have text field entry for certain values in the date, mixing drop-downs and text
fields. For instance, rather than having a select list of 31 days, we could set Day to
be a text field input, in which case Drupal will render the input as select lists for
year and month with a small text field for day. This option again allows us full
control over the widget and a chance to select the interface that’s easiest to use for
our target audience.

Default values
The “Default values” setting specifies what value the field starts with when pre-
sented to the user. The “No default value” and Now settings are pretty straight-
forward. Relative will let you set the default to a date that is relative to the current
time, such as two days from now. To set up a relative default, you must enter a
value in Customize Default Value that uses PHP’s strtotime() syntax, such as +2
days. You can find out more about strtotime() at http://www.php.net/manual/en/
function.strtotime.php.

As you can see, the Date module offers options for nearly any date entry use case that
you can imagine!

Hands-On: Adding Dates
In this section, we will enhance our basic Event content type by adding a date field, so
that members may schedule meetings.

Add the Date Field
1. In the administrative toolbar, click on Modules (admin/modules) and enable the

following modules:

• Date/Time package

— Date

— Date API

242 | Chapter 6: Event Management

http://www.php.net/manual/en/function.strtotime.php
http://www.php.net/manual/en/function.strtotime.php

— Date Popup

2. Next, go to Structure→“Content types” (admin/structure/types) and click the “man-
age fields” link for the Event content type (admin/structure/types/manage/event/
fields). Complete the “New field” form with the values in Table 6-6. As noted
earlier, the Date field type is most appropriate for our site, since it is more per-
formant than ISO dates, and our date values will remain within “normal” ranges.

Table 6-6. Settings for adding a time field to the Event content type

Field Value

Label Time

Field name time

Select a field type Date

Select a widget Pop-up calendar

3. Click Save. This brings us first to the field settings page for our new Time field. It’s
worth taking a moment to discuss the available options and why we’re choosing
the ones that we are:

• The “Date attributes to collect” setting dictates which fields will appear in the
form. Because it’s pretty unusual to schedule events down to the second, we
will go for just Year, Month, Day, Hour, and Minute granularity (the default).

• Most meetings will happen over a range of time; for example, 12pm to 2pm
on August 29. As a result, we want to check the “Collect an end date” option
to add a second field to any date field for exactly this purpose. However, for
the odd day-long event, such as April 16, National Librarian Day, we want to
make specifying the “to date” optional.

• For “Time zone handling,” because the Aurora Book Club is a local book club
with all members in the same region, there is no reason to factor time zones
into the meeting events. Therefore, we will set this value to “No timezone
conversion.”

Enter the values in Table 6-7, and click the “Save field settings” button to complete
adding the configuration.

Table 6-7. Time field settings

Field Value

Date attributes to collect (all selected except “Second”) (default)

Collect an end date Checked

Required: Unchecked

Time zone handling No timezone conversion

Cache dates Unchecked

Hands-On: Adding Dates | 243

4. Click “Save field settings” to be directed to the second settings form. We can use
most of the defaults here. Change the field values as shown in Table 6-8.

Table 6-8. Event Time field settings

Field Value

Event settings

Required field Checked

More settings and values

Date entry options (select a format such as Feb 24 2012
- 02:19:39am)

Starting year −1 year from now

Ending year +3 years from now

5. Click “Save settings,” to return to the “Manage fields” tab (admin/structure/types/
manage/event/fields). Reorder the fields as follows and click Save:

• Name

• Time

• Location

• Body

With the content type fully created, our members can now post events to the site! To
try it out, go to “Add content”→Event (node/add/event) and complete the form with the
settings in Table 6-9, then click Save. If all has gone well, you should see something
like the page in Figure 6-6. Go ahead and create a few more events for the Aurora Book
Club.

Table 6-9. Initial example event

Field Value

Name Monthly meeting

Time

From date (choose tomorrow’s date and the current time)

To date (choose tomorrow’s date and a later time)

Location The Book Nook on Main Street

Body Andrew and Camryn are bringing cookies.

244 | Chapter 6: Event Management

Figure 6-6. Our initial event

Hands-On: Upcoming Events View
Now that we’ve created our Event content type and started populating some content,
it’s clear that we need to add in a way to access all our event data. For part of the book
club’s requirements, we need an Upcoming Events listing that will allow members to
quickly see the meetings happening in the coming days or weeks. To achieve this, we
will use the Views module to create our block. Keep in mind that when building views
of event data, we generally want to do our sorting or our limiting on the new date field
we added, not the content’s created or updated time, as we normally do.

We will create a simple block view of published events where the event’s time field is
in the future. In terms of the views configuration, having a date value “greater than
now” represents dates “in the future.” Finally, the view will be sorted in chronological

Hands-On: Upcoming Events View | 245

(or ascending) order of the event’s date (not the event posting’s created date). When
completed, this section will look as pictured in Figure 6-7. Clicking the event name link
in the block will take you to the full information.

Figure 6-7. The Aurora Book Club site showing a list of upcoming events

1. In the administrative toolbar, click Modules (admin/modules) and enable the fol-
lowing modules:

• Chaos Tool Suite package

— Chaos tools

• Date/Time package

— Date Views

• Other package

— Advanced help

• Views package

— Views

— Views UI

2. Once the modules are enabled, go to Structure→Views (admin/structure/views) and
click “Add new view” (admin/structure/views/add).

3. Fill out the view form using the values in Table 6-10.

246 | Chapter 6: Event Management

Table 6-10. The Upcoming Events view configuration values

View setting Value

View name Upcoming Events

Description Checked; “A block list of upcoming events”

Show Content of type Event sorted by Newest first

Create a page Unchecked

Create a block Checked

Block settings

Block title Upcoming Events (default)

Display format HTML list of titles (linked)

Items per page 5 (default)

4. Clicking the “Continue & edit” button places us in the full Views interface with
our basic view built. From here, we can customize our view.

5. First, we will add our time field to our view. In the Fields section, click the “add”
button, and select the “Content: Time” field. Click the “Apply (all displays)” but-
ton, then uncheck the “Create a label” box to remove an unnecessary “Time:” label
on each entry. Click the “Apply (all displays)” button to save the field.

6. Next, we’ll use our time field to only show future events. Date handles this slightly
oddly compared to other modules, with a single filter for all date fields that can
then be more specifically configured. In the Filter criteria section, click the “add”
button, and select “Date: Date (node).” Click the “Apply (all displays)” button to
save, and then choose the “Content: Time (field_time)” field as the “Date fields”
value on the next screen.

7. Click “Apply and continue” to configure the filter. Under “Operator,” choose “Is
greater than or equal to,” and change the “Select a date” field to “Enter a relative
date,” and type now. This is a relative value that will be constantly updated so our
site will never show stale events in the Upcoming Events sidebar. Cool! When
you’re finished, click the “Apply (all displays)” button.

8. Now we will sort our events by the event date (not the date the content was created).
In the “Sort criteria” section, click the “add” button, select “Content: Time - start
date (field_time)” and click the “Apply (all displays)” button to save. On the next
screen, make sure the “Sort ascending” setting is selected and click the “Apply (all
displays)” button again.

9. We should also remove the old post date sort, which is no longer needed. Under
“Sort criteria,” click the “Content: Post date (desc)” link and click the Remove
button.

10. Save the view, which should now look like Figure 6-8.

Hands-On: Upcoming Events View | 247

Figure 6-8. Upcoming Events block view

11. Because we created a block view, we should see no change to our site until we
enable the block that we’ve created. To do this, go to Structure→Blocks (admin/
structure/block). Drag the “View: Upcoming Events” row to the “Left sidebar” re-
gion (or simply change the region value in the drop-down) and click “Save blocks.”

If you close the Overlay, you should now see a sidebar block on the left side of the page
with your new Upcoming Events block, as pictured back in Figure 6-7!

Spotlight: Calendar Module
Although a simple list of upcoming events is very useful (particularly in a sidebar block),
the book club has additional requirements for the display of the event data. As is ex-
tremely common for event management websites, this site needs an interactive calendar
for browsing through past and future events. We will implement this feature using the
Calendar module in conjunction with Views.

Calendar View Type
The Calendar module provides a new view type that shows the results of a view in a
calendar rather than a list or table as with the default view types. Figure 6-9 shows the
list of Drupal community events from http://groups.drupal.org/events, which also uses

248 | Chapter 6: Event Management

http://groups.drupal.org/events

the Calendar module. Because Calendar builds on top of Views, all the standard Views
tricks work to enhance a calendar, such as exposing filters for “Event type” as
groups.drupal.org does.

Figure 6-9. Event calendar at groups.drupal.org, using the Calendar module

The Calendar view type is one of the more complicated ones available. It provides full
day, week, month, and year views of the event data on our site, with lots of links between
views and paging through days, months, and years. To achieve this rich functionality,
Calendar requires certain views arguments to exist, and to be ordered and configured
in a certain way.

The Calendar view type then determines which view the user would like to see based
on the arguments that exist. For example, if our view URL is calendar, the Calendar
view will handle the paths described in Table 6-11.

Table 6-11. Calendar path-based display

Path Calendar display

calendar Month view, defaulting to the current month

calendar/1970 Year view, for the year 1970

calendar/1970-1 Month view for January 1970

calendar/1970-1-1 Day view for January 1, 1970

Spotlight: Calendar Module | 249

iCal Integration
In addition to creating a nice online calendar, the Calendar module can handle the need
for book club members to be able to update their desktop calendars (in Microsoft
Outlook or Apple’s iCal) with the event information from the book club site. To do
this, the desktop applications use a standardized format known as iCalendar, or iCal
for short. Calendar comes with the Calendar iCal module, which allows us to easily
provide this format for the interested members.

Figure 6-10 shows the groups.drupal.org events calendar after being imported from
http://groups.drupal.org/ical to the Apple iCal desktop application.

Figure 6-10. Event calendar iCal feed in the Apple iCal desktop application

Hands-On: Calendar View
In this section, we’ll be enabling the Calendar view of book club events. Although this
is potentially a daunting task, the Calendar module conveniently comes with a default
view that handles most of the difficult bits for us. In this section, we’ll alter that default
calendar view to fit our requirements.

250 | Chapter 6: Event Management

http://en.wikipedia.org/wiki/iCalendar
http://groups.drupal.org/ical

Figure 6-11 shows the finished Aurora Book Club calendar. Note the small iCal icon
in the bottom-right corner. Clicking this link will download the calendar to an appro-
priate desktop application.

Figure 6-11. Completed event calendar, with iCal link

1. In the administrative toolbar, click Modules (admin/modules) and enable the fol-
lowing modules:

• Date/Time package

— Calendar

— Calendar iCal

2. Go to Structure→Views (admin/structure/views). You should now see “calendar”
listed and enabled by default.

3. Click the arrow next to the “edit” button in the Operations column next to the
view, and choose “clone” in order to make your own version of it (admin/structure/
views/view/calendar/clone). Give it a name of Aurora Calendar.

Hands-On: Calendar View | 251

4. First, let’s tell it to only show Event content in the calendar. Do this by clicking the
“add” button in the Filters section, and selecting “Content: Type.” Click “Apply
(all displays),” then check the box under “Content types for Event,” and click
“Apply (all displays)” once more.

5. By default, the Calendar view uses the date the node was last changed to place
events on the calendar, but we want to use the time of the event instead. Under the
Advanced section on the right, in the “Contextual filters” section, click on the
“Date: Date (node)” link. Scroll down to the “Date field(s)” field, uncheck “Con-
tent: Updated date,” and check “Content: Time - start date (field_time)” instead.
Then click “Apply (all displays).”

6. We need to make a similar adjustment for fields. In the Fields section, add the
“Content: Time” field and uncheck the “Create a Label” box, as we did with the
event block. Then, remove the “Content: Updated date” field by clicking on it and
then the Remove button. This will show our event’s date, rather than the node’s
last updated date, in the view.

7. As a minor cosmetic item, note that the current title of the view in preview is
“calendar.” Let’s change that to “Aurora Book Club’s Calendar of Events” by
clicking on the “title” link in the Title section and changing it. Click “Apply (all
displays)” when finished.

8. Finally, we should add an entry to the main menu so visitors can find the calendar
page. The default view already provides us with a path of “calendar,” which makes
sense for us to keep. To add this to the menu link, edit the “Page settings” section
according to Table 6-12. Click Apply after you enter the menu settings.

Table 6-12. The Calendar view’s Page settings

Calendar Page: Page settings Value

Menu Type: Normal menu entry

Title: Events Calendar

Menu: Main menu

Weight: 1 (so it appears after “Home”)

9. Save the view, which should look like Figure 6-12.

Now we have a working events calendar that users can reach by clicking on the “Events
calendar” link in the main menu navigation. Next, we need a way for club members to
sign up for these events.

Spotlight: Flag Module
The Flag module is an incredibly flexible module that allows you to create relationships
between users and content on your site. After you create a flag, an item can be marked

252 | Chapter 6: Event Management

with it a few different ways, including links displayed below content, as shown in
Figure 6-13, or checkboxes displayed on the edit form, as shown in Figure 6-14.

Figure 6-12. Upcoming Events calendar view settings

Figure 6-13. Flags as links shown on content

Figure 6-14. Flags as checkboxes shown on the node edit form

Spotlight: Flag Module | 253

Upon installation, the Flag module defines a “bookmark” relationship, allowing users
to maintain a list of bookmarks (or posts they find interesting) on the site. However,
this default behavior only touches the surface of the Flag module’s flexibility. Some
possible uses for Flag include:

• A “favorite” or “bookmark” flag to mark content

• A “promote” flag (or many different promote flags) that is similar to the default
“Promote to Frontpage” checkbox

• An “offensive” flag for comments or nodes

• A “friend” flag that allows users to mark other users as friends

As you can see, there are a variety of uses for flagging content. After creating a flag for
some purpose, you can construct views that create lists of content that has been flagged
by users. We’ll use this functionality to let users indicate whether they plan to attend
a book club event. Once the flag relationships are created, we can create a view to list
the attendees of a particular event.

Flag Settings
The Flag module offers an incredible array of flexible options, detailed as follows:

Flag type
Each flag can be associated with a particular type of entity: nodes, comments, or
users. This makes the Flag module a versatile tool that can be applied to many
different situations, from bookmarking pieces of content to marking comments as
abusive to establishing relationships between users.

Global flag
By default, flags are per user; for example, each user can have a separate list of
items that she’s flagged as her favorite. If the “Global flag” option is selected, how-
ever, the flag becomes a binary yes or no, associated with the piece of content
directly. This setting is useful for setting up a “Featured content” flag, where a piece
of content either is, or is not, featured across the entire site.

Messages settings
The Flag messages settings, shown in Figure 6-15, allow fine-grained control over
all text related to the flag: the link text and description for flagging and unflagging
content, and the confirmation messages shown to users who interact with the flag.

Flag access
The Flag access settings, as illustrated in Figure 6-16, allow you to set which role
or roles may set or unset a flag. This allows you to specify that only editors may
mark a piece of content as “Featured content,” or that normal authenticated users
may Like, but not Un-Like, content. Additional restrictions follow, which vary
depending on the type of flag, to dictate whether or not users can only flag their
own content (or themselves, in the case of a user flag). For example, it probably

254 | Chapter 6: Event Management

doesn’t make sense for users to be able to flag their own content as “Best of site.”
Finally, for comment and node flags, in this section you can choose which content
types are flaggable.

Display options
Finally, you can choose how the flag should be displayed in the UI, as shown in
Figure 6-17. Choose any combination of options for how flags should appear: a
checkbox on the content edit form, links shown in the teaser view or full page of
a node, or on a user profile. The Flag module even allows you to choose how the
link represents itself when output, for ultimate control over your site’s user expe-
rience. Select from a JavaScript toggle that can turn the flag on and off without a
page refresh, a standard link, or even a confirmation form (which, naturally, has
configurable confirmation and unconfirmation text settings).

Figure 6-15. Flag messages settings

Spotlight: Flag Module | 255

Figure 6-16. Flag access settings

Figure 6-17. Flag display settings

256 | Chapter 6: Event Management

Flag Actions Module
The Flag module also ships with the Flag Actions module, which allows you to associate
one or more system tasks (publish or unpublish content, send an email, and so on) to
take place when a flag is used. Flexible options exist for performing actions only after
a flag has hit a certain threshold (for example, once five users have flagged something
as “abusive”), and also to repeat the action every n times that this threshold is reached.

Figure 6-18 shows the Flag Actions module in action. Here, we’ve added a custom
action to the Bookmarks flag so that once 10 or more people have flagged it as a favorite,
the content will automatically get promoted to the front page. This is a useful way to
involve your community in deciding what content is interesting and relevant on your
website.

Figure 6-18. Flag actions settings

Hands-On: Flag Configuration
In this section, we will configure the Flag module to allow our users to indicate that
they are attending our events, as pictured in Figure 6-19:

1. In the administrative toolbar, go to Modules (admin/modules) and enable the “Flags
package: Flag” module.

2. Now go to Structure→Flags (admin/structure/flags) to manage the defined flags. By
default, the Flag module defines a Bookmarks flag when installed. We can either
add a new flag or edit the default one to suit our purpose. As we won’t be using
Bookmarks on this site, we’re going to edit the default. Click the “edit” link next
to the bookmark flag (admin/structure/flags/edit/bookmarks). Fill out the form ac-
cording to Table 6-13.

Hands-On: Flag Configuration | 257

Table 6-13. Attendance flag configuration

Field Value

Name attendance

Title Attendance

Global flag Unchecked (default)

Messages

Flag link text attend this event

Flag link description Attend this event

Flagged message You are attending this event

Unflag link text cancel attendance

Unflag link description Cancel attendance to this event

Unflagged message You are no longer attending this event

Flag access

Flag access Flag and Unflag both checked for authenticated user (default)

Unflag not allowed text (leave blank - default)

Flag access by content authorship No additional restrictions (default)

Flaggable content Article: Unchecked, Event: Checked

Display options

Display link on node teaser Unchecked

Display link on node page Checked (default)

Display check box on node edit form Unchecked

Link type JavaScript toggle

Figure 6-19. Attendance indicator shown on the node form

258 | Chapter 6: Event Management

3. Clicking Submit will create our attendance flag. We can now go to any events that
we previously created and click the “attend this event” link.

Hands-On: Attendee View
The book club would like users to see a list of who will be attending each event. For
this, we will need to create a new view, pictured in Figure 6-20.

Figure 6-20. Event attendees list view

1. In the administrative toolbar, go to Structure→Views and click on the “Add new
view” link (admin/structure/views/add).

2. Complete the form according to Table 6-14 and then click the “Continue & edit”
button.

Table 6-14. Attendees view settings

Setting Value

View name attendees

Description Checked; “Attendees for a given event”

Show Users sorted by Newest first

Page: Display format HTML list of Fields

3. The first thing we need is a relationship to give us access to the flag information
related to our users in our view. Open the Advanced section, and click the “add”
button in the Relationships section. Check the “Flags: User’s flagged content” re-
lationship and click “Apply (all displays).” Complete the relationship settings
based on Table 6-15 and click “Apply (all displays)” once more.

Hands-On: Attendee View | 259

Table 6-15. Settings for the Flags relationship

Advanced: Relationship Value

Flags: User’s flagged content Include only users who have flagged content: Checked

Flagged: Attendance

4. We want our view to show the users who have flagged a given Event node; there-
fore, we need to add a contextual filter for the Node ID that was flagged. To do
this, we click the “add” button for “Contextual filters.” Check the “Flags: Content
ID” argument and click “Apply (all displays).” We only want this list to appear for
Event nodes, so we need to limit when this contextual filter is used. Configure the
filter as shown in Table 6-16, then click Apply.

Table 6-16. Settings for the Flags contextual filter

Advanced: Contextual filter Value

When the filter value IS NOT in the URL Display contents of “No results found”

When the filter value IS in the URL or a default is provided Specify validation criteria : Checked

Validator: Content

Content Types: Event: Checked

5. Let’s add the aforementioned “no results found” text by clicking the “add” button
in the No Results Behavior section on the right. Check “Global: Text area” and
click “Apply (all displays).” Give it a label of “No attendees” and fill out the text
field with “No attendees for this event yet.” Then, click “Apply (all displays).” Now
when we click on an event with no signups yet, it will show this text instead of a
blank page.

6. It would be helpful if the attendees were listed in an ordered list so that we could
quickly glance at the total number of people attending. To add this functionality,
we need to change the style of the view. Click the Settings link for “Format: HTML
list” and set the “List type” field to “Ordered list.” Click “Apply (all displays)” to
save the change.

7. To complete the view, we need to add the display as a tab on the event node.
Complete the View Page settings according to Table 6-17.

Table 6-17. The Attendees view Page settings

Page settings Value

Path node/%/attendees

Menu Type: Menu Tab

Title: Attendees

Weight: 5 (to put it as the last tab)

260 | Chapter 6: Event Management

8. Save the view, which should look like Figure 6-21.

Figure 6-21. Event attendees list view settings

Now, when you visit an Event post, you should see an Attendees tab. Clicking on that
tab will display a list of all of the users who have said they will attend the event.

Taking It Further
The site we have built covers all of the needs for the club. Down the road, the members
may want to spruce things up a bit. Here are a few modules that could round out the
site even more:

Full Calendar
An alternative to the Calendar module that provides a JavaScript-based drag-and-
drop calendar through an alternate Views format.

Countdown
This module adds a block that shows the time left until an event. This is a nice way
to let people quickly know that the next meeting is in four days or four hours.

Taking It Further | 261

http://drupal.org/project/fullcalendar
http://drupal.org/project/countdown

Flag Actions (part of the Flag module)
The Flag module can be set up to send emails, and to unpublish or delete nodes
upon reaching certain flagging thresholds. Although this feature is most commonly
used for things like community flagging of spam or offensive content, it can also
be used to notify someone by email if, say, more than 10 people will be coming to
an event and a second person needs to be asked to supply refreshments.

OpenLayers
Instead of just typing a location in a text field, you can use the OpenLayers module
to let people use a map to select the location for each event, and view a map con-
taining all events across the city.

Summary
In this chapter, we have looked at building an event management site for the Aurora
Book Club, making use of the Date field, the Calendar plug-in for Views, and the Flag
module for handling attendance. The book club now has a handy calendar that is dis-
played on the site and available in iCal format. They also have an easy-to-find list of all
the attendees. The site is simple and easy to use, yet fits all of the club’s needs quite
nicely.

Here are all the modules we referenced in this chapter:

• Calendar

• Countdown

• Date

• Event

• Flag

• GMap

• Location

• Signup

• Views

Additional resources:

• Date module handbook

• Event-related modules

• iCalendar

• PHP date formatting

• PHP strtotime

262 | Chapter 6: Event Management

http://drupal.org/project/openlayers
http://drupal.org/project/calendar
http://drupal.org/project/countdown
http://drupal.org/project/date
http://drupal.org/project/event
http://drupal.org/project/flag
http://drupal.org/project/gmap
http://drupal.org/project/location
http://drupal.org/project/signup
http://drupal.org/project/views
http://drupal.org/node/262062
http://drupal.org/project/modules?filters=tid:61
http://en.wikipedia.org/wiki/ICalendar
http://php.net/date
http://www.php.net/manual/en/function.strtotime.php

CHAPTER 7

Managing Publishing Workflows

For large, content-driven web projects, building the initial site structure and getting the
design “just so” is only the beginning of the work. If more than a handful of people are
writing content for the site, the process of reviewing, editing, and publishing articles
can be a Herculean task. Newspapers, online magazines, and even many large blogs
with multiple contributors need tools to ensure that editors can effectively manage the
review process. In this chapter, we’ll be using Workbench, a series of modules that
improve content management in Drupal, to build an editorial workflow for a news site.
We’ll also look at some other modules that can help us achieve this goal.

This chapter introduces the following modules:

Workbench
Improves the content management on a Drupal site. Workbench is the central part
of the Workbench module suite.

Workbench Moderation
Part of the Workbench module suite. Allows administrators to define custom pub-
lishing states for content, like “In review” and “Ready for publication.”

Workbench Access
Part of the Workbench module suite. Makes it possible to give editors access to
content based on the category or menu item that is assigned to the content.

Taxonomy (core)
Allows administrators to create and manage sets of categories or tags that can be
used to organize content.

Pathauto
Automatically creates path aliases for content, categories, and user profile pages.

263

http://drupal.org/project/workbench
http://drupal.org/project/workbench_moderation
http://drupal.org/project/workbench_access
http://drupal.org/project/pathauto

If you would like to participate in the hands-on exercises in this chapter, you should
install Drupal using the Chapter 7: News website installation profile from the book’s
sample code, which creates the example website on your web server. The completed
website will look like the image pictured in Figure 7-1 and found at http://workflow
.usingdrupal.com. For more information on using the book’s sample code, see the
Preface.

Figure 7-1. Our News website

Case Study
Our Media is a Vancouver-based independent news website. The content is mainly
produced by volunteers, while a small staff of paid editors manages the website. They
make sure the volunteers know where the next press conference is taking place, and
actually review, edit, and publish the content that the volunteer reporters post.

In recent months, the site has grown more popular. More and more volunteers have
signed up to write articles and make video reports—so many that the staff can hardly
keep up with all the work. They’ve decided they need to delegate some of the editorial
work in order to keep things feasible. This means that their site’s editorial process needs
to be changed.

After some meetings with a group of volunteers, they have come up with a new editorial
process, which would be based on the editorial groups that already work together for
Our Media. The groups are mostly topic centered: there is a group that works on in-
ternational news, a group that covers politics, another that reports on cultural events,

264 | Chapter 7: Managing Publishing Workflows

http://workflow.usingdrupal.com
http://workflow.usingdrupal.com

and so on. The team figures that if they could distribute the editorial work among those
groups, rather than managing all the content centrally themselves, their workload
would decrease significantly. Every group would be responsible for the content within
its own section.

For this organizational change to be possible, however, the website needs some work.
It needs to be set up in such a way that certain volunteer editors are only able to access
content within certain categories. The editors also need an easy way to find the content
they are responsible for. They should not have to look around in Drupal’s administra-
tive interface to find the content that they need: everything should be nicely grouped
together in one place.

In the editorial interface, the volunteer editors should be able to easily find new content
that reporters sent in for review. The editors should be able to review their content,
send it back to the reporter if it needs work, and communicate with the reporters about
changes they propose. If the editors make a change to the content themselves, a new
version of the content should be saved, so the reporter’s original is preserved. When
dealing with a hot news story, editors should be able to publish a temporary, quick
version of the article on the site, while editing and refining a final version behind the
scenes.

Implementation Notes
Drupal core allows administrators to change the default publishing settings for each
content type, and by deselecting the Published flag on content types, the editors can
ensure that stories posted by contributors won’t show up until they are published
manually. However, the grunt work of checking for new unpublished posts, reviewing
them, editing them, publishing them, and then saving the changes is cumbersome for
sites with a lot of activity. We’ll be using Workbench, a series of modules that was
developed precisely to improve content management in Drupal.

Content management tools

On busy sites with a lot of content, Drupal core’s built-in content management tools
might not be adequate. In the case of Our Media, the staff wants to delegate the man-
agement of content to several editors, which means the site’s editorial interface should
be very easy to use. The Workbench module suite was developed to solve this problem,
and solve it well.

First, Workbench provides editors with an easy-to-use landing page where they can
find the site’s content and work with it. It tries to get in the way as little as possible,
while allowing editors to focus on their task, rather than on learning Drupal.

Workbench integrates very well with Drupal core. In fact, we’ll combine Workbench
with one of Drupal core’s most powerful features, the Taxonomy module, which allows
administrators to set up categories to organize a site’s content.

Case Study | 265

Content access control

Recall that the staff of Our Media wants to empower volunteers with access to editorial
tools, but only within their own designated sections. Once we’ve set up categories for
each area, we’ll use Workbench Access, part of the Workbench suite, to define an access
control model for our content management, based on those categories. By doing this,
we’ll make sure that editors can only edit content in sections that are assigned to them.

Editorial workflow

Out of the box, Drupal allows any piece of content to be marked as “published” or
“unpublished.” The Our Media site needs something more advanced: it must be able
to track the difference between an article that’s an in-progress draft, one that’s sub-
mitted to the editors for review, and one that’s been approved and published.

Workbench Moderation, another part of the Workbench family of modules, comes in
very handy here. We’ll use it to set up custom “workflow states” for our articles and
to control who has permission to move them from one state to another. When an article
is posted on the site, it will need to move through those workflow states before it gets
published.

Spotlight: Taxonomy
While this chapter focuses primarily on the Workbench module suite, we need to do
some basic setup of our Drupal site in order to benefit from Workbench’s full potential.
One of those things we need to do beforehand is set up categories to organize our
content, using the Taxonomy module.

If you’re new to Drupal, you’ve probably wondered what taxonomy is—the word pops
up all over the place, and it can sound a bit mysterious. Don’t worry, it’s just a technical
term for a way of organizing and classifying things, like content on a website. If you’ve
sorted your family photo album, filed your email in folders, or argued with a friend
about whether a band is punk or ska, you’ve already worked with taxonomies!

If a site has a lot of content, editors need a way to group it into categories. By doing so,
they make it possible for users to easily navigate the website and find the content they’re
looking for. Additionally, assigning content to categories, whether by using a prede-
fined set of sections or a free-for-all tagging system, opens up all sorts of interesting
possibilities. For instance, site builders can expose content with similar tags on article
pages. Or they can turn the category pages into rich landing pages, pulling in all kinds
of different content that has the same categories assigned to it.

266 | Chapter 7: Managing Publishing Workflows

Vocabularies and Terms
Creating a taxonomy for your site starts when you identify what kinds of content you’ll
have, and how it can be described. News articles, for example, might be classified by
their subject matter or by the geographical area they cover. In Drupal, these groups of
categories are called vocabularies (like Section). Each vocabulary contains specific
terms (like “International affairs,” “National news,” or “Culture”) that can be used to
describe content. Whenever you post an article, a photograph, or a blog entry, you can
select the terms that match it.

Drupal supports three kinds of vocabularies: simple lists of terms, organized hierarchies
of terms, and “free tagging” vocabularies that allow you to define new terms as you
post new content. Drupal’s “Term reference” field type provides widgets that allow
you to expose a vocabulary’s terms as checkboxes, radio buttons, select lists, or auto-
complete fields. Each is useful in different situations. Figure 7-2 shows an example of
how each type of vocabulary might be used on a hypothetical news article content type.

Figure 7-2. Examples of taxonomy types and widgets

Like other entities in Drupal (nodes, users, files), taxonomy terms can be extended with
fields. The default fields for a term are Name and Description, but you can add whatever
field you want. For example, it may be handy to provide a “Term image” field in order
to add a picture for every term, which you can then show on the term overview page.
And because term reference fields can be placed on taxonomy term entities, you can
even tag your tags. Whoa.

Spotlight: Taxonomy | 267

The taxonomy system is incredibly powerful, and is one of Drupal’s greatest assets as
a content management system. In addition to the features provided out of the box,
several contributed modules also make use of taxonomy in interesting ways, the
Taxonomy Menu module, which turns a vocabulary into a Drupal menu that can be
placed in Primary or Secondary links.

Taxonomy Term Links
After you submit a piece of content, any terms it has attached will appear as links on
the node page, as displayed in Figure 7-3. Each of these links displays a page listing all
content to which that term has been applied, along with an RSS feed that visitors can
subscribe to in order to receive notifications whenever new content with that term
attached is posted.

Figure 7-3. Taxonomy terms are listed as links on the node page

268 | Chapter 7: Managing Publishing Workflows

http://drupal.org/project/taxonomy_menu

List or Term Reference?
The Taxonomy module’s “Term reference” field and the “List (text)” field both allow
you to create select lists on the form for creating content. Here are a few guidelines to
help you choose one or the other:

• The primary purpose of Taxonomy is to create categories, so if you’re putting
things into categories, you should generally use the Taxonomy module. If you ever
make a list field called Category, think twice. The Taxonomy module was made
for that exact purpose, and many existing modules provide integration directly
with the Taxonomy module.

• Taxonomy provides hierarchies of categorization that are very easy to order and
organize. If your selections need to be put into a tree, Taxonomy is a good choice.

• A general rule of thumb is that if you can remove the field and the content type
still makes sense, use Taxonomy. An article filed under a Technology section is
still an article if you remove the section association, so Taxonomy is a good fit. If
the field is part of a piece of content, such as an album’s copyright year, then a List
field is generally a better choice.

Hands-On: Categorizing Content
The Taxonomy module is included in core and is enabled by default when you install
Drupal, along with a Tags vocabulary, which you can use to allow users to freely tag
their content. Let’s use Drupal core’s Taxonomy module to set up a “News section”
vocabulary with predefined terms, in order to organize the articles that are posted on
our news site:

1. In the administrative toolbar, click on Structure→Taxonomy (admin/structure/
taxonomy). Click “Add vocabulary,” enter the settings from Table 7-1 as shown in
Figure 7-4, and click the Save button. After clicking Save, you will be redirected to
the Taxonomy administration page. A message at the top of the overlay will confirm
that you’ve successfully created a new vocabulary, called “News sections.”

Table 7-1. “News sections” vocabulary settings

Setting Value

Name News sections

Description Leave blank (default)

Hands-On: Categorizing Content | 269

Figure 7-4. Taxonomy settings for the “News sections” vocabulary

2. Now that we have a vocabulary set up, it’s time to create some terms. On the
Taxonomy page, next to the “News sections” vocabulary, click “add terms” in
the Operations column (admin/structure/taxonomy/news_sections/add). Enter the
settings from Table 7-2, as shown in Figure 7-5, and click Save. Do the same for a
few other terms—for example, “National news,” “Culture,” and “Politics”—so we
have a number of terms available later in the chapter when we get to configure the
editorial workflow for the site, using the Workbench modules.

Table 7-2. Term settings

Setting Value

Name International affairs

Description Leave blank (default)

On the term creation page, there are some other options available as well, which we
won’t configure right now:

URL alias
As we’ve seen in “Spotlight: Taxonomy” on page 266, the Taxonomy module au-
tomatically creates links to pages that list content with the same term. The “URL
alias” field allows us to define a more human-readable URL for the term, like news/
international. The field gets added by the Path module, which we learned about in
“Creating a Basic Page” on page 36. We’ll get back to it later in this chapter, when
we set up automatic aliasing using the Pathauto module.

Relations
In the Relations fieldset, you can define parent terms for the term you are creating,
so it becomes part of a hierarchy. Additionally, you can determine the place where
the term appears in the hierarchy by giving it a weight. However, an easier way to
create hierarchical terms and move them around is to navigate to a vocabulary’s
“list terms” page and use the drag-and-drop arrows to do so.

270 | Chapter 7: Managing Publishing Workflows

To use the terms we’ve just created with nodes, we need to add a term reference field
to the content type we want to categorize. In the administrative toolbar, click Struc-
ture→“Content types” (admin/structure/types). We’ll add a term field to the Article
content type.

1. Next to Article, click the “manage fields” link (admin/structure/types/manage/ar-
ticle/fields) to bring up the field management page for the Article content type.
Under “Add new field,” enter the settings from Table 7-3 and click Save.

Table 7-3. Term field settings

Setting Value

Label News section

Field name field_news_section

Type of data to store Term reference

Form element to edit the data Select list

2. After you click Save, the “Field settings” page appears. When configuring a term
reference field for a content type, this page allows you to determine which vo-
cabulary to use for the field. In the Vocabulary select list, make sure the “News
sections” vocabulary is selected, and click “Save field settings.”

3. On the next page, we’ll stick to the default settings, so just click “Save settings.”

Figure 7-5. Term settings for the “International affairs” taxonomy term

Hands-On: Categorizing Content | 271

4. When you land back on the content type’s field management page (admin/struc-
ture/types/manage/article/fields), arrange the fields as follows by dragging them in
the correct order:

• Title

• News section

• Tags

• Image

• Body

When finished, your Article content type should look as shown in Figure 7-6.

5. Now we have added a term field to our content type, we’re set to start categorizing
our content! If you click “Add content”→Article (node/add/article), you’ll see that
you’re able to assign a News section to your article. Go ahead and create an article,
and select one of the terms you’ve just created. After you’ve saved the article, you’ll
see that the term you selected is linked on the article page. When you click the
term, you’ll be taken to the term page, listing all content items that have that term
attached.

Figure 7-6. Adding a term reference field to the Article content type

Nice! You’ve learned how to organize the content on your Drupal site, using core’s
Taxonomy module. We’re almost ready to build our distributed workflow with Work-
bench, but first we’ll do a little bit more preparation work.

272 | Chapter 7: Managing Publishing Workflows

Spotlight: Pathauto
In “Creating a Basic Page” on page 36, you learned about Drupal paths and how to use
clean URLs. One reason to use clean URLs is so that they don’t look so ugly. (To review,
clean URLs remove the ?q= from the URL.) That helps, but still leaves the URLs lacking
a bit. Having a URL with node/123 in it doesn’t really tell either humans or search
engines much about the page itself. Isn’t it much better to have a URL with something
like article/the-article-title in it? That will be much more memorable, and the addition
of pertinent keywords in the URL makes for better search engine optimization. So, even
without clean URLs, you can still benefit from good pathnames.

Path Aliases
We’ll quickly review the core Path module that we mentioned in Chapter 2. When
enabled, it will add a new vertical tab to the node creation/editing form called “URL
path settings,” as shown in Figure 7-7. When you click that vertical tab, you will have
a field in which to enter an alternative name for that node’s path (called a URL/path
alias). The name that you enter here will be used in place of the Drupal path, the part
of the URL that comes after http:// example.com/ (or http://example.com/?q= if you don’t
have clean URLs enabled).

Figure 7-7. Configuring a URL alias for a node

This field is a huge help, but it can be somewhat tedious to enter all of those names by
hand if you are creating a lot of content. Also, if you have many users creating content,
you need to make sure that they all understand this and use consistent naming through-
out the site, which can be an administrative headache.

As often occurs in Drupal, contributed projects provide us with a module that deals
with this issue. Enter the Pathauto module. As its name implies, it creates automatic
path aliases for nodes, taxonomy, and user paths. Pathauto is dependent upon the core
Path module and another module called Token, discussed in the sidebar below.

Spotlight: Pathauto | 273

http://drupal.org/project/pathauto

What Is a Token?
Tokens are placeholders that get swapped out dynamically for real values later on. For
example, [yyyy] represents a four-digit year, and [author-name] represents the user-
name of a node author. These are very similar to what we saw in Views when switching
the Amazon link destination in “Rewriting Views Field Output” on page 226.

Drupal core exposes a number of default tokens, but by default there is no user interface
to browse or input them. So unless you’re extremely PHP-savvy, tokens can be difficult
to use out of the box. Additionally, there are some tokens that Drupal core does not
provide, such as field-related tokens. Enter the Token module, which provides a UI to
any token-enabled text field in Drupal to get at the central repository of token place-
holders, as well as a bundle of extra tokens that haven’t yet made their way into Drupal
core.

Modules that have data (like the core Node module, which knows the date a node was
created), can let the token system know they have something to share. You can think
of these as “suppliers.” Modules that want to use that data, like Pathauto, can tap into
the list of what is available. These are more like “consumers.” Drupal’s token system
acts like a storefront that can sell various things that the suppliers bring in to the cus-
tomers who want to consume them.

Contributed modules can become “suppliers” as well by providing new placeholders
that represent data that they know about. They just need to speak Token’s language
and say “Hey, I have this xyz bit of data in the database, and you can tell others about
it by telling them to use the [xyz] placeholder.”

Tokens in Drupal 7 are also chainable; for example, the “node” token exposes an “au-
thor” element, which gets you the user properties for the author of the node. This allows
you to use tokens such as [node:author:email]. Handy!

Pathauto Patterns
Pathauto uses a combination of plain text and tokens to set up URL naming patterns
to follow. For instance, you can set up a pattern for naming the path of all new article
pages to be [node:content-type]/[node:title] so that you automatically get something
like article/my-first-article, as shown in Figure 7-8.

The bits of text in square brackets are placeholders for the Token module mentioned
earlier. You can use different patterns for each unique content type or vocabulary if you
choose. For example, basic pages could use a pattern of [node:title], since they’re
generally things like About Us and there’s no need to specify “page/” in front of it.
Pathauto also has configurable default patterns that will be applied if you don’t make
specific choices. You can decide things like how long your alias is allowed to be, what
kind of separator you would like to use in the place of spaces or punctuation, and which
common, short words you want to remove (e.g., a, and, in, etc.) from the path. In
addition to making these automatic aliases upon creation of new content, Pathauto can

274 | Chapter 7: Managing Publishing Workflows

http://drupal.org/project/token

also update all of your existing content so that your entire site uses the same pattern,
even if that content was created prior to your turning on the Pathauto module.

One important thing to consider when using Pathauto is how you want to manage
changing your aliases in case of a typo or similar problem. Because the alias is created
based on information that Pathauto is getting about that content, if you update the
content you can change your alias. You can decide what you want to do when you make
updates. You can:

• Do nothing. Leave the old alias intact.

• Create a new alias. Leave the existing alias functioning.

• Create a new alias. Delete the old alias. (This is the default.)

Different sites may have different reasons for choosing which option they want to use.
The default is to make a new one and delete the old so that your aliases always match
your content. This option can be problematic in that it can cause a condition called
link rot. If you have a certain URL on your site, such as http://example.com/about, other
sites on the Web may create links pointing to that URL. If you change that URL to
http:// example.com/about-us and delete the old one, all of those outside links will stop
working. That’s link rot, and it’s generally frowned upon since it’s bad for the Internet
when URLs break.

The second option, making a new alias and keeping the old one, may sound ideal,
because you can then access the content from either path and the problem of link rot
is eliminated. But, while this option addresses the issue of link rot, its disadvantage is
that some search engines will penalize you for having many paths that point to the same
page, because they think you may be trying to game the search results. One way to get
around this issue is to use the Redirect module with Pathauto, which can be configured
to automatically create redirects for changed URLs so that content coming in via du-
plicate paths is sent instead to the one canonical path in the system.

Figure 7-8. Pathauto’s version of the path settings on a node edit form with a path automatically
prefilled

Spotlight: Pathauto | 275

http://drupal.org/project/redirect

Look over the Pathauto settings and play around with them while your site is under
development to determine the best fit for your site’s needs. Once the site has been
launched and people are using it, avoid making any major changes to your Pathauto
settings, as users may come to depend on the URLs behaving in a particular way.

Hands-On: Automating URL Aliases
To get those handy human-readable URLs on our site, we are going to use the Pathauto
module. As you saw in the previous section, this relies on the Token module as well as
the core Path module. The Pathauto settings are divided over two pages: one page to
set up the actual replacement patterns, and another one to configure Pathauto’s general
settings. These configuration pages can seem a bit intimidating at first. Luckily, most
of the defaults are what most sites will want to use anyway, so that makes our job with
configuration a lot simpler than it may first appear.

1. In the administrative toolbar, click Modules (admin/modules) and enable the fol-
lowing modules:

• Other

— Pathauto

— Token

2. In the administrative toolbar, click Configuration→“Search and metadata”→“URL
aliases,” and then the Patterns tab (admin/config/search/path/patterns). This is the
page where we’ll set up the URL patterns for our site. Add the settings from Ta-
ble 7-4, as shown in Figure 7-9, and click Save configuration.

Table 7-4. Pattern settings in the Pathauto module

Setting Value

Content paths

Pattern for all Article paths [node:content-type]/[node:title]

Taxonomy term paths

Pattern for all “News sections” paths news/[term:name]

These settings will now take care of the paths of all future articles and taxonomy terms
that we create. However, we already created a few articles in the previous section. How
do you account for content that’s already created? To do this, we’ll have Pathauto bulk-
update the existing URLs, as shown in Figure 7-10:

1. Click the “Bulk update” tab.

2. Check the “Content paths” and “Taxonomy term paths” checkboxes.

3. Click “Update.”

276 | Chapter 7: Managing Publishing Workflows

Once Pathauto’s bulk update has run, you’ll see that all our existing taxonomy terms
(and articles, if you created some already) have a pretty human-readable URL like news/
culture, and our article URLs look something like article/occupy-wall-street-facts.

Figure 7-9. Configuring Pathauto’s URL patterns

Figure 7-10. Updating URL aliases using Pathauto’s bulk-update function

Hands-On: Automating URL Aliases | 277

Spotlight: Workbench
Now that we have created a way to categorize content on our site with the Taxonomy
module, and added automatic aliases with Pathauto, we can move on to building the
editorial system needed for the Our Media site. As noted in the use case, the Our Media
staff members have two main needs:

1. They need to be able to delegate content management to existing editorial teams.
Those teams are subject-focused, so we’ll use the taxonomy terms we’ve created
earlier in this chapter to grant access to certain editors.

2. The content needs to move through an editorial workflow, so that editors can
review articles, and publish them if they are ready, or send them back to reporters
if they need more work.

This use case can seem complex at first. We need to provide some form of access
control, so that editors who are responsible for the “culture” section on the site can
only see draft articles in that particular section. On top of that, we need an editorial
workflow that integrates with that access control feature. Lucky for us, Workbench, a
contributed module (or rather, a suite of modules), provides exactly what we need.

Workbench was developed to solve a number of important needs of websites that deal
with a lot of content:

• Workbench makes it easy for editorial users who only deal with content to find
what they need. Editors get a content dashboard (aptly called “workbench”) where
they find all the content on the site.

• Workbench Access allows site administrators to assign content in different sections
of the website to certain user roles or directly to one or more individual users. It’s
up to the site builder to decide what to base those sections on.

• Workbench Moderation makes it possible to define workflows that involve custom
steps and transitions, and that are integrated with the section-based access model.

For administrators, Workbench provides a one-stop solution to improve the content
creation and reviewing process on a Drupal site. Its goal is to combine several often-
requested content management features into one module suite, so that administrators
can easily implement complex editorial workflows by simply installing Workbench.

For users, Workbench provides a consistent and unified way to deal with content. Users
(like our editors) who primarily work with content only need to find their way to the
Workbench page, and can take it from there. They don’t need to learn all the ins and
outs of Drupal, but can focus on what they like doing: working with content.

278 | Chapter 7: Managing Publishing Workflows

http://www.drupal.org/project/workbench

The Workbench suite was developed in a modular way, making it possible for users to
only install the modules that are needed for a certain site. If you don’t need the section-
based access control, but only the content moderation states, simply leave Workbench
Access disabled.

Apart from the aforementioned Workbench modules, there is also Workbench Files,
which provides an interface to efficiently manage files that are uploaded, and Work-
bench Media, which integrates with the Media module. Both Workbench Files and
Workbench Media extend the initial Workbench interface, meaning that editors can
access everything from the same place in the Drupal administrative interface.

My Workbench
When Workbench is installed on a Drupal site, it provides an overview page, called My
Workbench. Editors will use this page, which groups all of Workbench’s editorial
functionality together, to find content that was published on the site, review it, and
manage it. The My Workbench page is easily accessed through the administrative tool-
bar, as shown in Figure 7-11.

Figure 7-11. My Workbench is always accessible through the administrative toolbar

Without any of Workbench’s add-ons, the My Workbench page, pictured in Fig-
ure 7-12, contains the following:

My profile
The My Workbench page shows a picture of the user who is currently logged in,
along with a link to the user’s profile, to provide easy access to the user’s profile
page.

My edits
A convenient overview of the content that the currently logged-in user has worked
on, ordered according to the time the content was last updated. By default, this list
displays five items. To see all content items that he has edited, the user can click
“View all.”

All recent content
A listing of all the content on the site, ordered according to the time the content
was last updated. This list will contain up to 25 items. Just like with the “My edits”
list, users can click “View all” to see more content.

The My Workbench page also displays a tab that links to the “Create content” page,
so users can easily navigate to that page, right from the main Workbench page.

Spotlight: Workbench | 279

Figure 7-12. My Workbench serves as the central point for content management in Drupal

The content listings you see on the My Workbench page are created
with the Views module, which means you can change them as you see
fit. For example, you might want to display more than five items under
My Edits, or remove the username under the “My profile” picture. Using
what we learned in Chapter 3, making simple and more complex
changes to the default Workbench page is possible.

Hands-On: Creating Editorial Work Spaces
Since implementing Workbench can seem complex if you’re doing it for the first time,
we’ll break it down into smaller steps. In this section, we’ll focus on configuring the
basic Workbench environment. Once that’s done, we’ll look at setting up more ad-
vanced features like access control and editorial workflows.

1. In the administrative toolbar, click Modules (admin/modules) and enable the fol-
lowing modules:

• Chaos Tools Suite package

— Chaos tools

• Views package

— Views

— Views UI

• Workbench package

— Workbench

280 | Chapter 7: Managing Publishing Workflows

http://www.drupal.org/project/views

In the Workbench fieldset, you’ll also see two other Workbench-related modules,
Workbench Access and Workbench Moderation. We’ll leave them disabled for
now, and come back to those later in the chapter.

2. We can determine who will get access to Workbench’s functionality by configuring
the relevant permissions. In the administrative toolbar, click People, then Permis-
sions (admin/people/permissions), and scroll down until you see the Workbench
permissions. Enter the permissions as shown in Table 7-5.

Since the Workbench module is intended for editors, we won’t grant anonymous
and authenticated users any of the Workbench permissions. Users with the “edi-
tor” user role will get access to My Workbench, and only administrators will be
able to administer the Workbench settings.

Table 7-5. Permissions for Workbench

Permission anonymous user authenticated user editor administrator

Workbench

Administer Workbench Settings Checked

Access My Workbench Checked Checked

After you’ve configured the Workbench permissions, click My Workbench (admin/
workbench) in the administrative toolbar: this will be the main content management
page from now on.

Hands-On: Generating Sample Content
Since we haven’t been creating much content on our site, the My Workbench page is
rather empty. This can make it hard to understand what’s going on and to grasp the
module’s possibilities. This is a situation that you’ll encounter often when developing
a site: at a certain point, you need content to test a certain feature, or to verify what a
certain section on your site will look like.

The Devel Generate module, which comes with the Devel module (http://www.drupal
.org/project/devel) allows us to quickly generate sample content, users, taxonomy vo-
cabularies/terms, and menu items, so testing functionality on our new site becomes a
lot easier, since it will more closely resemble its actual functioning.

1. In the administrative toolbar, click Modules (admin/modules), and enable the fol-
lowing modules:

• Devel package

— Devel

— Devel generate

Hands-On: Generating Sample Content | 281

http://www.drupal.org/project/devel
http://www.drupal.org/project/devel

2. Click Configuration (admin/config) in the administrative toolbar and scroll down
until you see the Development section of the Configuration page, as shown in
Figure 7-13.

Figure 7-13. Devel Generate allows you to quickly generate sample content

We’ll generate some sample articles in order to populate the My Workbench page.
Click “Generate content” (admin/config/development/generate/content), enter the
settings from Table 7-6, as shown in Figure 7-14), and click Generate.

282 | Chapter 7: Managing Publishing Workflows

Table 7-6. “Generate content” settings

Setting Value

Content types Article

Delete all content Unchecked (default)

How many nodes would you like to generate? 70

How far back in time should the nodes be dated? 1 week ago (default)

Maximum number of comments per node. 0 (default)

Max word length of titles 4 (default)

Add an url alias for each node. Checked

Set language on nodes Language neutral (default)

Figure 7-14. Generate sample content for your site

Once the sample content has been generated, return to the My Workbench page. De-
spite the content being far from realistic, the Workbench will look much more like what
you would expect to see on a working site. This makes it easier for us to further explore
Workbench features, which we’ll do in the following sections.

Hands-On: Generating Sample Content | 283

It’s definitely worth sitting down and exploring the Devel module as
you get deeper into Drupal site development. Devel contains several
useful utilities that support site builders and developers during site cre-
ation, such as the ability to easily switch back and forth between users
on the site in order to test permissions. If you ever run into code-related
problems, Devel also has several handy tricks to assist with debugging,
including “pretty” output functions such as dpm(), an object inspector,
and more.

Spotlight: Workbench Access
In the previous sections of this chapter, we’ve created a taxonomy vocabulary and terms
to organize the content on our site, and we’ve configured the main Workbench module
to provide a workspace for our content editors. In this section, we’ll combine both
modules to achieve another of this chapter’s goals: to allow content management to be
delegated according to existing editorial groups.

As we’ve seen in the previous section, where we introduced Workbench, it is possible
to extend Workbench using other modules that belong to the suite. One of those mod-
ules is Workbench Access.

Using Hierarchies to Define Access Control
Workbench Access allows an administrator to create access control mechanisms based
on existing hierarchies on the site. Such hierarchies can be a menu or a taxonomy
vocabulary. With Workbench Access, you can use those hierarchies to control which
user has editorial access to certain content. For example, Workbench Access makes it
possible to grant users of one role editorial access to content tagged with all terms of a
certain vocabulary, while users of another role have access only to content tagged with
one specific term within the same vocabulary.

In addition to per-role access, you can also grant individual users access to a term or a
vocabulary. This makes it easy to allow different users to work on their own specific
part of the site’s content, without getting in each other’s way. In Figure 7-15, which
displays Workbench Access’s main configuration page, the “News section” vocabulary
is used to control editorial access to articles.

Workbench Access also supports Drupal’s menu system as an access scheme, meaning
you can grant editorial access to content based on a content item’s place in the site’s
menu structure.

While Workbench Access supports the Taxonomy module and the menu system out
of the box, module developers can expose their own access schemes to Workbench
Access, so administrators can use them to build access control systems for their editors.
The module is designed to be extensible.

284 | Chapter 7: Managing Publishing Workflows

Figure 7-15. Configuring Workbench Access settings

It’s important to note here that Workbench Access only works on an
editorial level: it does not interfere with permissions to view content on
a site. Other modules, such as Taxonomy Access and Content Access
are examples of node access modules, and can provide fine-grained con-
trol over who can see content on the site, and in what contexts. See a
full list of all available Content Access control modules on Drupal.org
at http://drupal.org/project/modules?filters=tid%3A13434.

Spotlight: Workbench Access | 285

http://drupal.org/project/taxonomy_access
http://drupal.org/project/content_access
http://drupal.org/project/modules?filters=tid%3A13434

Workbench Access sections

When you use a vocabulary with Workbench Access to control access to content, terms
in that vocabulary become known as Workbench Access sections. Workbench Access
allows you to configure several options related to Workbench Access sections:

Workbench Access message label
How to refer to Workbench Access sections on node forms. In this case, they are
referred to as an “Editorial section,” since that makes sense for a news site.

Automated section assignment
Whether to automatically use all terms within the used vocabulary as Workbench
Access sections (when using taxonomy as the access scheme). If you disable this,
you’ll have to manually enable individual terms as Workbench Access sections.

Allow multiple section assignments
Whether to allow a piece of content to belong to multiple Workbench Access
sections.

Assigning Editorial Access to Workbench Access Sections
Once you’ve set up access control with Workbench Access, you still need to determine
which users have editorial access to which content. Workbench Access’s configuration
is very fine grained: you can enable individual Workbench Access sections, and assign
editorial access to complete user roles or only to certain users. In Figure 7-16, users
with the role “national editor” have editorial access to content that has the term “Na-
tional news” attached.

Figure 7-16. Configuring Workbench Access role settings

You assign content to a Workbench section on the node form. Once you’ve configured
Workbench Access, users will be able to put content into sections using a select list, as
shown in Figure 7-17. Once the content belongs to a certain section, users with editorial
access to that section will be able to edit it.

286 | Chapter 7: Managing Publishing Workflows

Figure 7-17. Assigning a node to a Workbench section on the node’s edit page

Also note that Workbench Access extends the My Workbench page by adding a tab
called My Sections, as shown in Figure 7-18. By clicking on the tab, an editor can verify
which Workbench Access sections she can access.

Figure 7-18. The My Sections tab shows the sections a user can access

Hands-On: Workbench Access
Let’s extend our Workbench implementation with one of the more advanced features
our client has asked for. We’ll build upon the structure we’ve created with the Taxon-
omy module (the “News sections” vocabulary), and use that to grant users within spe-
cific roles access to content tagged with one of the “News sections” terms. We’ll start
with a little preparation work: creating two new user roles and adding a user for each
role.

1. In the administrative toolbar, click People→Permissions, then click the Roles sub-
tab in the top-right corner (admin/people/permissions/roles).

2. Add two new roles, one called “national editor” and another called “culture edi-
tor.” Since they will have fewer permissions than the general “editor” role, reorder
them to be just before “editor” in the list, as pictured in Figure 7-19.

Hands-On: Workbench Access | 287

3. Next, we’ll create a user for each role, so we can test the Workbench Access con-
figuration later on. If you’re still on the Roles configuration page, click the List tab
to go to Drupal’s user management page (admin/people). You can also get there by
clicking People in the administrative toolbar. Click “Add user” (admin/people/cre-
ate) to create a new user called “national editor” using the settings indicated in
Table 7-7. Afterward, create another user, “culture editor” with the “culture editor”
role.

Table 7-7. Creating new users

Setting Value

Username national editor

E-mail address (Choose an e-mail address)

Password (Choose a password)

Roles national editor

4. We also need to set up some permissions for our user roles. Only users with the
general “editor” role (staff members) should be able to edit all content. We’ll also
grant the three “editor” roles—national, culture, and general—permission to view
the administration theme and to access the administrative overlay and toolbar, to
present the Workbench pages in a more user-friendly way. In the administrative
toolbar, click People→Permissions (admin/people/permissions), and assign the per-
missions as indicated in Table 7-8.

Figure 7-19. Extra roles to use with Workbench Access

288 | Chapter 7: Managing Publishing Workflows

Table 7-8. Permissions before configuring Workbench Access

Permission
anonymous
user

authenticated
user

culture
editor

national
editor

editor administrator

Node

Bypass content access
control

 Checked Checked

Administer content Checked Checked

Access the content
overview page

 Checked Checked

Article: Create new
content

 Checked Checked Checked Checked

Article: Edit any
content

 Checked Checked Checked Checked

Overlay

Access the
administrative overlay

 Checked Checked Checked Checked

System

View the administra-
tion theme

 Checked Checked Checked Checked

Toolbar

Use the administration
toolbar

 Checked Checked Checked Checked

Workbench

Access My Workbench Checked Checked Checked Checked

It’s important to note here that Workbench Access’s permissions are
applied on top of, not instead of, Drupal’s own editorial permissions.
That’s why we grant our “national editor” and “culture editor” user
roles permission to edit article content. Workbench Access will then
refine those permissions, using its Workbench Access sections.

As you’ve probably guessed by now, we’ll create an access control mechanism that
grants users with the “national editor” role editorial access to content tagged with the
term “national news.” Users that have the role “cultural editor” will eventually get
editorial access to content that has the term “culture” attached. Before that can happen,
we need to enable and configure Workbench Access. After this configuration, the
taxonomy terms we created earlier will become Workbench Access sections, which will
be used to enforce access control on our site’s content.

Hands-On: Workbench Access | 289

Setting Up Access Control with Workbench Access
In the administrative toolbar, click Modules (admin/modules) and enable the following
modules:

• Workbench

— Workbench Access

After enabling Workbench Access, we'll go ahead and configure it.

If you were to go to the My Workbench page (admin/workbench) as the
“national editor” user, you’d notice that it doesn’t list any content yet.
That’s because Workbench Access is enabled, but hasn’t been config-
ured. The My Workbench page will remain empty until content has
been assigned to Workbench Access sections. Administrative users or
users with the “editor” role, however, can still edit all content on the
site by going to Drupal’s content configuration page (admin/content).

1. Click the “configure Workbench Access settings” link in the message, or navigate
to Configuration→Workbench→Workbench Access, then click the Settings tab
(admin/config/workbench/access/settings).

2. When you land on the Workbench Access settings page, you’ll see that the default
configuration for Workbench Access is to use Taxonomy as its access scheme. For
the Our Media site, we’ll use our newly created “News sections” vocabulary to
control editorial access to content. On the Workbench Access settings page, enter
the settings in Table 7-9 and click “Save configuration.”

Table 7-9. Workbench Access settings

Setting Value

Active access scheme Taxonomy (default)

Taxonomy scheme settings News sections

Content types enabled Article

Workbench Access message label Editorial section

Automated section assignment Checked (default)

Allow multiple section assignments Unchecked (default)

We have the most basic configuration for Workbench Access set up: taxonomy terms
within our “News section” vocabulary will be used as Workbench Access sections to
determine access control. Now it’s time to decide who gets access to which terms.
Remember the new roles we just created? We’ll use those to grant users access to con-
tent that’s tagged with terms in the “News sections” vocabulary.

290 | Chapter 7: Managing Publishing Workflows

If you want to prevent some of the vocabulary’s terms from becoming
Workbench Access sections (so they’re not used for access control), you
should leave “Automated section assignment” unchecked. If automated
section assignment is disabled, you can click the Sections tab (admin/
config/workbench/access/sections), and leave the terms you don’t want
to use for content access disabled.

1. First, we need to allow users of our new roles to be assigned to Workbench Access
sections. Go to the Permissions page by clicking People→Permissions (admin/peo-
ple/permissions). Configure the permissions as indicated in Table 7-10:

Administer Workbench Access settings
Allows users to configure Workbench Access. This permission is intended for
users who administer the site.

Assign users to Workbench Access sections
Users with this permission can assign users and roles to Workbench Access
sections. Meant for “super editors,” like the Our Media staff members.

Allow all members of this role to be assigned to Workbench Access sections
Users of these roles will be able to edit content in certain Workbench Access
sections (whichever sections they are assigned to).

Batch update section assignments for content
Allows users to assign content to Workbench Access, using the batch-update
options on Drupal’s content management page (admin/content). We’ll explain
how this works later in this section. A user needs to be assigned to a Work-
bench Access section to batch-assign content to a section.

View Workbench Access information
Allows users to see messages concerning content assignment to Workbench
Access sections.

View taxonomy term pages for Workbench Access vocabulary
Workbench Access can create its own vocabularies for testing purposes. This
permission has nothing to do with the normal vocabularies and terms on a
site, and we won’t be using it for editors on our site.

Table 7-10. Workbench Access permissions for the “national editor” and “culture editor” user
roles

Permission
anonymous
user

authenticated
user

culture
editor

national
editor

editor administrator

Workbench Access

Administer
Workbench Access
settings

 Checked

Hands-On: Workbench Access | 291

Permission
anonymous
user

authenticated
user

culture
editor

national
editor

editor administrator

Assign users to
Workbench Access
sections

 Checked Checked

Allow all members of
this role to be
assigned to Work-
bench Access
sections

 Checked Checked Checked Checked

Batch update section
assignments for
content

 Checked Checked

View Workbench
Access information

 Checked Checked Checked Checked

View taxonomy term
pages for Workbench
Access vocabulary

 Checked

2. Next, go to the Workbench Access roles page by navigating to Configura-
tion→Workbench→Workbench Access, then the Roles tab (admin/config/work-
bench/access/roles). This is the page where you can assign user roles to Workbench
Access sections.

You’ll see a listing of the taxonomy terms within the “News sections” vocabulary
that are currently actively used as Workbench Access sections. Right now, all the
terms within our vocabulary are being used as Workbench Access sections, because
we checked the “Automated section assignment” checkbox on the Workbench
Access settings page. Later in this section, we’ll see how you can control which
terms are used as Workbench Access sections.

One of the two new roles we created is called “national editor”: users within this
role should have access to content tagged with the term “national news.” To set
this up, click the “National news” link in the list of active Workbench Access
sections. On that page, check the “national editor” role and click the “Update
roles” button.

Now do the same for users with the “culture editor” role in order to give those
users access to content tagged with the “culture” term. Go back to the Workbench
Roles overview page by clicking the Roles tab (admin/config/workbench/access/
roles), and click Culture in the list of active Workbench Access sections. Check
“culture editor” under Roles and click “Update roles.”

292 | Chapter 7: Managing Publishing Workflows

Note that users with the “administrator” and “editor” roles also need to be assigned
to Workbench Access sections in order to be able to assign content to sections.
We’ll assign both user roles to all sections. Click the “News sections” link at the
top of the hierarchy in the Workbench Access sections list and check the boxes for
both the “administrator” and “editor” roles. They will automatically inherit per-
missions to all subterms.

Congratulations! Our new user roles now have access to content that’s relevant to
them, as shown in Figure 7-20.

Figure 7-20. The assigned Workbench Access sections for each role

If your use case requires you to assign certain Workbench Access sec-
tions to individual users rather than user roles, you’re in luck, since
Workbench Access allows for that as well, via the Editors tab. This page
works the same way as Workbench Access’s Roles page, but for indi-
vidual users instead of roles: click “0 editors” next to the Workbench
section you want to assign to an individual user, and simply add the
user(s) on the next page.

Now that you’ve configured which roles or users have editorial access to content in
certain Workbench Access sections, it’s time to assign some of our content to a section,
so our editors can access it. Normally, content is assigned to a Workbench section when
an author creates the content and attaches a taxonomy term to it; the node is assigned
to the section that corresponds to the taxonomy term. The content will then appear on
the My Workbench page. Since we didn’t assign any Workbench Access sections to
any of our content items yet, however, the My Workbench page is still empty at this
point.

Hands-On: Workbench Access | 293

1. Click the “Find content” shortcut in the administrative toolbar (admin/content).
Since you’re an administrator and thus have the “Administer content” and “View
content overview page” permissions, you can administer content through this page
as well. Editors don’t have these permissions won’t be able to access this page and
will use the My Workbench page for managing content, seeing only the content
that is relevant for them.

2. You can assign a Workbench section in two different ways:

a. Check the box in front of the content item you wish to assign to a Workbench
section and then, under “Update options,” select the section you wish to assign
the item to under “Set editorial section.” Note that in order to do this, you
need the “Batch update section assignments for content” permission (admin/
people/permissions) and access to the Workbench section(s) you want to assign
content to.

b. Go to the content items edit page, and scroll down until you see the “Editorial
section” select list; this is the list of Workbench Access sections. Pick the sec-
tion you want to assign the content to and save the page.

Go ahead and add a few of the generated nodes to each section. Once done, you’ll see
the message shown in Figure 7-21 on any individual piece of content’s page, which
indicates the section it’s in.

Figure 7-21. A message at the top of a content page confirms which Workbench section the node is
assigned to; if logged in as the section editor, you will see an Edit tab

294 | Chapter 7: Managing Publishing Workflows

That is the final step we need for this part of the site’s functionality: editors with access
to the “National news” Workbench section will be able to edit this node, either via the
My Workbench page, or by clicking Edit on the node page. However, editors with only
“culture” access will not. If you navigate to the My Workbench page as one of the
specialty editors, you’ll notice the list of content there is now filtered to show only
things in their section.

Spotlight: Workbench Moderation
In the previous section, we completed an important feature of the Our Media site.
Existing editorial groups can now edit content they are responsible for, and only that
content. However, to enable editors to effectively manage the flow of articles coming
in, we need something else: an editorial workflow system that allows them to easily
determine when an article is ready for review, and to either send it back to the reporter
when it needs more work, or to publish it on the site when it’s good to go.

Out of the box, Drupal allows a piece of content to be either published or unpublished.
When the “published” checkbox is unchecked on the node editing form, only users
with the “administer nodes” permission are allowed to view the content. That’s enough
for some sites, but it doesn’t give our reporters and editors as much control as they
need. For example, there’s no way for a reporter to mark an article as an in-progress
draft and come back to it later. In addition, there’s no easy way for an editor to tell a
reporter that an article needs more work—the editor must contact the author manually.

This problem is exactly what Workbench Moderation (http://drupal.org/project/work
bench_moderation), another part of the Workbench suite, was designed to solve. It
allows site administrators to set up predefined steps, called states, through which every
piece of content must pass before publication. A news site might need “Draft,” “Needs
review,” and “Published” states, where a software development company might need
“New,” “Verified,” “Needs review,” “Needs work,” “Passes QA,” and “Fixed” states.
You can set up access control around who is allowed to move things from one state to
another (and back), ensuring that the right people give the content their stamp of ap-
proval before content goes live.

Editorial Workflow Management with Workbench Moderation
Using Workbench Moderation, administrators can define workflow states that suit
their site’s needs. As shown in Figure 7-22, they can decide how the states are called,
determining the order of the states a piece of content has to move through. As we will
see when we configure Workbench Moderation later in this chapter, administrators
can also configure the transitions between workflow states to allow only those state
changes they need or want to allow.

Spotlight: Workbench Moderation | 295

http://drupal.org/project/workbench_moderation
http://drupal.org/project/workbench_moderation

Figure 7-22. Configuring Workbench Moderation states settings

Since Workbench Moderation is part of the Workbench series of modules, it tightly
integrates with the central Workbench page that users get as their content management
“home base.” When Workbench Moderation is enabled, the “My Workbench” page
(admin/workbench) displays a tab for every moderation state, as shown in Fig-
ure 7-23. This makes it very easy for editors to find content that is currently being
worked on by reporters (drafts), content that needs review, and content that is pub-
lished on the site.

Figure 7-23. Workbench Moderation tabs

Remember that all of the pages displayed by these tabs are powered by the Views mod-
ule, so they can be modified and extended to fit your own site’s needs.

My Drafts
This page lists content created by the currently logged-in user and that hasn’t been
published yet.

296 | Chapter 7: Managing Publishing Workflows

Needs Review
This page lists content that has the state “Needs review” assigned to it.

These pages offer editors an overview of what’s going on with the content on the site,
and editors can moderate content directly from them, by clicking the desired modera-
tion state. More often than not, though, an editor will want to go into a piece of content,
make changes, and update the content’s moderation state accordingly. Not to worry—
Workbench Moderation provides several features on individual node pages.

1. When you go to one of the node pages, Workbench Moderation provides a block
that displays the node’s moderation state, or rather, the revision’s current moder-
ation state (since Workbench Moderation acts on revisions). An editor can also
change the moderation state directly from this block, as shown in Figure 7-24.

Workbench Moderation automatically creates a new revision each time a user
changes a node’s moderation state. This means it is very easy to roll back changes
and to revert to an earlier version of the node, if the changes are unwanted or not
relevant. It also makes it possible to compare versions with each other, to see ex-
actly what has changed.

Figure 7-24. Workbench Moderation state transitions

2. One of Workbench Moderation’s great strengths is the ability to work on a new
revision of a node (called a draft), while another revision is published. For example,
when a reporter posts a story that has very high news value, an editor can decide
to publish it, even though it could use some work. The editor can create a new
draft by clicking on the “new draft” tab (shown when a node has the Published
moderation state), and then give that new draft a moderation state and leave a note
explaining the changes (as shown in Figure 7-25) to send it through the editorial
process or publish it on the site.

Note that Workbench Moderation’s states take over Drupal’s Published option:
when a node has the moderation state Draft and no Published revision, the content
will not be published on the site.

3. Another very handy feature that Workbench Moderation provides for us on node
pages is the moderation history. When on the node page, click the Moderate tab;
you’ll see the list of recent moderation state changes, along with the changes’ de-
tails, as shown in Figure 7-26. Again, Workbench Moderation allows us to change
the moderation state right from that page.

Spotlight: Workbench Moderation | 297

Figure 7-26. Workbench Moderation history of a node

Hands-On: Workbench Moderation
In the administrative toolbar, click Modules (admin/modules), and enable the following
modules:

• Workbench

— Workbench Moderation

Figure 7-25. Changing the moderation state on a newly created draft

298 | Chapter 7: Managing Publishing Workflows

Remember that you can use Workbench’s modules independently of each other. If you
only need an editorial workflow on your site without access control like we set up in
the previous section, you can disable Workbench Access. For the purpose of this sec-
tion, it doesn’t matter if you have Workbench Access or not.

After enabling the module, you need to activate content moderation for each content
type you want to use it with:

1. Navigate to Structure→“Content types” (admin/structure/types). Next to Article,
click “edit” (admin/structure/types/manage/article) and go to the “Publishing op-
tions” vertical tab. Enter the settings from Table 7-11, as shown in Figure 7-27,
and save the content type. Note that “Default moderation state” will be the state
of the node’s first revision right after it is created.

Table 7-11. Workbench Moderation content type settings

Setting Value

Published Unchecked

Create new revision Checked

Enable moderation of revisions Checked

Enforce Workbench Access control Checked (default)

Default moderation state Draft (default)

Figure 7-27. Activating Workbench Moderation on a content type

Hands-On: Workbench Moderation | 299

2. Once you’ve saved your changes, head over to see Workbench Moderation’s con-
figuration options at Configuration→Workbench→Workbench Moderation (ad-
min/config/workbench/moderation):

a. On the States tab, you can configure the states you want content to pass
through between its creation and publishing. Workbench Moderation’s de-
fault states (“Draft,” “Needs review,” and “Published”) fit pretty well with a
news site like the one we’re building, but we want to add one more state. If
one of the editors feels unsure about an article, there has to be a way to flag
that to the Our Media staff, so we’ll create a custom state, “Needs staff review,”
between “Needs review” and “Published.” Enter the values from Table 7-12;
drag the new state between “Needs review” and “Published,” as pictured in
Figure 7-28; and click Save.

Table 7-12. Workbench Moderation state settings

Setting Value

State name Needs staff review

State description Questionable content; needs sanity checking from staff member

After you save the new Workbench Moderation state, a mes-
sage will ask you to “reconfigure Views that leverage Work-
bench Moderation.” This message is referring to My Work-
bench and related pages. As we have seen earlier in this chap-
ter, these pages are built with the Views module, which we
learned about in Chapter 3. By default, Workbench Modera-
tion comes with a page for each of its default moderation states
to make it easy for users to find the content they need. If you
create custom moderation states, you can also add an extra
view display to the “workbench_moderation” view by cloning
one of the existing displays and overriding its “Page settings,”
“Filter criteria,” and “No results behavior” values to match
the new workflow state.

b. Now that you’ve configured the moderation states, let’s set up the transitions
between each state. Click the Transitions tab (admin/config/workbench/mod-
eration/transitions) to see the existing transitions: Draft→Needs Review, Needs
Review→Draft, and Needs Review→Published. To give our editors the ability
to flag content for staff review, we need to add two more transitions: one from
“Needs review” to “Needs staff review,” and another one from “Needs staff
review” to “Published,” which staff members can use to push reviewed content
live. Select the From and To states under “New transitions” and click Save.
The list of transitions is shown in Figure 7-29.

300 | Chapter 7: Managing Publishing Workflows

To decide which role is allowed to move content from one state to another,
return to the Permissions page by heading back to People→Permissions (admin/
people/permissions). Scroll down to the Workbench Moderation permissions
and configure them for the “editor” user role (the Our Media staff editors) and
the “national editor” and “culture editor” user roles (the volunteer editors), as
indicated in Table 7-13. Note that we configure permissions for content revi-
sions as well, since Workbench Moderation uses revisions to create new drafts,
as we will see later in the chapter.

Figure 7-28. Workbench Moderation allows site builders to create custom workflow states

Figure 7-29. Configuring Workbench Moderation transitions

Hands-On: Workbench Moderation | 301

Table 7-13. Workbench Moderation permissions

Permission
anonymous
user

authenticated
user

culture
editor

national
editor

editor administrator

Node

View content
revisions

 Checked Checked Checked Checked

Revert content
revisions

 Checked Checked Checked Checked

Workbench
Moderation

View all unpublished
content

 Checked Checked Checked Checked

Administer Work-
bench Moderation

 Checked

Bypass moderation
restrictions

 Checked Checked

View moderation his-
tory

 Checked Checked Checked Checked

View the moderation
messages on a node

 Checked Checked Checked Checked

Use “My Drafts” work-
bench tab

 Checked Checked Checked Checked

Use “Needs Review”
workbench tab

 Checked Checked Checked Checked

Moderate all content
from Draft to Needs
Review

 Checked Checked Checked Checked

Moderate all content
from Needs Review to
Draft

 Checked Checked Checked Checked

Moderate all content
from Needs Review to
Needs staff review

 Checked Checked Checked Checked

Moderate all content
from Needs Review to
Published

 Checked Checked Checked Checked

302 | Chapter 7: Managing Publishing Workflows

Setting up these permissions can seem complex. To help avoid acci-
dental inappropriate moderation settings, Workbench Moderation pro-
vides a tool for verifying the permissions configuration. Click the
“Check permissions” tab from the Workbench Moderation settings
page at Configuration→Workbench→Workbench Moderation (admin/
config/workbench/moderation/check-permissions); select the user role,
the moderation task, and the content type you want to verify permis-
sions for; and click Check.

Now that we’ve configured our Workbench Moderation states, transitions, and per-
missions, let’s see how all of this looks to our editors. When you go back to the My
Workbench page (admin/workbench), you’ll see the tabs that Workbench Moderation
exposes. Go ahead and edit a piece of content, and create a new draft to publish on the
site.

Figure 7-30. Possible state transitions for the logged-in user are now visible on draft of node

Great! Having set up Workbench Moderation to manage the content workflow, we
have completed the needed restructuring of the Our Media site, enabling editors to
work with the content that is relevant to them, in an easy-to-navigate administrative
interface.

Hands-On: Workbench Moderation | 303

Taking It Further
We now have our new editorial system in place. We’ve met the needs of our client, but
there are some other modules that are also worth checking out:

Workbench Files
Part of the Workbench suite, Workbench Files provides file management from
within the Workbench framework, making it easy for editors to see which files
have been uploaded to the site and where on the site they are being used.

Workbench Media
Also part of the Workbench family of modules, Workbench Media provides inte-
gration between Workbench and the Media module, which we covered extensively
in Chapter 4. Workbench Media simplifies the management of media assets by
allowing editors to work with assets right on Workbench’s page (My Workbench).

Views Bulk Operations (VBO)
This is a wonderful little utility module that provides checkboxes and action but-
tons to views, allowing you to extend the default Workbench screens with the
ability to move content to various states en masse, without giving nonstaff members
access to the full content overview page.

Nodequeue
This module is often used on online news sites, as it allows for displaying arbitrary
articles in a list with a user-specified order, such as an Editor’s Picks list of articles.
Nodequeue also has actions integration, which allows you to do things like auto-
matically add new articles to queues on a per-topic basis.

Summary
Congratulations! The Our Media website now includes all the major features that the
staff wanted. We’ve used the Workflow Access module to create a distributed system
for content management, preventing collisions when editors review content they are
responsible for. We’ve also provided the team with an editorial workflow, which makes
it easy for them to track changes to content as it moves through the editorial process.
On top of that, all of this is done in a consistent, easy-to-use interface, so editors quickly
find the content they need.

Here are the modules that we referenced in this chapter:

• Devel Generate

• Nodequeue

• Pathauto

• Taxonomy: Part of the Drupal core

• Token

• Workbench

304 | Chapter 7: Managing Publishing Workflows

http://drupal.org/project/workbench_files
http://drupal.org/project/workbench_media
http://drupal.org/project/views_bulk_operations
http://drupal.org/project/nodequeue
http://drupal.org/project/devel
http://drupal.org/project/nodequeue
http://drupal.org/project/pathauto
http://drupal.org/project/token
http://drupal.org/project/workbench

• Workbench Access

• Workbench Files

• Workbench Media

• Workbench Moderation

Summary | 305

http://drupal.org/project/workbench_moderation
http://drupal.org/project/workbench_files
http://drupal.org/project/workbench_media
http://drupal.org/project/workbench_moderation

CHAPTER 8

Multilingual Sites

Creating a website with community content is great, but what if some or all of your
community doesn’t read or write English? It’s a big world, and only about 6% of it
speaks English as a native language. Multilingual sites allow you to reach out to your
community members and let them feel comfortable contributing. Having multiple lan-
guages is not as simple as having users post content in whichever language they like.
There are other things to consider, like navigation, date formatting, and help text. And
what about having the same post available in multiple languages, and easily navigating
between them? Once you start thinking about it in detail, there is a lot of ground to
cover. Luckily, Drupal core and a few contributed modules have done a lot of that hard
work for us so we can concentrate on building our community and content.

The two main concepts for multilingual sites are internationalization, often abbreviated
i18n, and localization, often abbreviated l10n. Internationalization is the underlying
structure that allows software to be adapted to different languages, and localization is
the process of actually translating the software for use by a specific locale. Localization
is not necessarily limited to just translating text, but also encompasses changing things
like date formats and currency.

Drupal has made great strides toward building a better internationalization system
inside Drupal core that makes localization much easier. Core does not quite provide
us with all of the tools we need to completely localize a site, but there are contributed
modules ready to fill the gaps.

This chapter introduces the following modules:

Locale (core)
Provides interface for translating and importing translations for user interface text

Content Translation (core)
Handles translation of user-generated content

Localization update
Checks for translation updates from the Drupal translation site and provides an
interface to update translations from within your site.

307

http://drupal.org/project/l10n_update

Localization client
An easy-to-use frontend for the Locale module

Internationalization
Allows other elements to be translated, such as menus, blocks, and taxonomy terms

Variable
Provides an API for registering data for variables (required by Internationalization)

Book (core)
A module that allows multiple users to collaborate on documentation

Forum (core)
A simple discussion system, grouped by topic

If you would like to participate in the hands-on exercises in this chapter, install Drupal
using the Chapter 8: Multilingual installation profile from the book’s sample code. This
will create the example website on your web server. The completed website will look
as pictured in Figure 8-1 and at http://multilingual.usingdrupal.com. For more infor-
mation on using the book’s sample code, see the Preface.

Figure 8-1. The finished Blue Peak Fanatics website, displaying in Danish

Case Study
Our client, Blue Peak Fanatics, is an international group that loves to climb mountains.
They need a website that will allow everyone to have forums to discuss their shared
passion as well as keep a repository of shared knowledge. They would like the site to
provide language-specific forums for discussion, and allow members to navigate the
site in their preferred language. They will also need an online knowledge base where

308 | Chapter 8: Multilingual Sites

http://drupal.org/project/l10n_client
http://drupal.org/project/i18n
http://drupal.org/project/variable
http://multilingual.usingdrupal.com

members can share useful information, and a way to post news about the site. Addi-
tionally, they want to allow nonforum content to be translated by group members who
know more than one language, so they can all share the accumulated knowledge. They
currently have members who speak three different languages—English, Danish, and
French—but they would like the ability to add more languages later as the group grows.

Implementation Notes
Though Drupal core’s default Article content type can easily be used to post news to
the front page, other features that the client requires warrant some further discussion.

Forum Discussions

There are contributed modules available that add integration between Drupal and other
forum systems, such as phpBB, but Drupal itself comes with its own simple forum using
the built-in Forum module. The Forum module uses regular Drupal core concepts such
as taxonomy (for forum containers and forums themselves), nodes (for posts inside a
forum), and comments (for replies), which makes it integrate seamlessly with the rest
of the website, including Drupal’s translation features.

Knowledge Base

Another core Drupal module, the Book module enables multiple users to collaborate
together in order to create a collection of documentation. Book pages are structured
into one or more hierarchies, with previous, next, and up links generated automatically
on each page. Each page also provides a “printer-friendly version,” which will create
an unformatted page consisting of the content of the current page and any subpages
for easy printing or downloading for offline reading.

Translating User Interface Text

User interface is the text that is provided by Drupal, both in core and contributed
modules. This includes things like form labels, help text, and navigation. Drupal core’s
Locale module provides the framework that allows user interface translations. To get
the bulk of our localization, we will download translation projects that will supply us
with translations of the core user interface. To easily download translations, as well as
keep them up-to-date, we’ll use the “Localization update” module. As we add con-
tributed modules, we’ll need to check whether they supply a module-specific transla-
tion. The “Localization update” module will help us with this as well. If there are no
module translations for our language yet, we are not out of luck, because core also gives
us the framework to add and update our own translations as needed within our site.
The “Localization client” module uses this framework to add a nice, user-friendly
frontend to make translating interface text a breeze.

Case Study | 309

Locale does not cover every single aspect of user interface text, though, so we will be
using the excellent Internationalization (i18n) module to fill in the gaps. The Interna-
tionalization module provides us the tools to translate taxonomy, blocks, and certain
site variables like the site name and mission statement. In addition to providing extra
translation, it also helps us manage our multilingual content.

Translating User-Generated Content

The final missing piece is translation for all of the user-generated content on the site:
forum posts, pages, and so on. Core provides the “Content translation” module to do
the heavy lifting. This will allow us to decide which content is translatable, and lets us
create multiple versions of each node, each in a different language. It also provides a
simple way for users to switch between languages. Again, the Internationalization
module will fill out some of the content features.

Spotlight: Interface Translation
Drupal core comes with the Locale module, which works with the user interface text
and gives you a nice set of tools that let you import existing translations, create or edit
your own, or export your site’s translations for use on other sites.

Another really nice feature in Drupal core is support for right-to-left (RTL) languages,
such as Arabic or Hebrew. If a language is set as an RTL language, Drupal will auto-
matically flip all of the text so that it reads in the proper direction, as seen with Arabic
in Figure 8-2.

Figure 8-2. A right-to-left language page

310 | Chapter 8: Multilingual Sites

Locale
Locale handles the translation files and language switching options on the site. Let’s
break it down and look at what that means.

Translations

A translation is simply a file or collection of files that follows a standardized format.
Translation files that follow this format have a special file extension, .po, which stands
for “portable object.” A .po file is a simple text file that identifies strings of text and a
particular language’s translation of the strings. In Drupal, translations contain a list of
all user interface strings in Drupal, along with their translated versions.

Drupal translation .po files are downloaded from http://localize.drupal.org. Here you
will find core Drupal translations, along with any contributed module translations that
have been created. An important thing to note about the translation projects is that
they may be in various states of completion, coverage for contributed modules can be
spotty, and sometimes you may not agree with the way something was translated. Not
to worry; we’ll show you how to deal with that, too.

While you can manually download the .po files you need and add them to your site, it
can quickly become tedious, especially as you add contributed modules to your site.
The Localization update module will do this tedious chore for you. It will find the
correct files from the Drupal translations server, download them to your site, and install
a language, all in one process. You can also use it to check for and download updates
to your translations.

Interface translation

Many volunteers have worked hard to translate the Drupal interface into as many lan-
guages as possible. You may find that you need to add to or modify the translation you
are using. If this happens, Drupal has tools built in to assist you.

When you visit the interface translation page at Administer→“Site building”→“Trans-
late interface” (admin/build/translate), you will see that there is a list of the languages
you have enabled, along with a count and percentage of the number of strings that have
already been translated, as shown in Figure 8-3. As you move through your site, Drupal
will keep track of all the interface strings that you encounter. It can do this because
translatable strings are identified in the code itself whenever a developer uses a trans-
lation function (the t() function). Once you visit a page, all of the translatable strings
will be available for searching and translation. Visiting the page is an important step
that is easy to forget. If you start searching for words that you know exist on the site,
but you haven’t actually visited the page where they are, your interface search will come
back empty. We’ll look more into translating in “Hands-On: Translating the Inter-
face” on page 321.

Spotlight: Interface Translation | 311

http://localize.drupal.org
http://drupal.org/project/l10n_update

Figure 8-3. String count with percentage translated

One thing to understand is that any translations you make through the Drupal interface,
rather than by importing a .po file, will be stored in the database, not in a file. Drupal
has an export feature that will put your translations back into a file format that you can
then import into other sites.

If you do translation work on your site, you should definitely consider
giving your work back to the community. By giving translations back,
you not only help the larger Drupal community, but also yourself, as
you will have a larger number of people to test your work and help
maintain it.

Language switching

Every site must have a default language, but how do we get the other languages to
display? There are two main core mechanisms for this: the language detection and
selection setting, and the language switcher block. After you have installed and enabled
at least one other language, the first thing you should do is tell Drupal how to auto-
matically handle multilingual display by configuring the language detection and selec-
tion. By default, Drupal will do nothing, and users will need to manually choose their
language. You can select from several options, seen in Figure 8-4, which will automat-
ically choose the language based on a variety of available information.

With the URL detection method, Drupal can set the language based on the domain
name of the site or by a path prefix. You can choose this in the Configure screen for
URL. If you choose to use a separate domain name for each language you will offer,
you can assign the domain name to a language in the language settings. For example,

312 | Chapter 8: Multilingual Sites

you can configure the Danish language to use the domain name http://dk.exam-
ple.com or even http://foo.example.com. Whenever someone accesses the site using one
of these domain names, the language you have set will always be used.

The more common negotiation method is using the path prefix. Again, you can con-
figure the prefix you wish to use. By default, a translation that you install will set its
language code as the path prefix identifier. With this setting, Drupal will check the path
for a language code directly after the domain name—for example, http://example.com/
dk/forum. If Drupal finds a valid code, it will display the language associated with it.
You don’t need a prefix for your default language, so that language will be used for all
of your “plain” paths, as in http://example.com/forum.

Your users can also set a language preference for themselves, if you enable the User
method. The Locale module provides users with a “Language settings” section on their
account page, which lets them choose the language for system emails. Once you enable
the User detection method, you will see that those settings will then indicate they are
also being used for site presentation, as you can see in Figure 8-5. However, this allows
only authorized users to pick a language. To give all users a choice, including anony-
mous users, you can enable a core language switcher block that lists the available lan-
guages and will switch the site language as needed.

You can enable as many or as few detection methods as you wish. You can determine
the priority for the different methods by reordering them in the table. The method at
the top will be used first, and if that one does not provide adequate information to
determine the language, Drupal will continue down the list until it finds a method that
does. At that point, it will set the language and stop checking.

Localized installer

You can add new translations at any time, but if you wish to use a translation during
the installation process as well, you will need to get a translation prior to going through
the installer. By default, after you have selected an installation profile, the installer
presents the default option to install Drupal in English along with a link to “Learn how

Figure 8-4. Automatic language switching options

Spotlight: Interface Translation | 313

to install Drupal in other languages.” That link explains where you can download a
translation file, and where you need to place that in your Drupal file structure: in the
profiles/standard/translations folder. A much, much easier way to do this is to use the
Localized Drupal Distribution to install Drupal. This is a normal version of Drupal that
is packaged with the “Localization update” and “Localization client” modules. This
will let you choose a new Localized Drupal profile for installation, as shown in Fig-
ure 8-6, and then it will present you with a list of languages.

You can then choose which language to use, and the rest of the installation screens will
be displayed in that language, as pictured in Figure 8-7. Once you complete the instal-
lation of Drupal, the language you selected will be set as the default language for your
site.

Figure 8-5. Personal language settings under the My Account page

314 | Chapter 8: Multilingual Sites

http://drupal.org/project/l10n_install

Figure 8-7. The installation screen displaying with Danish

Figure 8-6. Selecting the Localized Drupal profile during installation

Spotlight: Interface Translation | 315

Hands-On: Installing a Translation
The first step to using any of Drupal’s multilingual features is installing a translation,
so that Drupal has more than one language to choose from. As mentioned previously,
you can use a localized distribution so that you install your language during the site
installation process. Alternatively, you can add a language after you have installed the
site by using the “Localization update” module.

1. First, in the administrative toolbar, click Modules (admin/modules) and enable the
following modules (note that if you installed Drupal with the localization distri-
bution, these will already be enabled):

• Core

— Locale

• Multilingual package

— Localization update

2. In the administrative toolbar, click Configuration→Languages (admin/config/re-
gional/language) under the “Regional and languages” section. Then click the “+
Add language” link, as shown in Figure 8-8, to be taken to the screen shown in
Figure 8-9.

Figure 8-8. The “Add language” link

3. Select your language from the “Language name” select list (in this case, we are
adding Danish) and click the “Add language” button.

4. The translation files will be imported from the Drupal.org server into your site,
and you will see an “Updating translation” screen with a progress bar, as shown
in Figure 8-10. Once the import is completed, you will see a message that outlines
all of the updates you have imported and indicates that the site successfully im-
ported the translation.

316 | Chapter 8: Multilingual Sites

You can repeat the language selection for each language that you wish to have available
on your site. In our examples throughout the chapter, we have also installed French,
using the same process as we did to install Danish. When done, the Languages settings
page will list all of the site languages in a table that lets you take various actions, such
as disabling a language, changing the site default language, affecting the order in which
the languages are displayed in lists, and deleting them altogether. Figure 8-11 shows
this table with our site’s three languages: Danish, English, and French. English is
marked as the default language, which means it will be used as the fallback language
when there is no language specified either through the language negotiation settings or
a logged-in user’s personal settings under his “My account” page, as we saw in the
section “Language switching” on page 312. The crosshair icon at the beginning of each
line in the table will let you drag and drop the languages into a particular order; this is
the order in which the languages will appear when listed together—in form select lists,
for example.

Figure 8-9. The “Add language” screen with a drop-down select list

Figure 8-10. The “Updating translation” page showing progress

Hands-On: Installing a Translation | 317

Our examples in this chapter are using English, Danish, and French. If
you want to follow along with these languages, but do not know the
translations in our examples, you can simply put the name of the in-
tended language in place (e.g., if you are translating the Welcome post,
you can type “DANISH Welcome” or “FRENCH Welcome”) so that
you can easily distinguish which language is being displayed.

Figure 8-11. The installed languages table

You can also choose to edit the language name, negotiation identifiers, and direction,
as seen in Figure 8-12, by clicking the “edit” link. Normally, you won’t want to change
these settings unless you have a very good reason, so we are going to leave all of our
settings at their comfortable defaults.

Hands-On: Configuring Locale Features
Now we need to make a choice about how and when Drupal will use our new languages.
To make it easy for users to see our site in different languages and allow them to pick
as they like, we will also add a simple language switcher to the site.

Language Detection and Selection
As discussed earlier in “Language switching” on page 312, we have several options to
choose from. Our client does not have separate domains for the languages, so they are
just going to use Drupal’s path prefix. We also want to make sure that we honor the
user’s preference, if she has set a preference in her account settings. We are going to
use the URL and User detection methods, so that the site will first check the URL, and
if that is not valid information, it will fall back to the user’s preference, if she’s selected

318 | Chapter 8: Multilingual Sites

one. If neither of those are applicable, then the site will fall back to using the default
language, which in this instance is English.

1. Return to the Languages page by going to the administrative toolbar and clicking
Configuration→Languages, then click the “Detection and Selection” tab (admin/
config/regional/language/configure).

2. Check the boxes for URL and User and click “Save settings.”

Language Switcher
The Locale module provides a block to switch languages, which can be configured just
like any other block to have a different (or no) title, and have various display options set.

1. In the administrative toolbar, click Structure→Blocks (admin/structure/block) and
find the “Language switcher” block in the list under the Disabled section.

2. Set the block to appear in the “First sidebar” region, drag it to the top of the block
list for that region, and then click the “Save blocks” button.

3. You should now see a new block called Languages, which contains a list of each
installed language on the site, as shown in Figure 8-13.

Figure 8-12. Screen for editing an installed language

Hands-On: Configuring Locale Features | 319

Figure 8-13. Site with the language switcher block enabled

Spotlight: Localization Client
You may notice that even though you are using a translation that you have installed,
there might still be some untranslated text peeking out here and there. This will become
more likely as you add contributed modules. Almost no site will have absolutely 100%
language coverage out of the box, so you will probably need to translate a few items
yourself. Drupal has a built-in system to do this with the Locale module, but using it
can be clunky and tedious. This is where the contributed “Localization client” module
really shines. It makes quick text fixes easy and intuitive.

The “Localization client” module adds a translation editor right on the bottom of your
screen that stays with you as you move through the site. You can minimize it when you
don’t need it and then expand it when you do. Figure 8-14 shows the editor expanded
on a page. It provides a nice, easy-to-use interface to see which strings on the page have
been translated and, more importantly, which have not. It allows you to browse or
search through the list; you can simply select the string you wish and add the translation
right there on the screen.

There are some important caveats to keep in mind, however. The “Localization client”
module is a great tool but it does depend on JavaScript and, at the time of this writing,
it does not assist with translating strings that are added by the Internationalization
module (which we’ll discuss later). Additionally, it can only translate text that can be
seen by the person running “Localization client”; for example, if the text is visible only
under certain conditions, it may not be translatable with the “Localization client”
module.

320 | Chapter 8: Multilingual Sites

Hands-On: Translating the Interface
Not everyone wants or needs to install yet another module, and due to the caveats we
mentioned about “Localization client”, it is still a good idea to be familiar with how
core translation works, so let’s start there.

Using the Locale Module
Interface translation depends on the Locale module, which should already be enabled
on your site once you have installed a translation.

1. In the administrative toolbar, click Configuration→“Translate interface” in the
“Regional and language” section (admin/config/regional/translate) to get started.

2. You will be presented with a table of your languages and the percentage of strings
that have been translated so far. Click on the Translate tab (admin/config/regional/
translate/translate).

3. The “String contains” search box, pictured in Figure 8-15, allows you to search for
a specific piece of text somewhere in Drupal’s interface and then translate it.

Figure 8-14. The “Localization client” interface

Hands-On: Translating the Interface | 321

Enter the string multilingual support in the search box, leave the rest of the settings
at their defaults, and click Filter.

There are two caveats to successfully finding a string to translate.
First, the search interface is case-sensitive. Searching for “User” will
return different results than searching for “user.” Second, the page
with a given string on it must have been visited after the Locale
module was enabled, or Search will be unable to find any of its
interface text.

Figure 8-15. Search results for the string “multilingual support”

4. On the search results page, pictured in Figure 8-15, you will see a list of all the
places on the site where that string is seen. The translation status is in the Languages
column, which lists the language codes. A strike through a language code means
it is not translated yet. Here, searching returned several results, which are all
translated.

5. Click the “edit” link next to one of the strings, which will bring you to the trans-
lation page, as shown in Figure 8-16. You will be presented with a text area for
each language, where you can add or edit the text as appropriate. When you click
the “Save translations” button, the strings will be updated.

322 | Chapter 8: Multilingual Sites

Figure 8-16. The string translation page showing the original string and translations for each language

Using the Localization Client
As you can tell from the previous section, it is hard to see the strings that need to be
translated on your site, remember them, go to the Translate interface, search for them,
and only then actually be able to translate. It is a cumbersome, tedious process. Luckily,
there’s an easier way: the “Localization client” module.

1. In the administrative toolbar, click Modules (admin/modules) and enable:

• Multilingual package

— Localization client

2. In the administrative toolbar, click People→Permissions (admin/people/permis-
sions), configure the permissions shown in Table 8-1, and then click “Save
permissions.”

Table 8-1. “Localization client” module permissions

Permission anonymous user authenticated user administrator editor

Localization
client: use
on-page
translation

 Checked Checked

Hands-On: Translating the Interface | 323

3. One very important thing you need to understand is that the “Localization client”
module will not work with text that is located in the administrative overlay. To
make it work correctly in the administrative interface, we are going to disable the
Overlay module temporarily as we work through our translations. When we are
done, we can re-enable Overlay. So, head back to the administrative toolbar and
click Modules (admin/modules). Disable the “Core: Overlay” module and click
“Save configuration.”

4. Now you can go to the home page of your site, where the Languages block is
displayed, and switch your site into a language other than English by clicking a
language name. You will see a small blue bar appear at the bottom of your screen
with a black Translate Text button on the right side (Figure 8-17).

Figure 8-17. The “Localization client” module’s Translate Text button

5. Click the Translate Text box, and a translation area will open up at the bottom of
your browser window, as shown in Figure 8-18. All of the highlighted green items
listed under Page Text have already been translated. Ones in white still need work.

6. You can limit the list by searching in the text box at the bottom of it. In the ad-
ministrative toolbar, click Modules (admin/modules) and type Translate into the
search box (note the capital “T”). The list will update as you type, and it should
bring up the string “Translate field properties,” which is provided by Internation-
alization’s “Field translation” module. as its description. Unless someone has pro-
vided a translation file for the module in your language, the English should show
up as white (untranslated) in the search results.

324 | Chapter 8: Multilingual Sites

7. When you click an item in the Page Text list, it will be placed in the Source box so
that you know which text you are working with. If it already has a translation, that
text will appear in the “Translation to language” box.

8. You can add or edit the translation as needed and click the “Save translation”
button. For example, “Oversæt feltegenskaber” is the translation of this string into
Danish. Figure 8-19 shows the “Localization client” screen with the English string
selected and the Danish translation ready to be saved.

Figure 8-19. Using the “Localization client” module to translate a string to Danish

9. When finished, click the black X in the top bar of the translation area to close the
client.

10. When you reload the page, you will see the changes you made, if any.

Figure 8-18. The “Localization client” module’s translation interface, showing both translated and
untranslated strings

Hands-On: Translating the Interface | 325

11. Once our translations are done, we can re-enable the Overlay module and click
“Save configuration.” You can also switch the site back to English by going to the
home page and selecting English from the Languages block.

Spotlight: Content Translation
When it comes to translating your site’s content in Drupal 7, we have two possibilities.
There is the core “Content translation” module and the contributed “Entity transla-
tion” module. They have quite different approaches to translation. The major difference
is that “Content translation” lets you create multiple versions of the same content in
different languages and associates the translated versions together as a set. Each trans-
lation is an individual node, so for each piece of content on your site, you will have as
many nodes as you have translations. For example, an English node with three other
language translations (say, Danish, French, and Spanish) will be a set of four full nodes
on your site. With “Entity translation,” you only have one node (an entity), and each
field on the node will have multiple values, one for each translation.

Both systems have pros and cons, and you could mix and match both of them on your
site for different content. Having multiple nodes can cause problems when you have
associated metadata that you don’t want spread out over several nodes. For example,
if you have an event node and you want people to sign up for the event, you don’t want
people to sign up across four different nodes, depending on the language they read it
in. You’d want one, central list of all the attendees for the event, regardless of language.
On the other hand, having one node with just the fields translated would solve that
problem, but what if you want to have separate content workflows for different lan-
guages? Gábor Hojtsy, who has worked on a lot of the Drupal core language system,
has a very good presentation on the differences between the two systems on http://
groups.drupal.org/node/165194.

At the time of this writing, “Entity translation” is only in an alpha version, and there
are plans to make significant changes to improve it by updating the user interface and
by providing more integration with core (with search in particular) and contributed
modules. The ultimate goal is to get this work into Drupal 8. It is simply too early to
use it for a real site since it is very much in flux. Once it settles down and there is a
stable release in the future, though, “Entity translation” is very likely to become the
standard way to provide content translation. Since we have to use what is available,
we’ll stick with the tried-and-true core “Content translation” module here, but it is
definitely worth keeping an eye on “Entity translation” down the road.

So, let’s look at the core method for identifying and creating multilingual content. The
Locale module will give you the option to enable multilingual support for your content
types. Enabling multilingual support will give you a drop-down select box, shown in
Figure 8-20, to choose the language that each post is written in. All this will do is identify
the language being used for that content.

326 | Chapter 8: Multilingual Sites

http://drupal.org/project/entity_translation
http://drupal.org/project/entity_translation
http://groups.drupal.org/node/165194
http://groups.drupal.org/node/165194

Figure 8-20. Selecting a language for a piece of content

When you use the “Content translation” module, you get an additional option under
multilingual support: “Enabled, with translation.” Using this setting not only identifies
the language for the post as written, but also allows you to associate other nodes as
translated versions of the same content. For example, you may want to have an About
page on the site that has the same content translated into French and Danish. With
translations enabled, you would create the original About page and then, from that,
create a brand-new node each for the French and Danish versions. Drupal will keep
track of these three nodes and know that they are related, each one simply a version of
the same page. On each page, there will be a link for the other translations at the bottom
of the post, as indicated in Figure 8-21.

Spotlight: Content Translation | 327

Figure 8-21. Language links on content to view other translations

Hands-On: Translating Content
With our interface taken care of, now we can configure multilingual support for our
content. That is, we need to be able to identify which language a given piece of content
is written in and then create translations. So, we already have articles, and we need to
add a knowledge base to the site as well. For both of these types of content, we’ll need
to identify the language they are written in, as well as provide related, translated ver-
sions.

Multilingual Content
First, we will set up our content types with multilingual options so that we can assign
a language to each piece of content:

1. In the administrative toolbar, click Modules (admin/modules) and enable the fol-
lowing modules:

• Core

— Book

— Content translation

2. Then, in the administrative toolbar, click Structure→“Content types” (admin/
structure/types) and click the “edit” link for the “Book page” type.

3. Scroll down the screen and click on the “Publishing options” tab. You will see
several options for “Multilingual support.” Select the “Enabled, with translation”
radio button, as seen in Figure 8-22, and click the “Save content type” button. This
lets us identify the language for each piece of content, and in addition, lets us create
translated versions of the content that will be linked together automatically.

328 | Chapter 8: Multilingual Sites

Figure 8-22. Multilingual support options for content types

4. Repeat for the Article content type.

5. Now we can edit our front page article and set the language for it. (If you are not
using the installation profile that provides a front page article, go ahead and create
one.) Go to the front page of the site, click the title for the article there, and then
click the Edit tab. Scroll down to the Language setting and select English. Save the
content.

6. We want all users to be able to translate content for us, so we need to make sure
we set the permissions for everyone but anonymous users. Because all users are
authenticated, we can do this by enabling the permission for all authenticated
users. In the administrative toolbar, click People→Permissions (admin/people/per-
missions), configure the permissions shown in Table 8-2, and click “Save
permissions.”

Table 8-2. “Content translation” module permissions

Permission anonymous user authenticated user administrator editor

Content translation: translate content Checked Checked Checked

Translation
We now have a way to assign a language to content, and we’ve done this for our existing
front page article. Now we need to look at creating translations and set up the Knowl-
edge Base section of our site:

1. Make the Introduction to the Knowledge Base in English. From either the toolbar’s
shortcuts bar, or the Navigation block, click “Add content”→“Book page,” fill in
the fields as shown in Table 8-3, and click Save.

Hands-On: Translating Content | 329

Table 8-3. “Book page” content

Field Value

Title Introduction

Body This knowledge base is a place to organize useful information. Anyone with a Blue Peak Fanatics
account can add to this book! You may create a new page by clicking the “Add child page” link at
the bottom of any existing KB page or by going to Add content→Book page in your navigation block.

Language English

Menu settings tab

Provide a menu link checked

Menu link Knowledge Base

Book outline tab

Book <create a new book>

2. After you save the content, you will see that there is a Translate tab next to the
normal View, Edit, and Outline (for book content) tabs. Click the Translate tab,
and you will be presented with a table listing all of your site’s enabled languages,
which you can see in Figure 8-23.

Figure 8-23. The Translate tab on a book page, showing available languages and translation status

3. Click “Add translation” for a language, and you will be presented with a screen
containing the form values that were previously submitted. You may now edit the
text for the Title and Body. Notice the language is already selected for you. Trans-
late the text into the selected language, and remember to again create a menu item,
give it a title, and choose “<create a new book>” in the “Book outline” tab as well,
so that this translated introduction page will also be a top-level book entry for those
viewing the site in this language.

330 | Chapter 8: Multilingual Sites

4. When you click Save for this new translation page, you will see that there is now
a link at the bottom that will take you to the other language’s version of the page.
You can also see that our Languages block indicates which languages this page is
available in. The translated pages have active links, but the untranslated language
(French, in this case) is not an active link and has a strikethrough, as seen in
Figure 8-24.

Figure 8-24. Translations available for the Introduction page

You should do the same for the Welcome post on the front page or any other content
that was created prior to enabling content translation. Just edit the existing post to
select the language and use the Translate tab to add versions for other languages, as we
did previously.

Keep in mind that the default language setting for all content is “Lan-
guage neutral.” You must identify the content with a language in order
to see the Translate tab and proceed with creating translations. If you
do not set a language when initially creating the content or if you have
enabled the “Content translation” module after already creating con-
tent, that content will be set to “Language neutral.”

When you create a translation for any content that is on the front page of the site (like
the Welcome post in the profile), you will notice that each translation appears. The
same thing is happening for our Knowledge Base menu items, as you can see in Fig-
ure 8-25. We’re going to address that issue in the next section.

Hands-On: Translating Content | 331

Figure 8-25. Duplicate items—one for each language

Spotlight: Internationalization
So far we’ve got a nice start with getting our site translated, but everything is not quite
smooth yet. We have translations for some of our content and menu items, but they
all appear at the same time. There are multiple posts on the front page, and all the
language menu items are shown regardless of which language we are viewing the site
in. You will also see some stray text still in English. For example, under the “Create
content” menu item, our content type names and descriptions are not translated, nor
is the Home menu tab. To take our multilingual site further and really make it shine,
we are going to turn to a package of modules called Internationalization (i18n). There
is a central Internationalization module, which comes packaged with a handful of other
modules designed to work together to extend core’s multilingual features.

One important thing that these modules do is help us get various strings of text into
core’s translation interface that are otherwise not available. Drupal’s core interface tools
can detect only strings that are hardcoded directly into the code (using Drupal’s t()
function)—that is to say, that are code-generated. All of the user-generated strings are
not accessible. It is important to realize that these strings that are added by the

332 | Chapter 8: Multilingual Sites

Internationalization modules will not be available to you through the “Localization
client” module’s “Translate Text” interface. To translate these, you must use the core
interface, covered earlier in “Hands-On: Translating the Interface” on page 321.

A second feature that many of these modules add is a way to select a language for an
item, such as for menus, blocks, or taxonomy terms, like the one we saw in our “add
content” forms earlier with the “Content translation” module. Being able to discretely
identify the language being used for an item allows the Internationalization module to
filter the display based on the languages we want to see, leading to less duplication and
confusion.

The Internationalization package of modules provides a lot of tools; we will not need
all of them for the Blue Peak Fanatics site. We will discuss what these tools are and
then see some of them in action as we proceed with building our site.

Multilingual Content Selection
One of the first things you probably noted after making your first piece of translated
content was that all of the translations were showing on the front page, regardless of
the language in which you were viewing the site. Internationalization’s “Multilingual
select” module helps us get this under control. It adds a new tab called “Multilingual
settings,” seen in Figure 8-26 , where you can determine if the site will filter the content
based on language. You can enable it site-wide in the “Content to filter by language”
section, but you can also exclude certain items from the Internationalization filtering.
The best example of this is provided as a default setting by the module: Views. Since
Views provides its own ways of filtering the content, you don’t necessarily need or want
Internationalization to get involved. You can also disable the language filtering for
certain pages on the site. The default setting excludes the administrative pages from
language filtering. This makes all administrative pages display in the site default
language.

Strings
The Strings module is required for most of the Internationalization modules. It doesn’t
do anything on its own, but when used in conjunction with other Internationalization
modules, it turns various pieces of text on the site into translatable strings that are
added to the core translation interface.

Site-Wide Language-Dependent Variables
A Drupal site can have many bits and pieces of text that are not associated with any
particular node. These site-wide settings are stored in the database and referred to as
variables. Some examples are the site name and slogan, found on the Site Information
screen, or the registration email templates found under “User settings.” There is no

Spotlight: Internationalization | 333

simple way to get these particular kinds of text into the regular translatable string in-
terface. The Internationalization “Variable translation” module, which is dependent
on the Variable module, adds the ability to tell Drupal specifically that you wish to
provide translations for these variables.

Module Helpers
The Internationalization module also works with a number of core modules to aid with
translations:

Menu translation
The Multilingual Menu module adds any custom menu items you create to the
translate interface string list. You can also specify which language a particular menu
item is for, and its display will follow the rule you selected for content display. You
should note that, independently of this module, you can create a menu item in a
language for each node, which will also follow the display rules. So if you are only

Figure 8-26. The Internationalization module’s content selection options

334 | Chapter 8: Multilingual Sites

creating menu items based on nodes, you do not need to enable this module. If
you wish to have menu items that don’t point to specific nodes, then this module
will let you create the translations you need.

Taxonomy translation
Multilingual taxonomy gives you a few options for keeping track of your taxonomy
translations. When creating a new vocabulary, you can choose whether you want
to localize the terms using the regular translate interface method, set up independ-
ent terms per language, or set one language for the entire vocabulary. When you
choose to create terms per language, you will be able to select a language for each
term. Once you have created the terms and assigned a language for each, you can
then create associations between them. For example, the terms “cat” (assigned to
English) and “le chat” (assigned to French) can be marked as equivalent terms.

Block languages
The Multilingual Blocks module will let you pick a language for each block. As-
signing a language to a block will determine when it is displayed according to the
main content display settings. For custom blocks that you create, you can also
decide whether you wish the block text to be translatable by adding the strings to
the translation interface.

Multilingual content
This module provides some extended settings for nodes to give you more control
over the translations and workflow for content. For example, you can set a default
language per content type, require certain languages, as well as use this to provide
translations for the configuration text (e.g., the content type names).

Field translation
While this may seem like it will allow you to translate individual field content, this
is actually a module that lets you translate the text for a field’s settings, including
things like the help text.

The “Contact translation” and Multilingual Forum modules simply allow for those two
core modules to work well with Internationalization.

Paths
The “Path translation” module allows you to map together existing paths that are
translations of each other. Most paths are linked for you through regular translation
modules like “Content translation” and “Taxonomy translation.” This module will let
you link arbitrary paths, such as when you are using the Panels or Views modules.

Synchronization
One last Internationalization module in the package is Translation Synchronization.
This module will keep your taxonomy and node fields synchronized between several
translations of a node. For instance, if you have a piece of content like a blog post that

Spotlight: Internationalization | 335

is in three languages and has a term selected, this module will make sure that the term
changes on the other two nodes when you change it on one.

Hands-On: Internationalization Features
Now that we have these great tools available to us, let’s enable a few of them and start
to really round out our site.

Content Selection
Translated content is all shown by default. The main Internationalization module will
let you display only content that is relevant to the language currently in use:

1. In the administrative toolbar, click Modules (admin/modules) and enable the fol-
lowing modules:

• Multilingual – Internationalization package

— Internationalization

— Multilingual select

• Other package

— Variable

2. In the administrative toolbar, click Configuration→Multilingual system, under the
“Regional and language” section (admin/config/regional/i18n), where you will see
the options for “Languages for content.” By default, it is set to “Enabled languages
only,” which what we want, so we can leave it be.

3. Click the Selection tab (admin/config/regional/i18n/select). This is where we deter-
mine how we would like our translated content to appear. The default settings are
good for us, so we can leave this alone as well. Close the Overlay screen and you
will be returned to the site.

If you go to the front page of the site, you will see that we now only get one Welcome
post and one Knowledge Base menu item. If you choose Dansk from the “Language
switcher” block, you will see that the Danish “Velkommen” post appears, and the menu
items change to the Danish versions.

Now the content we see is more streamlined, as shown in Figure 8-27. Let’s move on
to translating other items in the site that are being stubborn, such as the site name, Blue
Peak Fanatics.

Site-Wide Variables
Before we can translate the various site-wide variables, we need to let Drupal know
which ones we want to make translatable. To do this, we’ll need to use the “Variable
translation” module.

336 | Chapter 8: Multilingual Sites

1. In the administrative toolbar, click Modules (admin/modules) and enable:

• Multilingual package

— Variable translation

• Other package

— Variable realm

— Variable store

2. Before we can begin translation, we’ll need to identify which variables we would
like to be made translatable. In the administrative toolbar, click Configura-
tion→“Multilingual settings,” and click the Variables tab (admin/config/regional/
i18n/variable). You will be presented with a list of variables that are available to be
translated.

3. You can select as many variables here as you would like, but all we need for this
task is to check the box for “Site name” and click the “Save configuration” button.

4. Now we can begin translating. In the administrative toolbar, click Configura-
tion→“Site information” (admin/config/system/site-information). At the top of the

Figure 8-27. With content selection mode enabled, we no longer see duplicate items

Hands-On: Internationalization Features | 337

page, you will see a box indicating that there are multilingual variables on the page,
as well as providing language switcher links. As shown in Figure 8-28, each variable
that is translatable will also have underneath it the text “This is a multilingual
variable.”

Figure 8-28. The “Site name” field is now indicating that it is a multilingual variable

5. Switch to another language by clicking a link under “Select language.”

6. Change the text in the “Site name” field, and click the “Save configuration” button.
Notice that you are returned to the page with the language set back to the default
language (in our case, English).

The language selection links provided by the “Variable translation”
module don’t change the language of the entire site or page. They only
change the language for the fields that can be translated. The language
you are currently looking at is indicated by that language’s link display-
ing as bold text. It is a subtle difference, so make sure you look closely
to ensure you are working with the correct language.

After you have translated the languages you wish, return to the home page and select
a non-English language. You will now see that the site name has changed to what we
entered. If you switch back to English or another language, you will see that the site
name changes with the language.

338 | Chapter 8: Multilingual Sites

Content Types
We’ve changed the site name variable, but we still have other stubborn text on the site
that wasn’t listed on the “Variable translation” page to select. Our content types for
the site are still using English for the content type name on the “Create content” page,
and for field names when making new content.

1. In the administrative toolbar, click Modules (admin/modules) and enable:

• Multilingual package

— Field translation

— Multilingual content

— String translation

You should now see a message at the top of the module list that indicates a number
of strings were refreshed.

2. In the administrative toolbar, click Configuration→“Translate interface” (admin/
config/regional/translate), and you will see two new columns, “Fields” and “Node
types” added to the Language table. It shows the number of new translatable strings
that the Internationalization module has created for each of them. You can see the
new column in Figure 8-29 and compare that to the table shown in Figure 8-3
earlier in the chapter. The percent translated should still be 0, because we haven’t
translated any content types yet.

Figure 8-29. “Fields” and “Node types” columns have been added to the Translate interface table

3. Click the Translate tab and search for “Book page” (note the capital “B”). You
should see three results, just like Figure 8-30: two that are already translated from
the “Built-in” interface group and another, not translated, in the “Node types”
group.

Hands-On: Internationalization Features | 339

Figure 8-30. String search results for “Book page”

4. Click the “edit” link for the “Node types” string. Go ahead and translate the word
for your language(s), as shown in Figure 8-31.

5. After saving the new translation, if you switch to another language and go to “Add
content,” you will see that the content type name for the book page is now displayed
in that language. Click the link as if to create a new “Book page.” You will see that
the Title and Body fields are still in English.

It is important to remember that the Title “field” on a content type
form is not technically a Drupal field. The Title is a hardcoded part
of the content type itself. All other fields on the form, including the
Body field, are real Drupal fields, attached to the content type. This
distinction is very important when you’re dealing with translations.

6. Let’s switch back to English and go back to our translation administration. In the
administrative toolbar, click Configuration→“Translate interface” (admin/config/
regional/translate) and click the Translate tab.

340 | Chapter 8: Multilingual Sites

7. Enter the word Title. We also know that we are looking for this word in the context
of node types right now, so select the “Node types” item under the “Limit search
to:” section of the search form as shown in Figure 8-32. Then click Filter.

Figure 8-32. Limiting a string search by content type

8. We get three results for this, one for each of the content types we have on the site
(Article, Basic page, and Book page). Click the “edit” link for the one that is listed
with a Context of “type:book:title_label,” translate it, and save.

9. We can do the same thing for the Body field, but we will want to limit the search
to “Fields” this time.

Figure 8-31. “Book page” string editing screen showing two translations

Hands-On: Internationalization Features | 341

10. Switch back to another language, and go to “Add content” again. Select “Book
page” and you will see that the Title and Body labels are now translated.

Taxonomy
When using Drupal’s taxonomy system, we need to find a way to sync the terms that
we create to keep the taxonomy selection limited to just the terms for a given language.
We don’t want all of the different languages showing up at the same time when someone
is looking at a vocabulary or individual terms on the site.

Forums

The Forum module creates a new content type (“Forum topic”) when it gets enabled,
along with a Forums administration screen, found at Structure→Forums (admin/struc-
ture/forum). The Forum module’s containers and forums structure is built on Drupal’s
core taxonomy, so it is also creating a new vocabulary on our site, titled Forums. You
can modify the container and forum names either on the Forums administration screen
or on the Taxonomy administration screen, found at Structure→Taxonomy (admin/
structure/taxonomy).The forums on our client’s site need to display the threads that
follow the same content selection rule as the rest of the content on the site. That is,
we’ll only show the forum posts for the selected language. The site will have preset
containers and forums, and then users may post to them using whichever language they
choose.

Using the install profile, we have the default container, “General discussion,” as well
as two forums, “Equipment” and “Travel advice.”

If you have not used the install profile, go ahead and enable the core
Forum module and add some forums under the “General discussion”
container by going to the administrative toolbar and clicking Struc-
ture→Forums (admin/structure/forum).

Let’s turn on multilingual options for the forums:

1. First we need to set up the “Forum topic” content type so it can be used for multiple
languages. Unlike the “Book page” and “Article” content types, these do not need
to be translatable. We just want a user to identify the language of the post so it
appears in the proper language forum. In the administrative toolbar, click Struc-
ture→“Content types” (admin/structure/types), and then click the “edit” link for
the “Forum topic” content type.

2. Under the “Publishing options” tab, select the Enabled radio button for “Multi-
lingual support.” (Note, we are not using “Enabled, with translation.”) Click “Save
content type.”

342 | Chapter 8: Multilingual Sites

3. Now let’s see about making the forum container and forum names translatable. In
the administrative toolbar, click Modules (admin/modules) and enable:

• Multilingual package

— Multilingual Forum

— Taxonomy translation

— Translation sets

4. In the administrative toolbar, click Structure→Taxonomy (admin/structure/taxon-
omy) and click the “edit vocabulary” link for Forums. You will see in Figure 8-33
that we now have a “Multilingual options” section on the page.

Figure 8-33. Taxonomy multilingual options

5. Select the radio button for Localize and then click the “Save and translate” button
to save your changes and move directly to translation. You will see a table listing
the languages available for translation, along with the translation status, as shown
in Figure 8-34.

6. Click the “translate” link for a language, enter the translated text for Forums, and
save your changes.

7. When you are done with these translations, click the List tab for the Forums vo-
cabulary (admin/structure/taxonomy/forums). We still need to translate the con-
tainers and forums now, which are simply nested terms in our Forums vocabulary.

Hands-On: Internationalization Features | 343

While you can control the default language and ordering of con-
tainers and forums using the Forums administration page—found
at Structure→Forums (admin/structure/forum)—you must com-
plete all of the translations for the forums in the Taxonomy
administration pages.

8. Click on the “edit” link for a term, then click the Translate tab. Here you can change
the name and description, just as you did for the vocabulary. Do this for each of
the Forum terms. After you edit a term, you will notice that you don’t have an easy
way to get back to the list of all of the terms. You can either use your back button
on your browser, or go to the administrative toolbar and click Structure→Taxon-
omy, then “list terms” for the Forums vocabulary (admin/structure/taxonomy/fo-
rums).

9. Last, we want to add a Forums menu item into our Main menu so everyone can
easily find it. The Forum module has already created a menu item for us, but it is
located in the Navigation menu. (Remember that modules will add new menu
items to the Navigation menu by default.) So we just need to move it from Navi-
gation into the Main menu. In the administrative toolbar, click on Structure→Me-
nus (admin/structure/menu), then click the “list links” link for the Navigation
menu. Find the Forums menu item and click the “edit” link. Select “<Main menu>”
from the “Parent link” select list and save your changes. You can drag it into a
better location if you’d like.

When you close the administrative overlay, you will see a Forums menu item in the
Main menu. If you change the language using the language switcher, you will see the
menu item change names with the language selected. When you go to the Forums page,
the forum names are also translated. Finally, if you click the link to “Add a new Forum
topic” from within the forums, you will see that the node creation form includes a select
list to pick the language for the post.

Figure 8-34. Taxonomy translation table for the Forums vocabulary

344 | Chapter 8: Multilingual Sites

Menu Translation
The last little thing we need to do to clean up our site is to get our Home tab in the
Main menu translated as well:

1. In the administrative toolbar, click Modules (admin/modules) and enable:

• Multilingual package

— Block languages

— Menu translation

2. Now, in the administrative toolbar go to Structure→Menus (admin/structure/
menu), and click the “edit menu” link for the Main menu. There is a new “Multi-
lingual options” section here. Select “Translate and Localize.” Menu items with
language will allow translations. Menu items without language will be localized.”
Then save your changes.

3. You will be returned to the list of items in the Main menu. Click the “edit” link for
the Home menu item. Scroll down, select English for the language, and save your
changes.

4. Now when you click the “edit” link again for the Home menu item, you will see
there is a Translate tab. Click on that tab, enter in your translations, and save them.

5. When you are done, go back to the Main menu list of menu items; in the admin-
istrative toolbar, go to Structure→Menus (admin/structure/menu); and click the
“list links” link for the Main menu. Drag and drop the menu items so all of them
are in the correct order, especially your translated items.

6. Return to the home page on the site and switch to another language. You will have
a fully translated menu now.

Taking It Further
We’ve covered quite a bit of ground for setting up a site with multiple languages. There
are a lot of tools available, and therefore there is a lot of flexibility when it comes to
handling languages. We have delivered a site to our clients that has the community
features they need and allows their users to both participate and manage the site in the
language of their choice. They can easily add new languages to the mix in the future,
and everyone can help with translating their knowledge base. Here are some additional
modules that can add some nice touches to your site:

Language icons
This module will add a default set of flag icons to the language switching links on
the site (in the “Language switcher” block and language links on the content). You
can replace the included icons with ones of your choosing.

Taking It Further | 345

http://drupal.org/project/languageicons

Language switcher dropdown
This gives you language switcher that provides a drop-down select list, instead of
a list of links. This integrates with the Language Icons module as well.

Transliteration
This important module will transliterate Unicode characters into ASCII. This is
very important to avoid creating URLs and filename paths that are unreadable in
some circumstances due to non-ASCII characters.

Translation overview
This module creates a page with a table that tracks the translation status of all the
content on your site. It supplies basic information like the title and a link to the
content, content type, and creation date. Then, for each piece of content, it uses a
legend so you can see the translation status (original language, current translation,
out-of-date translation, or untranslated) at a glance.

Translation table
This module provides a nice table interface to make it easier to change the text for
menus, taxonomy, and other strings.

Summary
We built a nice, simple, easy-to-use site for our clients that gave them the tools they
needed for discussions and a knowledge base. We set up a forum that displays only
posts that are in the user’s language and a knowledge base book where all of the site
members can create translations for the pages. The major need for this community was
being able to use multiple languages and easily extend those languages in the future.
Using Drupal’s core internationalization features with a handful of contributed mod-
ules, we have given them a very flexible multilingual solution.

For more information and discussion about internationalization in Drupal, see the
Internationalization group. To get more information about core Drupal translations
and how you can help, check out the Translations group. If you’d like to help the project
by providing your own translations for Drupal core or contributed modules, the Dru-
pal.org translator’s guide has all the information you need.

Here are the modules that we referenced in this chapter:

• Book: Part of the Drupal core

• Content Translation: Part of the Drupal core

• Entity translation

• Forum: Part of the Drupal core

• Internationalization

• Language icons

• Language switcher dropdown

346 | Chapter 8: Multilingual Sites

http://drupal.org/project/lang_dropdown
http://drupal.org/project/transliteration
http://drupal.org/project/translation_overview
http://drupal.org/project/translation_table
http://groups.drupal.org/i18n
http://groups.drupal.org/translations
http://drupal.org/contribute/translations
http://drupal.org/contribute/translations
http://drupal.org/project/entity_translation
http://drupal.org/project/i18n
http://drupal.org/project/languageicons
http://drupal.org/project/lang_dropdown

• Locale: Part of the Drupal core

• Localization client

• Localization update

• Translation overview

• Translation table

• Transliteration

• Variable

These are some other resources that we referenced and community resources for learn-
ing more about the new concepts introduced in this chapter:

• Drupal translations

• Localized Drupal Distribution

• Internationalization group

• Multilingual modules

• Translations working group

• Translator’s guide

Summary | 347

http://drupal.org/project/l10n_client
http://drupal.org/project/l10n_update
http://drupal.org/project/translation_overview
http://drupal.org/project/translation_table
http://drupal.org/project/transliteration
http://drupal.org/project/variable
http://localize.drupal.org/
http://drupal.org/project/l10n_install
http://groups.drupal.org/i18n
http://drupal.org/project/modules?filters=tid:97
http://groups.drupal.org/translations
http://drupal.org/contribute/translations

CHAPTER 9

Online Store

Many businesses, both large and small, would like to take better advantage of their web
presence by selling their products or services directly online. Setting up ecommerce,
however, can be a very daunting task. There are several options with varying complex-
ity. Many hosting providers offer ecommerce or “shopping cart” packages that may be
either included with your web hosting plan or available for purchase. With other serv-
ices, such as PayPal, you can enable online purchases by using an HTML form that
submits to their processing system. There are still more options for using dedicated
ecommerce packages, both open source and proprietary, that you host and configure.
The biggest issue with all of these methods tends to be the lack of integration with the
rest of the website—all shopping cart and checkout functions take place within the
other, external system.

This chapter will introduce the following modules:

Drupal Commerce (http://drupal.org/project/commerce)
Provides a full ecommerce package for running an online store

Feeds (http://drupal.org/project/feeds)
Provides data import capabilities for Drupal

Rules (http://drupal.org/project/rules)
Provides a means of clicking together custom programming logic

To follow along with the hands-on examples in this chapter, install Drupal using the
Online Store installation profile, which installs Drupal with a few sample users and
basic settings, as shown in Figure 9-1 and found at http://store.usingdrupal.com. For
more information on using the book’s sample code, see the Preface.

349

http://drupal.org/project/commerce
http://drupal.org/project/feeds
http://drupal.org/project/rules
http://store.usingdrupal.com

Figure 9-1. Sweet Tees’ completed website

There are two highly useful resources to have nearby as you’re learning
your way through Drupal Commerce. The first is the official Drupal
Commerce website at http://www.drupalcommerce.org/, which contains
documentation, a list of add-on modules, and other great stuff. The
second is http://www.commerceguys.com/, which contains a series of
screencast tutorials on how to do various tasks in Drupal Commerce
that fall outside the scope of this chapter.

Case Study
Sweet Tees is a local T-shirt store that sells wildly popular, custom-printed T-shirts. It
has a physical storefront, and the owners enjoy running a small store and love their
current location. However, they get frequent mail-order requests for their shirts and
stickers, and would like to grow that end of the business. Taking orders on the phone
and tracking sales has proven to be inefficient and time-consuming for both them and
their customers.

In order to increase sales, we will equip the Sweet Tees website with an online store
that has integrated shopping cart functionality, where visitors to the site can add items
to their cart without the hassle of having to create an account first. A shopping cart
should be visible on all pages with a link to “check out” at any time. The store needs
to flow seamlessly with the existing website so that customers have a consistent expe-
rience. Sweet Tees would like to make the checkout process as simple as possible, so

350 | Chapter 9: Online Store

http://www.drupalcommerce.org/
http://www.commerceguys.com/

we will also need to make sure we provide them with a single-page checkout, without
requiring customers to create a user account. Finally, they wish to accept credit cards
on their orders, so we will need to set up a payment gateway for this purpose.

Implementation Notes
Sweet Tees has several options to manage their online store; however, they really want
to provide a seamless, user-friendly experience for their customers. They are looking
for a solution that is simple and elegant, yet also comprehensive.

For Drupal, there are two primary ecommerce solutions, both of which consist of sev-
eral modules, to implement the various features required.

Ubercart (http://drupal.org/project/ubercart), the premier ecommerce solution in
Drupal 6, aims to provide a simplified installation, configuration, and management
process. Ubercart also has some features that make it attractive for our implementation:
a single-page checkout process, anonymous user purchases, and a nice administration
interface.

Drupal Commerce (http://drupal.org/project/commerce) is a highly customizable ecom-
merce framework that was developed by Ubercart’s former lead developer, and is a
ground-up rewrite of Ubercart that makes use of modern Drupal 7 constructs such as
entities and fields, views, and rules. Drupal Commerce takes a “framework” approach
to building out an ecommerce site, allowing the ultimate in customizability and flexi-
bility to support everything from standard product-based stores to subscription
websites.

For Sweet Tees, we will be using Drupal Commerce due to its native support of Drupal
7, and its inherent flexibility, which will help them handle any future requirements.

Thanks to its five-year head start, Ubercart generally has more add-on
modules available than Drupal Commerce, a fact that may make our
choice a bit puzzling. However, the broader Drupal developer commu-
nity effort is much more focused on Drupal Commerce, making it the
more future-proof choice for Drupal 7 sites.

Spotlight: Drupal Commerce
Drupal Commerce is a complete package for running an online store. As such, it actually
contains numerous submodules that each implement features of an online store, and
can be turned on or off depending on the precise functionality required. In this section,
we’ll look at each module in turn, and outline its purpose and where it fits.

Spotlight: Drupal Commerce | 351

http://drupal.org/project/ubercart
http://drupal.org/project/commerce

If you’d like to play with a quick demonstration of the Drupal Com-
merce module, try installing the Commerce Kickstart installation profile
at http://drupal.org/project/commerce_kickstart.

Commerce and Commerce UI
Commerce is a required module that provides the underlying APIs and functionality
for the Drupal Commerce suite as a whole, and doesn’t provide much in the way of
configurability. The Commerce UI module provides the main Store (admin/com-
merce) configuration panel, pictured in Figure 9-2.

Nearly all modules in the Drupal Commerce package are split into both
a “functional” module and a “UI” module. This is to allow other con-
tributed or custom modules to potentially replace the default user in-
terface with one more streamlined to a particular use case.

Figure 9-2. Commerce UI provides the default Store management screens

Cart
Cart handles the shopping cart, pictured in Figure 9-3, and provides features such as a
handy sidebar block showing cart contents on all pages, and the ability for customers
to add or remove cart contents. Both the block and checkout page are views, so you
can customize the precise fields and order they’re displayed in, just like any other listing
built in the Views module.

The Cart module also exposes a number of events and actions that can trigger system
behavior through the Rules module. For example, for a site selling multiple subscription
levels, it might make sense to remove the old subscription level from the cart when
adding a different subscription.

352 | Chapter 9: Online Store

http://drupal.org/project/commerce_kickstart

Figure 9-3. The shopping cart page and sidebar block provided by the Cart module

Checkout
The Checkout module, pictured in Figure 9-4, handles the display of the checkout
screens, as well as the overall checkout process. There are four stages to the checkout
process: “Checkout” (where billing information and payment details are typically gath-
ered), “Review order” (which allows the customer to check over her order one last time
before being charged), “Payment” (where the actual charging takes place), and “Check-
out complete” (where final notifications and next steps are explained). The information
displayed on each page (e.g., cart contents, billing information) is encapsulated in
“checkout panes,” the visibility and order of which are configurable in the store settings,
as pictured in Figure 9-5. One example of where this flexibility could come in handy is
in a site selling memberships; since these aren’t “products” in the traditional sense, it
may not make sense to show the cart contents on the checkout page.

One other very nice feature of the Checkout module, thanks to the Address Field mod-
ule it lists as a dependency, is its ability to autopopulate proper address fields based on
country selection—for example, “State” and “Zip code” for United States addresses,
but “Province” and “Postal Code” for Canadian addresses.

Customer and Customer UI
The Customer module exposes an entity type called Customer Profile, which can be
used to store information a customer must fill out during the checkout process. By
default, Drupal Commerce ships with a profile type called “Billing information,” pic-
tured in Figure 9-4. However, other modules—such as Commerce Shipping, which
exposes a profile type called “Shipping information”—may offer additional types as
well. Because customer profiles are entities, they may have other fields added to them,
such as phone number or Tax ID.

Spotlight: Drupal Commerce | 353

Figure 9-4. Checkout panes are provided by the Checkout module

Figure 9-5. The page elements (“checkout panes”) to show during the checkout process, as well as
their order, are configurable in the Checkout module settings

354 | Chapter 9: Online Store

Order, Order UI, Line Item, and Line Item UI
The Order and Line Item modules are responsible for recording, tracking, and man-
aging individual orders to the store. Figures 9-6 and 9-7 show the default user interface
for managing orders, provided by the Order UI and Line Item UI modules. You can
view orders that are completed as well as those still in the shopping cart phase, and you
can also create and edit orders manually—for example, to accept orders over the phone.

Figure 9-6. Orders overview listing page

Figure 9-7. A sample order

Payment and Payment UI
There are a number of add-on modules that expose different sorts of payment types to
Drupal Commerce, including PayPal, Authorize.Net, and CyberSource. Check http://
www.drupalcommerce.org/faq/payment-methods for a full listing.

Spotlight: Drupal Commerce | 355

http://www.drupalcommerce.org/faq/payment-methods
http://www.drupalcommerce.org/faq/payment-methods

Payments are configured with the Rules module, covered in “Spotlight: Rules Mod-
ule” on page 383, which provides nearly limitless customizability over specific business
logic requirements.

Product and Product UI
Something that’s pretty essential to any store is cataloguing all of the products it sells.
In Drupal Commerce, this capability is provided by the Product module.

Products in Drupal Commerce are entities, which means you can create different prod-
uct types (e.g., Book, Music, Event Registration), and add more fields to those product
types. All products in Drupal Commerce have a set of basic, required fields: Product
SKU, Title, Price, and Status. Figure 9-8 shows an example of a product type with an
image field added to it.

Figure 9-8. A sample product form including both the standard, required fields as well as an extra
image field

Like elsewhere in Drupal Commerce, the default product view exposed by the optional
Product UI module, pictured in Figure 9-9, can be customized with the Views module.
This allows you to add extra fields, expose filters for product type or keyword search,
or whatever else you can envision doing with Views.

356 | Chapter 9: Online Store

Figure 9-9. The default view from the Product UI module

Product Reference
The Product Reference module exposes a field that can be placed on content types. A
content type with a product reference field is called a product display, and it handles
output of the raw product data to customers, as well as the display of the “Add to Cart”
button. We’ll go into more detail about products and product displays in the
next Spotlight section, “Spotlight: Managing Products with Drupal Com-
merce” on page 358.

Price, Product Pricing, and Product Pricing UI
This set of modules enables a store site owner to establish how much things cost—a
rather important functionality in an online store! These modules provide Rules ele-
ments, such as the ability to react when the price of goods is being calculated. Most of
the rest of the Commerce suite relies on these modules.

Tax and Tax UI
Drupal Commerce supports both Sales and VAT tax calculations, using the Rules
module to allow for special cases, such as different sales taxes in different states, or a
higher tax for certain types of items.

Additional Drupal Commerce Add-Ons
If the modules that come with Drupal Commerce aren’t quite enough for your needs,
there is also a rich library of contributed add-ons at http://www.drupalcommerce.org/
contrib. Here you’ll find payment processor modules for services such as Authorize.Net
and PayPal, modules to facilitate shipping and stock keeping, and modules that provide
new features such as the ability to purchase and spend points or keep wishlists.

Spotlight: Drupal Commerce | 357

http://www.drupalcommerce.org/contrib
http://www.drupalcommerce.org/contrib

Spotlight: Managing Products with Drupal Commerce
Before we get to the first step in creating our store—adding products—it’s worth taking
some time to discuss and understand how Drupal Commerce treats products within
the system. While product management may appear unintuitive at first, the product
management features in Drupal Commerce are designed to allow for maximum
flexibility.

Products and Product Types
Products in Drupal Commerce are entities, which means that you can do anything with
products that we’ve done with entities in the rest of this book, such as add fields to
hold additional properties, display products in listings with the Views module, and so
on. This seamless integration of store products with the rest of the content that Drupal
can manage is a killer feature of Drupal Commerce.

All product types share a common set of required fields, which are:

Product SKU
A unique identifier for a product. Some stores might choose to make this the same
as the UPC code, in the case of a physical product, but others may create their own
naming convention, such as BOOK-123456789-A.

Title
The title describes the unique product configuration in human-readable terms, and
is used in content listings to identify the product to store administrators.

Price
The product base price, which defaults to the site’s default currency.

Status
Either Active or Disabled. If a product is marked as Disabled, it cannot be added
to the shopping cart (the “Add to Cart” button is replaced with a “Product not
available” message). Product status can also be used as a filter in Views to remove
disabled products from listing pages.

By default, Drupal Commerce provides a sample product type called Product. This is
sufficient if you are only selling one style of product in your store, such as a club mem-
bership. Many online stores are more complex, however. Amazon.com sells books,
movies, and, as we saw in Chapter 5, kitchen utensils (among other things). Books have
properties like “author” and “ISBN,” and movies might have properties like “rating”
and “movie studio.” Can you imagine how long the product form would be if it needed
to provide a field for every single one of these properties for all possible types of prod-
ucts? No, thanks.

358 | Chapter 9: Online Store

Luckily, the Drupal Commerce developers have a solution to this predicament: you can
create as many product types as you’d like, and uniquely customize the fields on each
of those product types. Other examples of product types might be Book, Music, Event
Ticket, or Donation. A Book product type might have fields like Author and Publisher,
whereas a Music product type could have Artist and Label. And the two product types
might share an image field to facilitate showing them together in product listings.

Note that you must create a unique product with a unique SKU for each configuration of
each product. Let’s say your store is selling movies. If each movie comes in VHS, DVD,
or Blu-Ray format, that’s three different products with three different SKUs per indi-
vidual movie title. If each format also comes in English, Spanish, or French, that’s
nine different products with nine different SKUs. And if your store sells 3,000 movies,
all in all that’s 27,000 products with 27,000 SKUs. Egads! As you can well imagine, it
can become tedious to enter that much data by hand. We’ll cover bulk-importing
product data in “Hands-On: Bulk-Importing Product Data” on page 366.

Hands-On: Products and Product Types
The first step in setting up our online T-shirt store is to turn on a formidable array of
modules to enable the Drupal Commerce module, and then set up product types for
the merchandise that Sweet Tees sells: T-shirts and stickers.

Initial Setup Tasks
1. Log into the Sweet Tees site as the “admin” user if you have not done so already.

2. Go to the Modules (admin/modules) page and enable the Product UI module.
Choose Continue at the prompt to enable the large number of dependent modules
(Commerce, Entity API, Rules, Entity tokens, Commerce UI, Product, Price,
Views, and Chaos tools).

Configuring Product Types
1. Go to Store→Products (admin/commerce/products), the main product admin panel,

and click the Product Types tab. By default, you’ll see a single product type listed
there called Product. That’s a bit too generic for our tastes, so click the Delete link
to remove it.

2. Click “Add product type” and give it a Name of “T-shirt” and Description of “Our
award-winning T-shirts.” Then click “Save and add fields.” At the Managed Fields
screen for T-shirt (admin/commerce/products/types/t-shirt/fields), pictured in Fig-
ure 9-10, you’ll see we already have a few fields predefined: Product SKU, Title,
Price, and Status.

Hands-On: Products and Product Types | 359

Figure 9-10. Default fields available to product types

3. Add two new fields—Size and Color—to the T-shirt product type, using the values
in Tables 9-1 and 9-2, respectively.

Table 9-1. Settings for the T-shirt product type’s Size field

Field Value

Label Size

Machine name size

Field type List (text)

Widget Select list

Allowed values list S

M

L

XL

Required field Checked

Table 9-2. Settings for the T-shirt product type’s Color field

Field Value

Label Color

Machine name color

360 | Chapter 9: Online Store

Field Value

Field type List (text)

Widget Select list

Allowed values list White

Black

Required field Checked

4. We also want to add an image field, but thanks to the default Article content type,
we already have one we can use. Under “Add existing field,” choose “Image:
field_image (Image)” as the field to share, then provide a Label of “Image” and
click Save. Leave the default settings.

5. Finally, reorder the fields as indicated in Figure 9-11 (Product SKU, Title, Price,
Image, Size, Color, and Status), and click Save.

Figure 9-11. The completed T-shirt product type with reordered fields

6. Return to the main Product Types screen and create a second product type at “Add
product type” (admin/commerce/products/types/add) for Sticker. Give it a Name of
“Sticker” and Description of “A sticker with a witty phrase.” We can just keep the
default fields here, so simply click “Save product type.”

7. As you did with T-shirt, add the existing image field to Sticker, leave the default
settings, and drag it just above Status in the list of fields.

8. When finished, your product types screen (admin/commerce/products/types)
should look as pictured in Figure 9-12.

Hands-On: Products and Product Types | 361

Figure 9-12. Product types for the Sweet Tees store

Creating Sample Products
Now that we have our product templates created, let’s work on populating some store
content!

1. Go to Store→Products (admin/commerce/products) and click the “Add a product”
link (admin/commerce/products/add) to see a menu of available product types.

Since you’ll return to this screen fairly often over the course of
managing your online store, you might want to hover over the plus
sign (+) next to “Add a product” and click “Add to Default short-
cuts” so the link is easily accessible from all pages in Drupal’s
Shortcut bar at the top of the screen.

2. Let’s start with a sticker, since that’s nice and easy. Click Create Sticker (admin/
commerce/products/add/sticker). Give it the values in Table 9-3 and click “Save
product.”

Table 9-3. Values for a sample Sticker product

Field Value

Product SKU STICKER-001

Title Druplicon sticker

Price 10.00

Image (Upload the drupal-sticker.png file from the assets/ch09-store folder.)

Status Active (default)

362 | Chapter 9: Online Store

In almost all cases, you’ll leave the Status field as Active. The Dis-
abled status is useful in the case of items that are discontinued. You
wouldn’t want to delete the product, as that could destroy customer
order data. Setting the product as Disabled will ensure it can’t be
added to anyone’s shopping cart and will hide it from view.

3. Now let’s add a T-shirt by clicking “Add a product” and then Create T-shirt (admin/
commerce/products/add/t-shirt). Give it the values in Table 9-4 and click “Save
product.”

Table 9-4. Values for a sample T-shirt product

Field Value

Product SKU TSHIRT-001-M-WH

Title Druplicon T-Shirt - Medium White

Price 1.99 (Note: this is a deliberate typo that we will fix in the next section!)

Image (Upload the druplicon-tshirt-white.png file from the assets/ch09-store folder.)

Size M

Color White

Status Active (default)

As mentioned in “Spotlight: Drupal Commerce” on page 351, Dru-
pal Commerce needs one product with a unique SKU per product
configuration. Our T-shirt store sells both multiple sizes (S, M, L,
XL) and multiple colors (White, Black) of each of the three T-shirt
designs. As a result, if we keep going along with this example, we
would have to enter in a whopping 24 products by hand. Yowza!
Let’s hope Sweet Tees doesn’t think about adding any new T-shirt
designs or, heaven forbid, decide to offer women’s and children’s
styles of each design as well!

Luckily, there’s a way to bulk-import lots of products at once,
which will be the focus of the next section of this chapter.

4. Now that we’ve entered a couple of products, our product administration screen
at Store→Products (admin/commerce/products) should look as pictured in Fig-
ure 9-13.

Remember: nearly all listing pages in Drupal Commerce are Views, in-
cluding the product overview page. You can easily customize this page
to add extra columns for the Image, Size, and Color fields; add an ex-
posed filter or two to restrict the list by certain product types or provide
a keyword search; or anything else you do with Views module. Be
creative!

Hands-On: Products and Product Types | 363

Of course, a company like Sweet Tees has many more products than just a single sticker
and T-shirt they’d like to sell. However, entering their entire inventory by hand will
quickly become tedious and carpal tunnel–inducing. Luckily, using standard Drupal
data import tools, we have a solution to this problem.

Spotlight: Feeds Module
The Feeds module provides the capability to ingest data from any number of different
sources and transform it into native Drupal constructs. It’s a versatile tool that can be
used for things such as large-scale data migration, automatically populating a block of
recent content from external sites, or synchronizing content posted among multiple
sites.

Among its features are the ability to scan incoming data for already existing content
and decide whether to ignore it or merge in the defaults. Content ingestion can be
scheduled and queued, even for large jobs.

The Feeds module works by creating one or more “importers” to do the data inges-
tion. Importers have three basic components: the Fetcher, the Parser, and the Processor.

Fetcher
This component defines how the Feeds module should bring in the feed data. The
default options are either “File upload,” which provides a field to upload a file from
the computer’s hard drive (perfect for things like comma-separated values [CSV]
files or XML), or “HTTP fetcher,” which provides a field to enter a URL of a remote
data feed, such as http://drupal.org/node/feed.

Parser
When provided the format of the feed, the parser reads it into logical chunks. The
default options are: “Common syndication parser” (handles RSS and Atom), “CSV
parser” (for files stored with comma-separated values), “OPML” (Outline Pro-
cessor Markup Language, a common format for sharing hierarchical lists), and
“Sitemap” (which can read feeds stored in the http://www.xml-sitemaps.com/
format).

Figure 9-13. Sample products for the Sweet Tees store

364 | Chapter 9: Online Store

http://drupal.org/node/feed

Processor
The processor turns data coming in from a feed parser into native Drupal struc-
tures. By default, processors are included for Nodes, Taxonomy Terms, and Users.

Figure 9-14 shows the default feed importer settings. This configuration creates an
importer that fetches an RSS or Atom feed from a URL every 30 minutes, then imports
the contents into Drupal as nodes. The fetcher, parser, and processor settings can then
be customized to allow for other behaviors.

Figure 9-14. A feed importer showing default options

There are also several contributed modules that can extend the Feeds module’s capa-
bilities. For example, the “Feeds YouTube parser” module (http://drupal.org/project/
feeds_youtubehttp://drupal.org/project/feeds_comment_processor) provides the capabil-
ity to read feeds of videos from YouTube; the “Feeds Comment Processor” module
(http://drupal.org/project/feeds_comment_processor) allows importing feed content as
comments; and the “Feeds Directory Fetcher” module (http://drupal.org/project/feeds
_fetcher_directory) can monitor a directory for new files and turn them into a feed for
parsing.

Spotlight: Feeds Module | 365

http://drupal.org/project/feeds_youtube
http://drupal.org/project/feeds_youtube
http://drupal.org/project/feeds_comment_processor
http://drupal.org/project/feeds_comment_processor
http://drupal.org/project/feeds_fetcher_directory
http://drupal.org/project/feeds_fetcher_directory

Another option for data imports is using the Migrate module, and the
Commerce Migrate module, which adds support for Drupal Commerce
and Ubercart data migrations. These are particularly useful for larger-
scale data migrations from legacy systems, and for situations where a
lot of data needs to be transformed in order to be suitable for Drupal.

Hands-On: Bulk-Importing Product Data
Now that we’re familiar with the Feeds module’s data import tools, let’s turn our at-
tention to importing T-shirt products for Sweet Tees.

Sweet Tees has kindly furnished us with a comma-separated values (CSV) file contain-
ing all of their T-shirt product data for this purpose. CSV is a common data export
format from databases and spreadsheet programs. A CSV file is a simple text file that
encodes a data set with each record on its own line, and a separator (such as a comma
or tab) between the data values. We’ll examine the contents of this file more closely in
“Mapping CSV Data to Drupal Commerce Products” on page 368.

We’ll use the Commerce Feeds module for this purpose, which provides two new Feeds
processors: Commerce Customer Profile processor and Commerce Product processor.

To follow along with this example, you will need the using_drupal
_tshirts.csv file from the book’s source code, found in the assets/ch09-
store folder.

Creating a Feed Importer for CSV Files
1. Go to the Modules page and enable the following modules:

• Commerce (contrib) package

— Commerce Feeds

• Feeds package

— Feeds

— Feeds Admin UI

• Other package

— Job Scheduler

2. Go to Structure→Feeds Importers (admin/structure/feeds) and click the “New im-
porter” tab (admin/structure/feeds/create).

3. Fill out the form with the values in Table 9-5 and click the Create button.

366 | Chapter 9: Online Store

http://drupal.org/project/migrate
http://drupal.org/project/commerce_migrate
http://drupal.org/project/commerce_feeds

Table 9-5. Settings for the Product importer

Field Value

Name T-shirt importer

Description Import the Sweet Tees T-shirt catalog from CSV file.

4. At the next screen, there is a table with many settings, most of which can be ignored.
“Basic settings” allows you to configure things like how often to import from a feed
and whether the process should happen in the background or immediately upon
form submission. Then the Fetcher, Processor, and Parser sections affect the set-
tings for each of those components.

5. Under Fetcher, click Change, choose “File upload” instead of “HTTP fetcher,” and
click Save. While the “HTTP fetcher” option would be useful for reading in feed
data from a remote URL, the Sweet Tees product list is in a CSV file sitting on your
computer’s hard drive, so it makes sense to show a file upload field instead of a
URL field. If you wish, you can click Settings for the file upload fetcher to configure
additional settings such as what file extensions are allowed, but that’s unnecessary
for this example.

6. Under Parser, click Change, choose “CSV parser,” and click Save. Once again, you
can click Settings for the CSV parser to change options such as what delimiter is
used in the file, but we don’t need to do that here.

7. Under Processor, click Change, choose “Commerce Product Parser,” and click
Save. The CSV items will now be imported as Drupal Commerce products, not
nodes.

8. Click the Settings link next to “Commerce Product processor,” enter the values
found in Table 9-6, and click Save.

Table 9-6. Settings for the Commerce Product processor

Field Value

Update existing commerce products Update existing products

Text format Plain text (default)

Product type T-shirt

Author admin

The one value worth mentioning here is “Update existing com-
merce products.” This value means that if incoming product data
from the feed matches existing data within Drupal, the values com-
ing in from the feed will “win” and override the site’s data. In this
case, we want that, since it’s an initial import of the CSV data. In
future imports, however, we’d probably want to leave that at “Do
not update existing products” so only new products are added.

Hands-On: Bulk-Importing Product Data | 367

9. When completed, the settings along the left side should look as shown in Fig-
ure 9-15.

Figure 9-15. Settings for the product feed importer

Mapping CSV Data to Drupal Commerce Products
Now for the fun part: telling the Feeds module how to take incoming CSV data and
turn it into Drupal products!

1. Click the Mapping link next to the Commerce Product processor on the T-shirt
importer edit page to view the “Mapping for Commerce Product processor” page
(admin/structure/feeds/edit/t_shirt_importer/mapping).

2. Take a peek inside the using_drupal_tshirts.csv file and examine its contents. Of
particular note is the first row of the file, which lists the columns of the incoming
data: SKU, Title, Price, Size, Color, and Image. These are the “source fields” we
need to map. Here is an excerpt:

368 | Chapter 9: Online Store

SKU,Title,Price,Size,Color,Image
TSHIRT-001-S-WH,Druplicon T-Shirt - Small White,1699,S,White,
 http://usingdrupal.com/sites/default/files/v7/ch09-store/druplicon-tshirt...
TSHIRT-001-M-WH,Druplicon T-Shirt - Medium White,1499,M,White,
 http://usingdrupal.com/sites/default/files/v7/ch09-store/druplicon-tshirt...
TSHIRT-001-L-WH,Druplicon T-Shirt - Large White,1499,L,White,
 http://usingdrupal.com/sites/default/files/v7/ch09-store/druplicon-tshirt...

Note that the data intentionally charges more for Small shirts—both to show that
it can be done, and also because skinny people have it way too easy in life.

The first question you might reasonably ask is, “What’s up with
those weird prices?” Because Drupal Commerce supports multiple
currencies, and different currencies have different rules on how
they’re formatted, the developers made the decision to store all
pricing data in the “minor unit” of the amount (so the price in cents,
in the case of US or Canadian Dollars). If your incoming data stores
price information in the more predictable “16.99”-style format, try
the Feeds Tamper module for manipulating the source data before
it hits the Feed parser.

3. Back in Drupal, examine the values under the “Select a target” drop-down: Product
SKU, Product Title, and so on. These are the “target fields” in products, to which
the source data will be mapped.

If you find yourself puzzled by some of the options here, such as
GUID, there’s a handy Legend fieldset down below that contains
descriptions of each target.

4. One after another, add the source-to-target mappings indicated in Table 9-7 by
typing the name of the Source field from the CSV file, selecting the name of the
Target field from the drop-down box, and clicking the Add button. If you make a
mistake, check Remove next to the field and click the Save button at the bottom
of the form.

Table 9-7. Source-to-target mappings for product import

Source Target

SKU Product SKU

Title Product title

Price Price: Amount

Size Size

Color Color

Image Image

Hands-On: Bulk-Importing Product Data | 369

http://drupal.org/project/feeds_tamper

5. Check the Unique Target checkbox next to the SKU field and click Save, to indicate
that this value uniquely identifies each record.

6. When your mapping configuration is finished, your screen should look as pictured
in Figure 9-16.

Figure 9-16. Mapping for the T-shirt feed importer

Importing CSV Product Data
And now, the moment we’ve all been waiting for.

1. Close out of the Feeds administration screen and go to Import (import) in the
Navigation block, then click on “T-shirt importer” (import/t_shirt_importer).

2. Click “Choose file” on the File field and point it to the using_drupal_tshirts.csv file,
then click Import.

3. A progress bar should appear for a few seconds, and then you should see a notifi-
cation that Drupal created 23 commerce products, and updated 1 commerce prod-
uct. Score! Let’s check it out.

If anything goes awry here, the Delete Items tab will present an
option to remove all imported values and try again.

370 | Chapter 9: Online Store

4. To confirm, head to Store→Products (admin/commerce/products), which should
appear similar to Figure 9-17. You should see a heck of a lot more products there
than before, and our previously mistyped $1.99 T-shirt from earlier should now
be the correct $14.99 price. Yippee!

Figure 9-17. Mapping for the product feed importer

Spotlight: Building the Storefront and Shopping Cart
Now that all of this groovy product data is showing up fine in the administrative in-
terface, there’s just one problem: how do we expose these products on our public
website to our customers? And further, how do we avoid displaying a product catalog
with 25 entries in it, when from a customer’s point of view we only sell four products
(three T-shirts and a sticker)?

Drupal Commerce’s “Products” concept essentially acts as your “warehouse” or “prod-
uct catalog”: any and all items your store sells or has sold in the past should be repre-
sented in Drupal as products. However, that only gets you part of the way there: while
your products will show up great in the administrative listings, they’re not visible on
the site and your users can’t actually purchase them yet. Additionally, in our movie
store example, paging through 27,000 products with titles like “Airplane! Blu-Ray
Spanish Version” and “Airplane! DVD English Version” won’t make much sense to our

Spotlight: Building the Storefront and Shopping Cart | 371

customers. They’ll simply want to search for individual movie titles, and then choose
the format and language they want as they’re adding the movie to their shopping cart.

The way Drupal Commerce facilitates both of these needs is through the use of one or
more content types with a Product Reference field attached. The Product Reference
field can group together one or more products into a single product display node, and
mark the required fields in those products as attributes (for example, the Size field on
a T-shirt) and expose them as attribute selection fields on the “Add to Cart” form.
Updating these fields will also switch product-specific properties, such as the image
attached to a product, or its price.

Figure 9-18 illustrates the concept of products and product displays.

Figure 9-18. Product displays collect one or more products and expose their required fields as attributes
for customers to select from

Now it’s time to create the storefront our users will view, from which they can add
products to their shopping cart.

372 | Chapter 9: Online Store

Hands-On: Product Displays
Let’s try putting what we just learned into action by creating a content type for product
displays, and a few sample products to get the hang of how things work.

1. Go to the Modules (admin/modules) page, enable the Cart module, and confirm
the gaggle of dependent modules that it will prompt you to enable.

2. First, we need to create a content type to hold our product displays. Go to Struc-
ture→“Content types” and click “Add content type” (admin/structure/types/add).

3. Give the new content type a Name of “Product display,” and a Description of “A
publicly visible product on the website.” Click “Save and add fields.”

4. Add a new field to the content type, using the settings in Table 9-8, and click Save.

Table 9-8. Product reference field properties

Field Value

Label Product(s)

Field name product

Field type Product reference

Widget Check boxes/radio buttons

5. Click past the first settings page, then enter the settings in Table 9-9 and click “Save
settings.”

Table 9-9. Settings for the Product reference field

Field Value

Required field Checked

Render fields from the referenced products when viewing this entity. Checked (default)

Help text Enter one or more product SKUs.

Product types that can be referenced (Leave unchecked for all)

Default value (Leave blank)

Number of values Unlimited

6. Let’s test the new content type, starting with the Druplicon T-shirt. We’ll create a
single product display for all variations of that product (S–XL, both Black and
White).

7. Go to “Add content”→“Product display” (node/add/product-display), and fill in the
settings in Table 9-10.

Hands-On: Product Displays | 373

As with the “Add product” form, you will probably be coming back
here often. Feel free to hover over the plus sign (+) next to the title
and click “Add to Default shortcuts” to add this page to your
shortcut bar.

Table 9-10. Settings for the T-shirt product display

Field Value

Title Druplicon T-shirt

Description A T-shirt starring the charming Druplicon, mascot of the Drupal project.

Product(s) (Check off all eight products starting with “TSHIRT-001.”)

8. Click Save when finished, and as shown in Figure 9-19, you should not only see
the product showing up with an “Add to cart” button, but also a selector to choose
which product to buy. Switching between a white and black T-shirt should switch
the image, and choosing between Small and Large should switch the price, as well.

9. Repeat steps 7 and 8 for the other T-shirt SKUs as well. And for the sticker, you
should only need to reference the single sticker product in its product display node.

While this manual product assignment method is fairly tedious, there
are other contributed modules that can help automate the task. Check
out the http://drupal.org/project/commerce_product_display_manager
module for an alternate way of assigning and creating product
displays.

Hands-On: Creating a Product Catalog
Next, let’s create a nice interface for browsing products. We can categorize product
displays using the Taxonomy system, and use the Views module for providing the
browsing page:

1. Go to the Structure→Taxonomy (admin/structure/taxonomy) and click the “Add
vocabulary” link (admin/structure/taxonomy/add).

2. Give the vocabulary a name of “Catalog” and a description of “Sweet Tees product
catalog.” Click the Save button.

3. Now, let’s add a couple of product catalog categories. Click the “add terms” link
(admin/structure/taxonomy/catalog/add).

4. Add two terms, using the values in Tables 9-11 and 9-12. The terms’ descriptions
will display at the top of the term listing pages at the specified URLs.

374 | Chapter 9: Online Store

http://drupal.org/project/commerce_product_display_manager

Table 9-11. Settings for the T-shirt category

Field Value

Name T-shirts

Description How Sweet Tees got its name! Check out our excellent selection of Drupal-themed T-shirts.

URL alias catalog/t-shirts

Table 9-12. Settings for the Sticker category

Field Value

Name Stickers

Description The stickiest stickers that ever got stuck.

URL alias catalog/stickers

Figure 9-19. A Drupal Commerce product display node

Hands-On: Creating a Product Catalog | 375

5. Next, we need to add our product displays to the product catalog categories. Nav-
igate to Structure→“Content types” and click “managed fields” next to “Product
display” (admin/structure/types/manage/product-display/fields).

6. Add a new field with the settings in Table 9-13. All other settings can be left as
their defaults.

Table 9-13. Settings for the Catalog field for product displays

Field Value

Label Catalog

Field name catalog

Field type Term reference

Widget Select list (default)

7. Next, go back and edit each of the product displays from the Content menu (admin/
content) to add them to their respective Catalog categories. When completed, if
you go to http://example.com/catalog/t-shirts, you should see all three T-shirt prod-
uct display nodes, with the term description at the top of the page, as pictured in
Figure 9-20.

Figure 9-20. Basic catalog taxonomy listing

8. Let’s see if we can clean up that display a little bit. For example, there are no images
in this listing, nor is there a way to add the products to your shopping cart! Go to

376 | Chapter 9: Online Store

Structure→“Content types” and click “manage display” next to the product display
type (admin/structure/types/manage/product-display/display). Note that any fields
here prefixed with “Product:” will inherit the settings of the parent product’s con-
figuration, so configuring the display of teasers is actually a two-step process.

9. First, let’s configure the display of the product display node fields. Click the Teaser
subnavigation (admin/structure/types/manage/product-display/display/teaser) to
change the settings for the product display node when it’s shown in teaser view,
as it is in taxonomy listings.

10. Drag the Catalog and Product(s) fields out of the Hidden section of the form, and
place them as pictured in Figure 9-21. You’ll notice that when you do this, the
Format column for each field will automatically change from “None” to “Add to
cart form” in the case of Product(s), and to “Link” in the case of Catalog. Go ahead
and leave these settings in place, but change the Label on Product(s) to <Hidden>
so we don’t have a nonsensical Product(s) label next to the “Add to Cart” form.
Click Save when finished.

Figure 9-21. “Product display” content type’s Manage Display Settings

11. If you go back and look at the T-shirt listing, you’ll notice that it’s looking a little
bit better already; the “Add to cart” button is there. Hooray! However, the product
image is still missing. Because the product image is part of the “parent” product
type, we need to change its display settings over in the Store settings instead.

Hands-On: Creating a Product Catalog | 377

12. Navigate to Store→Products→“Product types” (admin/commerce/products/types),
and click “manage display” next to the T-shirt product type (admin/commerce/
products/types/t-shirt/display). Click on the “Node: Teaser” subnavigation, and
drag the Image field just above Price.

13. Click on the Image field’s configure (gear) icon, and change “Image style” to “me-
dium,” and “Link image to” to “Content.” While we’re at it, change Label to Hid-
den since there’s no point in placing a label of “Image:” before an image. Click
Update, then Save. Your screen should now look as pictured in Figure 9-22.

Figure 9-22. T-shirt product type’s Manage Display Settings

14. Make similar adjustments to the Sticker product type’s display settings at
Store→Products→“Product types” (admin/commerce/products/types/sticker/dis-
play/node_teaser). When finished, your product catalog listing pages should be
looking much better! (See Figure 9-23.)

15. Finally, let’s design a top-level catalog overview screen using the Views module.
Go to Structure→Views and click the “Add new view” link (admin/structure/views/
add). Enter the settings listed in Table 9-14 and click the “Continue & edit” button.

Table 9-14. Product catalog view settings

Field Value

View name Catalog

Description Checked; “Sweet Tees product catalog.”

Show Content of type Product display sorted by Title

Create a page Checked

378 | Chapter 9: Online Store

Field Value

Page title Catalog

Path catalog

Display format Grid of fields

Items to display 10 (default)

Use a pager Checked (default)

Create a menu link Checked

Menu Navigation

Include an RSS feed Unchecked (default)

Create a block Unchecked (default)

16. At the moment, only product display titles are showing up in the preview. We want
to also add Image and Price. But recall that those fields are both on the referenced
product type, not the product display. So first, we must add a relationship to each
product display node’s referenced products.

Figure 9-23. Catalog category listing page

Hands-On: Creating a Product Catalog | 379

17. Expand the Advanced fieldset, then click the “add” button in the Relationships
section. Choose “Content: Referenced product” and click “Apply (all displays).”
On the settings page, since all product displays have referenced products, choose
“Require this relationship” and click “Apply (all displays)” once more.

18. Uh oh! The Views preview is now showing multiples of the same product display
nodes, as pictured in Figure 9-24. This is because each of the T-shirt product display
nodes is actually referencing multiple unique products. We can fix this using a
Views feature called aggregation, which allows you to group records together. Un-
der the Advanced fieldset, then Other, click the No link next to “Use aggregation.”
Check the Aggregate checkbox and click the “Apply (all displays)” button.

Figure 9-24. Catalog view with duplicate titles in it after adding a relationship to the referenced product

19. The setting doesn’t appear to have done anything, but it will in a moment. Next,
let’s add the fields that we want, now that the product relationship is in place. Click
the “add” button in the Field area and check the following fields, then click the
“Apply (all displays)” button.

Table 9-15. Settings for the Catalog field for product displays

Fields: Add Fields Value

Content: Path Checked

Field: Image Checked

Commerce Product: Price Checked

Content: Catalog Checked

20. After you click the “Add and configure fields” button, Views will display configu-
ration forms for each field, one by one. The first configuration screen will prompt
for aggregation settings, then the standard field settings form. Enter each of the
settings values from Table 9-16. When finished, your preview should look like
Figure 9-25.

380 | Chapter 9: Online Store

Figure 9-25. New Views preview after adding fields and aggregation

Table 9-16. Individual field configuration for the catalog view

Defaults: Configure field setting Value

Commerce Product: Price Aggregation type: Group results together (default)

Group column: Entity ID (default)

Relationship: Product (default)

Create a label: Unchecked

Formatter: Formatted amount, Display the original price as loaded.

Content: Catalog Aggregation type: Group results together (default)

Group column: Entity ID

Create a label: Unchecked

Exclude from display: Checked

Content: Path Aggregation type: Group results together (default)

Create a label: Unchecked

Exclude from display: Checked

Field: Image Aggregation type: Group results together (default)

Group column: Entity ID (default)

Relationship: Product

Create a label: Unchecked

Image style: thumbnail

Rewrite Results→Output this field as a link: Checked

Rewrite Results→Link path: [path]

21. Finally, let’s make one last visual tweak. In the Format section, click Settings next
to Format. Change the Grouping field “Nr.1 field” to “Content: Catalog.” This
will visually group like products together. Make any other visual tweaks you’d like
and then save your view; its configuration should now look as shown in Fig-
ure 9-26. And when you close out of the Overlay and return to your site, clicking

Hands-On: Creating a Product Catalog | 381

on the Catalog navigation item should take you to your final, completed catalog
as pictured in Figure 9-27.

Figure 9-26. Final views configuration for the product catalog

Figure 9-27. Final product catalog

382 | Chapter 9: Online Store

Spotlight: Rules Module
It’s easy to imagine that different kinds of stores might have certain things they want
to have happen when various events take place throughout the purchasing process. For
example, if someone adds more than 10 of an item to his cart, a store might want to
provide a 10% discount. Or if someone was anonymous and then registers or logs in,
a store might want to assign his old shopping cart to his newly found account.

Traditionally, this kind of custom logic would have to be done in code by a programmer.
However, the Rules module exposes a user interface for clicking together custom logic
in a web-based interface. This increases accessibility to nonprogrammers, and also al-
lows for bits of business logic to be shared among multiple sites with the Rules module’s
import and export capabilities.

Because of the flexibility it provides, Drupal Commerce’s payment system relies on the
Rules module, so it’s worth a quick diversion here before proceeding to setting up
payments.

Figure 9-28. Rules module overview page

Spotlight: Rules Module | 383

The following are the architectural blocks of Rules:

Events
Events are points in the system at which something occurs, has just occurred, or is
about to occur. Examples are “A comment is viewed,” or “Before adding a product
to the cart.” In Drupal developer-speak, events are “hooks” that fire during
the processing of a page and allow other modules to react with their own
customizations.

Actions
An action is custom programming logic for when an event fires and its associated
condition(s) succeeds. Examples are “Add a product to the cart,” or “Send mail to
all users of a role.” You can trigger multiple actions upon an event firing.

Conditions
A condition is an optional way to make a decision once an event is triggered—for
example, checking to see if two field values match, or whether or not the current
user has a particular role. Conditions can also be combined with either “and” or
“or” logic. So you can create conditions to say, “User has role(s)” and “User is not
blocked.”

Variables
Variables (also called parameters) are often passed into a condition or action to
provide additional data required to complete it. For example, for a condition of
“User has role(s),” the role or roles the user has would be variables passed to it.

Data selectors
Data selectors allow you to select the base system elements to pull parameters from,
using Drupal’s token system syntax, as shown in Figure 9-29. For “User has
role(s),” you need to be able to specify which user to check the roles of. For example,
“node:author” would reference roles of the author of a node that was being posted
or viewed, whereas “site:current-user” would reference the roles of the current
user. Data selectors can chain as well; “comment:node:author” is the author of the
node to which a comment is being posted. Whew!

Components
Components are collections of configuration that can be shared among different
Rules. Drupal Commerce’s Tax module takes advantage of this capability and ex-
poses tax rules as components.

Figure 9-30 shows a diagram of how the parts of the system work together. Not only
does the Rules module expose events, conditions, and actions to play with, but Drupal
Commerce and many other modules do as well. Two examples covered elsewhere in
the book are the Flag module and the Workbench module.

384 | Chapter 9: Online Store

We won’t be able to cover every detail of the Rules module in this chap-
ter, just the basics to finish up your store. However, NodeOne offers an
incredibly helpful and detailed set of online videos covering the Rules
module at http://dev.nodeone.se/en/learn-the-rules-framework. Also see
the Rules documentation from Drupal.org at http://drupal.org/documen
tation/modules/rules.

Hands-On: Taxes
Let’s try a practical example of some Rules module concepts for the Sweet Tees store.
Drupal Commerce’s Tax module stores its tax charging in Rules.

Before we can open up our store to the public, we need to ensure that all applicable
sales taxes are being applied to our items. Because Sweet Tees is based in California,
we will need to charge 7.25% sales tax on all products sold if the customer lives in the
state of California.

This example is for illustrative purposes only; you must determine what
types of taxes you need to charge to sell products in your own store. The
Tax and Tax UI modules, part of Drupal Commerce core, allow setting
all sorts of complex tax rules to calculate different rates depending on
whether purchasers are from the same state or a different state, for dif-
ferent product types, or for international orders.

Figure 9-29. The user interface for choosing Rules data selectors

Hands-On: Taxes | 385

http://dev.nodeone.se/en/learn-the-rules-framework
http://drupal.org/documentation/modules/rules
http://drupal.org/documentation/modules/rules

1. Enable the following modules at the Modules (admin/modules) page:

• Commerce package

— Tax

— Tax UI

• Rules package

— Rules

— Rules UI

Figure 9-30. The logic for processing rules

386 | Chapter 9: Online Store

2. Visit Configuration→Rules (admin/config/workflow/rules) and you’ll see two addi-
tional rules, added by the Tax module: “Calculate taxes: Sales tax,” and “Calculate
taxes: VAT.” Both rules trigger on the “Calculating the sell price of a product”
system event.

3. Go to Store→Configuration→Taxes (admin/commerce/config/taxes) and click the
“Add a tax rate” link (admin/commerce/config/taxes/rates/add).

4. Complete the form using the values from Table 9-17 and click the “Save tax rate”
button to save the sales tax settings.

Table 9-17. Tax form

Field Value

Name CA sales tax

Display title (Leave blank)

Description California residents must pay 7.25% sales tax.

Rate 0.725

Type Sales tax (default)

5. Currently, a 7.25% sales tax will be added to all orders. To change this, we must
add a condition to the rule to limit it only to California residents. Click the “con-
figure component” link.

6. Click the “Add condition” link under Conditions. Choose “Order address com-
ponent comparison” under the Commerce Order group. The form will auto-
expand to a configuration form.

7. Fill out the values according to Table 9-18.

Table 9-18. Sales tax rule configuration form

Field Value

Data selector commerce-line-item:order

Address Address

Address component Administrative Area (State / Province)

Operator equals (default)

Value CA

8. When finished, click Save to save your changes. Your screen should look as pic-
tured in Figure 9-31, and all orders coming from California will now receive a flat
sales tax. We’ll confirm this in the next section.

Hands-On: Taxes | 387

Figure 9-31. Configured Rules component for CA sales tax

Spotlight: Accepting Credit Card Payments Online
Of course, it’s one thing to have a bunch of products ready for purchase. But what
Sweet Tees really cares about is raking in the dough. They want to be able to accept
credit card transactions on their newfangled online store.

An online retailer must have a merchant account: a type of bank account provided by
a financial institution that allows organizations to accept credit payments. A merchant
account can be provided by a merchant bank or by a third party such as PayPal or
Authorize.net that authorizes payments on behalf of banks. Fees vary between services,
and should be evaluated based on anticipated transaction volume and average sale
price.

While customers’ credit card details are entered into forms on the Drupal side, no
sensitive information is ever stored by Drupal Commerce. Instead, it is passed on to
the payment gateway for storage on their side.

Figure 9-32 outlines the process of Drupal handing off the request to the payment
processor.

388 | Chapter 9: Online Store

Figure 9-32. Drupal Commerce payment flow diagram

The spot where the customer’s credit card details are captured depends on the payment
processor, and may require additional setup on your Drupal site. For example, PayPal
offers a starter, no-setup fee tier of service, called Website Payments Standard, that will
redirect the customer to PayPal.com upon checkout to enter her credit card details,
then return her back to your site when the transaction is verified. In this case, no ad-
ditional configuration is required.

However, many shop owners would rather have a fully integrated shopping experience,
and want to gather the credit card details on their own site. PayPal’s Website Payments
Pro offers this capability, but using it requires secure socket layer (SSL) encryption be-
tween your site and PayPal. Luckily, the Secure Pages module (http://drupal.org/project/
securepages) provides this capability.

Hands-On: PayPal
PayPal is a popular payment processor, especially for new site owners. It allows credit
card transactions as well as payments from within PayPal itself, which is common par-
ticularly within the eBay ecosystem. There are predominantly two “flavors” of PayPal’s
payment processing tools:

Website Payments Standard (WPS)
PayPal’s entry-level tier. It enables sites to process credit card transactions securely
by redirecting customers to PayPal’s website at checkout time in order to enter
credit card details.

Website Payments Pro (WPP)
For a monthly fee, credit card payments can happen on your own site, seamlessly.
PayPal handles the credit card processing behind the scenes, provided your site
meets security standards.

Hands-On: PayPal | 389

http://drupal.org/project/securepages
http://drupal.org/project/securepages

For our purposes, we’ll be using Website Payments Standard, since there are no setup
fees, no extra security setup required, and we can get started right away. Note that the
setup steps for other payment processors vary depending on the provider; PayPal WPS
is used in this chapter for illustrative purposes.

PayPal’s developer network at https://www.x.com/developers/paypal
runs on Drupal, too! Nifty.

1. Go to https://developer.paypal.com/ and sign up for a development sandbox. The
sandbox will act as a “safe space” to test financial transactions from Drupal
Commerce.

2. After confirming your email address, log into the sandbox, which will look similar
to Figure 9-33.

Figure 9-33. PayPal’s development sandbox

3. Click “preconfigured account” under Test Accounts.

4. Fill out the values in Table 9-19 and click Create Account to create a fake “buyer”
account with whom we’ll test.

390 | Chapter 9: Online Store

https://www.x.com/developers/paypal
https://developer.paypal.com/

Table 9-19. Settings for the PayPal test buyer account

Field Value

Country (Your country)

Account Type Buyer

First / Last name Test Buyer

Login Email (Your email)

Password (Change to something memorable)

Add Credit Card Visa (default)

Add Bank Account Yes (default)

Account Balance 9999

5. Create another “preconfigured” account, repeating the values from Table 9-19, but
this time for the seller. Enter “Sweet Tees” as the account’s first and last name.
When finished, your screen should look similar to Figure 9-34.

Figure 9-34. PayPal’s development sandbox

Hands-On: PayPal | 391

PayPal will automatically generate nonworking email addresses
based on your real email address. Don’t panic! These email ad-
dresses are not real; they’re simply used for testing.

6. Copy and paste the autogenerated “Business (seller)” email address into a text file
for safekeeping. You will need it in a few minutes to configure PayPal on the Drupal
Commerce side.

7. Let’s take a look around the sandbox. Select the radio button next to the Personal
account and click the Enter Sandbox Test Site button.

8. At the login screen, enter the buyer account password you created a few minutes
ago (not your actual sandbox account’s password!) and click “Log in.” This allows
you to masquerade as a buyer and see what happens through his eyes. Once logged
in, you should see something like Figure 9-35, which shows the current balance of
the account. Keep this window open, as we’ll want to refer to it while we’re testing
transactions later.

Figure 9-35. Dashboard for PayPal test account

392 | Chapter 9: Online Store

Hands-On: Configuring a Payment Method
Now that we have the PayPal side of payments set up, it’s time to set up the Drupal
side of things. We’ll do this with the Commerce PayPal module from http://drupal.org/
project/commerce_paypal, and Drupal Commerce’s Order and Payment (UI) modules.
Just as we saw with Taxes, Ubercart payment methods are Rules-enabled for maximum
flexibility.

1. Enable the following modules:

• Commerce package

— Order

— Order UI

— Payment

— Payment UI

• Commerce (PayPal) package

— PayPal

— PayPal WPS

2. Navigate to Store→Configuration→“Payment methods” (admin/commerce/config/
payment-methods).

3. First, you must enable the PayPal WPS payment method. Click its “enable” link
under the Operations column and confirm.

4. Click “edit” in the Operations column. Oh, look. Another rule. This one only
defines an event (“Select available payment methods for an order”) and an action
(“Enable payment method: PayPal WPS”). We want to change the action so that
we can point it to the PayPal sandbox. Click “edit” in the actions Operations
column.

5. In the PayPal email address field, fill in the autogenerated seller email from the
previous section, and make sure the PayPal server value is set to “Sandbox.” Once
you’re finished testing, you’ll want to come back and switch these settings to your
real PayPal email address and “Live,” respectively. The form is shown in Fig-
ure 9-36.

6. Click Save to submit the form and return to the PayPal WPS rule overview page.

Your Drupal site must be accessible from the Internet in order for PayPal
transactions to complete properly. Either upload your practice files to
a public domain, or use a service such as https://www.no-ip.com/ to ex-
pose your local development environment to PayPal.

Hands-On: Configuring a Payment Method | 393

http://drupal.org/project/commerce_paypal
http://drupal.org/project/commerce_paypal
https://www.no-ip.com/

Hands-On: Processing Orders
The remaining element of our site is actually implementing the ecommerce portions:
an online shopping cart and the ability to process orders, as well as reporting tools to
tell us how our store is doing. We will now complete our store configuration.

To complete this section, we must first enable one final set of modules. Go to Modules
(admin/modules) and enable the remaining UI modules in the Commerce package:

• Commerce package

— Customer UI

— Line Item UI

— Order UI

Figure 9-36. Configuring PayPal WPS payment settings

394 | Chapter 9: Online Store

Shopping Cart
Thanks to the Cart module that we enabled earlier, everything we need for a shopping
cart is pretty much done. Let’s make some final tweaks:

1. Drupal Commerce ships with an optional block that can display a visitor’s shop-
ping cart on all pages. Go to Structure→Blocks (admin/structure/block), drag the
Shopping Cart block to the top of the “Sidebar first” region, and click “Save
blocks.”

2. Test it out by navigating to a product page and clicking the “Add to cart” button.
You should see the product and total show up instantly in the left sidebar.

3. Click the “View cart” button to see the full shopping cart. It’s looking a little bland.
Luckily, the shopping cart (as well as the shopping cart block) is a view, which
means we can make tweaks to it.

4. Let’s add a product thumbnail image field as well. Hover over the larger shopping
cart view, click the gear icon, and click “Edit view.”

5. The view is currently showing order information. To add product information, we
need to add a relationship to it. In the Relationships section, click “add,” and select
“Commerce Line item: Referenced product.” Accept the default settings.

6. Click the “add” button in the Fields section and check “Field: Image.” Uncheck
“Create a label” and choose an image style of “thumbnail.” Click Apply to save
changes.

7. Finally, reorder the image field so it comes first in the list. In the Fields section,
click the drop-down next to “add” and choose “rearrange.” Use the drag-and-drop
handles to move “(Product) Field: Image” to the top of the list, then click Apply.

When finished, save and close the view and return to the shopping cart page, which
should now be visible in all its glory, as pictured in Figure 9-37.

Figure 9-37. Drupal Commerce shopping cart, along with a sidebar block

Hands-On: Processing Orders | 395

We now have our shopping cart ready to go. That was easy! Next, we’ll talk about what
happens when someone clicks the Checkout button.

Checkout Process
Drupal Commerce provides the ability to fully customize the checkout workflow to
your store’s specific needs. By default, the checkout process contains four distinct steps:
“Checkout,” “Review order,” “Payment,” and “Checkout complete.” A variety of page
elements called panes are provided and can be placed in any step in any order, and you
can control certain cosmetic aspects of panes such as whether they appear in a fieldset.

1. Go to Store→Configuration→“Checkout settings” (admin/commerce/config/check-
out) to view the current checkout configuration settings.

2. Because PayPal WPS forces a redirect to a third-party website when gathering pay-
ment details, it behooves us to make the checkout process as simple as possible.
We can omit the “Review order” step of the process altogether by removing all of
the panes within it. Drag the Payment pane to the bottom of the Checkout section,
and the Review pane to the Disabled section.

3. When you’re finished, your checkout settings should be as pictured in Fig-
ure 9-38. We’ll see this change in action in the next section.

Figure 9-38. The newly customized checkout workflow

396 | Chapter 9: Online Store

Placing a Test Order
We are now ready to make our first test order! Here’s how:

1. Click Checkout from either the left sidebar block or the shopping cart page.

2. We are now on the checkout screen, pictured in Figure 9-39. By default, this page
displays the contents of our shopping cart for confirmation, followed by account
information, and fields to enter a billing address. Because we customized it to do
this, it also contains the payment selector. Complete the billing information section
with your information. Click “Continue to next step” when finished.

Figure 9-39. The order summary and delivery details of the checkout screen

If you wish to whittle down the exhaustive default country list to
something more appropriate for your customer base, you can do
so from Store→“Customer profiles”→“Profile types” (admin/com-
merce/customer-profiles/types). Click “manage fields,” then edit the
Address field and change the “Available countries” selection.

3. The next screen will inform you that you are being redirected to PayPal’s site. Wait
for a few seconds, and you should see a screen similar to Figure 9-40. To test credit
card transactions, choose the “Don’t have a PayPal account?” option. You’ll be
prompted to enter your billing information and credit card details.

Hands-On: Processing Orders | 397

Figure 9-40. PayPal’s billing information screen

4. Before proceeding, return to your browser tab with the PayPal developer sandbox
we set up earlier (or log in again). Under “Test accounts,” click “View details” on
the Personal account. Copy and paste the credit card number and expiration date
there into the payment form. For CSC, fill in any 3-digit number.

5. Complete the rest of the form and then submit it. Because you’re using a credit
card number that PayPal knows about, you will be prompted to log in with your
PayPal account. Choose the option to “Continue to pay as a guest and do not use
my PayPal account.”

6. If all goes well, you should see a PayPal confirmation page for your order. Click
Pay Now. You’ll be taken to a final screen showing a confirmation message, as
pictured in Figure 9-41. Click “Return to Sweet Tees’s Test Store” to go back to
your Drupal site.

7. Back on the Sweet Tees website, you’ll be presented with a short thank-you page,
with a link to view the current order status from the Orders section of your user
profile, shown in Figure 9-42. Click the “view your order” link, and you should
see a screen similar to Figure 9-43.

398 | Chapter 9: Online Store

You can customize the text on this page in the checkout configu-
ration at Store→Configuration→“Checkout settings” (admin/com-
merce/config/checkout). Click the “configure” link next to “Com-
pletion message,” and check the “Override the default checkout
completion message” checkbox.

Figure 9-41. PayPal’s order confirmation screen

Figure 9-42. The final checkout confirmation form

Hands-On: Processing Orders | 399

Access Control
Finally, let’s configure the permissions for the new modules that we enabled in this
chapter. Go to People→Permissions (admin/people/permissions), set them as indicated
in Table 9-20, and click “Save permissions.”

Table 9-20. Permissions for Drupal Commerce modules

Permission anonymous user authenticated user editor site administrator

Checkout

Administer checkout Checked

Access checkout Checked Checked Checked Checked

Commerce

Configure store settings Checked

Customer

Administer customer profile types Checked

Administer customer profiles Checked Checked

Create customer profiles of any type Checked Checked

Edit own customer profiles of any type Checked Checked

Edit any customer profile of any type Checked Checked

View own customer profiles of any type Checked Checked

View any customer profile of any type Checked Checked

Create Billing information customer profiles Checked

Figure 9-43. The completed order, as seen by the customer

400 | Chapter 9: Online Store

Permission anonymous user authenticated user editor site administrator

Edit own Billing information customer
profiles

 Checked

Edit any Billing information customer
profile

 Checked

View own Billing information customer
profiles

 Checked

View any Billing information customer
profile

 Checked

Line item

Administer line item types Checked

Administer line items Checked Checked

Order

Administer orders Checked Checked

Create orders of any type Checked Checked

Edit own orders of any type Checked Checked

Edit any order of any type Checked Checked

View own orders of any type Checked Checked Checked Checked

View any order of any type Checked Checked

Create Order orders Checked

Edit own Order orders Checked

Edit any Order order Checked

View own Order orders Checked

View any Order order Checked

Payment

Administer payment methods Checked

Administer payments Checked Checked

View payments Checked Checked

Create payments Checked Checked

Update payments Checked Checked

Delete payments Checked Checked

Product

Administer product types Checked

Administer products Checked

Create products of any type Checked Checked

Edit own products of any type Checked Checked

Edit any product of any type Checked Checked

Hands-On: Processing Orders | 401

Permission anonymous user authenticated user editor site administrator

View own products of any type Checked Checked

View any product of any type Checked Checked

Create Product Type products Checked Checked

Edit own Product Type products Checked Checked

Edit any Product Type product Checked Checked

View own Product Type products Checked Checked

View any Product Type product Checked

Product Pricing UI

Administer product pricing Checked Checked

Rules

Administer rule configurations Checked

Bypass Rules access control Checked

Access the Rules debug log Checked

Tax UI

Administer taxes Checked Checked

Taking It Further
In this chapter, we have covered the basics of setting up an online storefront and shop-
ping cart using the Ubercart package for Drupal. However, there are several additional
modules that you will likely want to consider before taking your online store live:

Secure Pages (http://drupal.org/project/securepages)
When collecting sensitive, personal information online—particularly credit card
information—it is highly recommended that you do it via an SSL connection. The
Secure Pages module allows you to specify certain Drupal paths that should be
visited only via HTTPS. The recommended paths to protect are user/* and cart/*.

Commerce Shipping (http://drupal.org/project/commerce_shipping)
Since Sweet Tees is in the business of shipping physical goods, it probably makes
sense to charge shipping for them. The Commerce Shipping module provides a
framework for shipping calculation, and there are modules available for “Flat rate
shipping,” and “US Postal Service,” among others.

Commerce Stock (http://drupal.org/project/commerce_stock)
Particularly when you are selling something like T-shirts, it is a good idea to keep
track of the current available stock level to avoid selling someone a product that is
not available. The Commerce Stock module maintains stock levels for each prod-
uct, and validates each time a purchase is made to ensure that products are never
oversold.

402 | Chapter 9: Online Store

http://drupal.org/project/securepages
http://drupal.org/project/commerce_shipping
http://drupal.org/project/commerce_stock

Summary
In this chapter, we were able to set up a complete online store for our customer, Sweet
Tees, using Drupal Commerce, a powerful, flexible ecommerce framework built on
Drupal. We set up a payment system through PayPal’s Website Payments Standard.
We also delved into the topic of data imports with the Feeds module, and covered
tweaking Drupal’s functionality at various system points with the Rules module.

Here are the modules we referenced in this chapter:

• Drupal Commerce

• Commerce PayPal

• Feeds

• Rules

• Ubercart

Here are the additional resources that we referenced in this chapter:

• Drupal Commerce official site

• Commerce Guys Drupal Commerce resources

• Contributed add-ons that extend Drupal Commerce

• NodeOne’s Rules learning series

• PayPal’s developer sandbox

Summary | 403

http://drupal.org/project/commerce
http://drupal.org/project/commerce_paypal
http://drupal.org/project/feeds
http://drupal.org/project/rules
http://drupal.org/project/ubercart
http://www.drupalcommerce.org/
http://www.commerceguys.com/resources
http://www.drupalcommerce.org/contrib
http://dev.nodeone.se/node/684
https://developer.paypal.com/

APPENDIX A

Installing and Upgrading Drupal

The first step to using Drupal, of course, is to actually get the software and install it.
Drupal comes with an installation script that will walk you through a few screens to
gather information and then set up your database and create your site settings file for
you. We’ll look at everything you need to make that process run smoothly; you’ll find
that installing Drupal is quick and painless once some basic requirements are in place.

Once you have Drupal up and running, it’s important to keep your site up-to-date.
New releases of contributed modules and Drupal core come out periodically to address
critical security fixes, and it’s important to stay on top of updates as they are released.
We’ll take a look at Drupal 7’s built-in Update Status module, which will notify you
of updates available for your site, and we’ll talk about the steps required to update both
individual modules and the Drupal core itself from one version to another.

You will notice that many people (and even Drupal core’s documenta-
tion) use the terms “updating” and “upgrading” interchangeably. They
both refer to replacing existing code with newer code.

Before You Begin Installation
Prior to installing Drupal, it’s important to make sure that you can actually do so, and
understand a bit about how Drupal is structured. This section provides a checklist of
Drupal’s requirements, and also highlights important things in the Drupal file structure
that are worth knowing before diving into the installation process.

405

Gathering Requirements
It’s important to have a few things ready prior to installing Drupal. A full list of re-
quirements is available at http://drupal.org/requirements. Use the following as a basic
checklist prior to installing Drupal:

1. Ensure access to a web host or local development environment with the following:

a. A web server, such as Apache, which handles serving up Drupal’s pages to the
browser. Having access to Apache’s mod rewrite extension also allows you to
use Drupal’s “Clean URLs” feature, which transforms URLs like http://
www.example.com/index.php?q=contact to http://www.example.com/contact.

b. PHP, the dynamic scripting language that powers Drupal. Drupal 7 requires
at least PHP version 5.2 or higher. The requirements page at Drupal.org has
more information on required and recommended PHP extensions, most of
which are enabled in PHP by default.

c. A database server, such as MySQL, where Drupal will store all of the content,
data, and settings that it needs in order to function.

This book assumes that you are using Apache and MySQL.
For additional help and support with other web and database
servers, see the Drupal installation guide.

2. Write down the following information from your web host:

a. Your (S)FTP or SSH username and password, so you can put Drupal’s files
into place.

b. Your database server’s details, including username, password, and database
name, so that Drupal can connect to the database. Some web hosts also require
additional information to access the database, such as specifying a remote
hostname or a specific database port.

3. Before you start installing Drupal, you also need a database to which it can be
installed; Drupal doesn’t create the database for you, as this normally requires
“elevated” permissions on a server. You can install Drupal either in its own separate
database, or alongside other applications in a single database using table prefixes,
but it’s generally better if it has its own dedicated database. Check with your host-
ing provider or system administrator if you need information on how to create a
new database, and jot down its name for later. Make sure you have the database
username and password handy, too.

406 | Appendix A: Installing and Upgrading Drupal

http://drupal.org/requirements
http://httpd.apache.org
http://php.net
http://mysql.com
http://drupal.org/documentation/install

For development purposes, you may find it easier to have your web
environment installed locally to make your changes prior to
uploading them to their final locations. There are several free pro-
grams that are more or less a “drop in and go” solution, including
XAMPP on Windows and Linux, WampServer on Windows, or
MAMP on Macintosh.

Once you have checked to make sure you have everything, you’re ready to begin.

Downloading Drupal
The first step before installation is to actually acquire the Drupal code. You can use the
Drupal source code provided at http://usingdrupal.com/source_code, or you can down-
load it directly from Drupal.org. Here are the steps to get it from Drupal.org:

1. Go to http://drupal.org, and you will see two links to download Drupal. They are
marked in Figure A-1. Click on the “Download & Extend” link in the upper-right
corner of the screen.

Figure A-1. Download links on the Drupal.org website

Before You Begin Installation | 407

http://www.apachefriends.org/en/xampp.html
http://www.wampserver.com
http://mamp.info/en/download.html
http://usingdrupal.com/source_code
http://drupal.org

2. The following page lists all of the types of projects you can download: core, mod-
ules, themes, translations, and so on. Click the green Download Drupal 7.x
button.

3. This leads to a page that has the release notes for the current version of Drupal
core. Click the green Download Drupal 7.x button, and you will begin the down-
load for the latest version.

4. Drupal files are packaged using either zip, or using the tar program and compress-
ing with gzip. This gives the file an extension of .zip or .tar.gz, respectively. Save
one of the files, whichever you prefer, and then extract the files using your favorite
extraction application.

5. Place the extracted files on your web server using an (S)FTP program, or by logging
in via shell access and downloading and extracting the files directly on the server.

Drupal’s Files and Directories
Now that you have downloaded Drupal, you should take a few moments to open it up
and take a look around. Getting familiar with the basic structure and locating important
files and directories can take some of the mystery out of how all of this works. When
you open up the Drupal folder, you will see the files structured as shown in Figure A-2.

Figure A-2. Drupal’s file structure

408 | Appendix A: Installing and Upgrading Drupal

The important pieces that we’ll be covering here are the installation and update files,
along with the sites directory. The install.php and update.php files are the two scripts
that actually do the work according to their respective names. Because they are located
in the top-level folder, also called the Drupal root directory, you can access them directly
in your browser’s address bar by typing in something like http://example.com/in-
stall.php. In addition to the scripts themselves, there are also two text files, one for each
operation: INSTALL.txt and UPGRADE.txt. These files contain instructions on how
to use the scripts, which we’ll also be covering in this appendix.

Most first-time Drupal administrators will take a look at the directories in Figure A-2
and place contributed and custom modules and themes into the modules and themes
directories, respectively, in the Drupal root. That is where Drupal keeps the core mod-
ules and themes, so it only makes sense, right? Placing your files there will work, and
Drupal will recognize them; however, this becomes a problem when you first attempt
to update to the next security release—overwriting these directories with the new core
versions will destroy any modifications that you have made. The best practice is to keep
all of a site’s contributed and custom code inside the sites directory. Unless you are
running a complex multisite installation (see the sidebar “Multiple Sites from One
Drupal Installation” on page 410), this means that you should create new modules and
themes directories inside of the sites/all directory, and place your contributed and cus-
tom code there, as shown in Figure A-3. This way, all of the files that are particular to
your site are in one tidy location rather than all mixed up together with the core files.
This makes it much easier to work with when performing upgrades.

Figure A-3. Contributed modules and themes go under the sites/all directory

Before You Begin Installation | 409

Multiple Sites from One Drupal Installation
For more advanced setups, one of Drupal’s most powerful features is the ability to run
multiple Drupal websites off of the same single set of files. This is referred to as Drupal’s
multisite capability. The example websites at http://www.usingdrupal.com use this fea-
ture in order to run off of the very same source code files that readers can use on their
own computers.

How does it work? On the Apache side of things, a virtual host entry is set up in
httpd.conf for each subdomain to point to the same set of Drupal files, like so:

<VirtualHost *>
 ServerName usingdrupal.com
 ServerAlias *.usingdrupal.com www.usingdrupal.com
 DocumentRoot /home/www/public_html
</VirtualHost>

Then, on the Drupal side of things, we create a new folder within the sites directory for
each subsite, each with its own settings.php file and files directory. You end up with the
settings being located at sites/jumpstart.usingdrupal.com/settings.php. When a browser
hits a URL like http://jumpstart.usingdrupal.com, Drupal searches through the sites
folder for the entry that matches best, then loads its settings file.

The multisite feature is not limited to just subsite relationships like this, however.
Completely different websites can also be shared, each with modules and themes spe-
cific to it. You can even do trickier setups like sharing database tables among the various
sites to have a single sign-on or searching across content on all websites.

New in Drupal 7, there is also an advanced feature that allows you to create aliases for
a multisite installation’s directories. This lets you map one or more arbitrary site names
that would be used in a URL to a specific configuration folder. The example.sites.php
file located in the default folder contains instructions.

For more information about Drupal’s multisite feature, consult the documentation on
Drupal.org at http://drupal.org/node/43816.

Installing Drupal
Once you have met all of the requirements and gathered the information you need, you
can get down to the installation. These instructions assume that you have already cre-
ated your database, downloaded Drupal, and placed the extracted files on your web
server:

1. Navigate to http://www.example.com to begin the installation process.

2. The first page of the installation presents you with the choice between a Standard
or Minimal installation profile, as shown in Figure A-4. In most circumstances, you
will want to leave the default, Standard, selected. The Minimal profile will not
install core modules beyond those that are necessary for the site to function, nor

410 | Appendix A: Installing and Upgrading Drupal

http://www.usingdrupal.com
http://jumpstart.usingdrupal.com
http://drupal.org/node/43816

will it do any basic configuration for you. Make sure Standard is selected and click
the “Save and continue” button.

3. Once you have selected your installation profile, the next screen allows you to
choose a language, as shown in Figure A-5. By default, the only language available
is English. However, you may also download other translations and install Drupal
in your language of choice. Chapter 8 has more information on installing and con-
figuring multilingual sites. Go ahead and click the “Save and continue” button.

The next screen will initially check for correct permissions before
letting you proceed. You may need to change permissions on the
parent sites directory, depending on your host configuration. View
the help pages referenced in the installer error messages for more
details.

4. Providing all went as expected, you should see a screen asking for your database
credentials, as pictured in Figure A-6.

5. Remember earlier when you wrote down the details of your database connection,
including username and password? Now it’s time to use them. At a minimum, you
need the name of the database, the database username, and the database password.
If your web host requires additional information such as hostname or database
port, expand the “Advanced options” fieldset to enter these options. Once you
have entered all of the database information, click the “Save and continue” button.

Figure A-4. Profile selection to begin Drupal installation

Installing Drupal | 411

Figure A-5. Language selection for installing Drupal

Figure A-6. Database configuration during the Drupal installation

412 | Appendix A: Installing and Upgrading Drupal

6. The next page, as shown in Figure A-7, contains a list of initial settings that should
be configured on any site.

Figure A-7. Configuring settings during the Drupal installation

7. First, you should fill out the “Site information” fieldset. This deals with important
global site settings:

Site name
This is the name that will be displayed in the title bar on all pages, as well as
in the upper-left corner of all pages, by default.

Site e-mail address
All system emails will be sent from this address—for example, new user reg-
istration emails.

8. The next step is configuring the “Site maintenance” account. The “Site mainte-
nance” account (also referred to as “User 1”) is a “superuser” account that is ex-
empt from all permission checking and has full powers to do everything on the site.
You should therefore create a very strong password for this account (fortunately,
Drupal will try to help you out by verifying the strength of the password as you
type). Use this account sparingly, and only for administrative tasks. For day-to-day
usage, create a second user account with fewer privileges.

9. The “Server settings” section can normally be left at the defaults selected. These
options include:

Installing Drupal | 413

Default country
You can select the default country for your site. This allows Drupal to define
country-specific date and number formats.

Default time zone
Unless a user otherwise specifies her time zone in her account settings, all posts
on the site will show up in the site time zone selected here. By default, Drupal
will select the time zone of the browser during installation in an effort to guess
what you’d like.

10. The last section is to configure Update notifications. This feature will check for
updates of new modules, themes, and Drupal core automatically, and it can also
inform you when updates are available. These options (checked by default) are
highly recommended, as it helps ensure that your site is up-to-date on security
releases.

11. Once you have all of your settings entered, click the “Save and continue” button.

12. The final screen informs you that the installation is complete and you’re ready to
proceed with configuring your new website. Click the “your new site” link to begin
your Drupal adventure! Figure A-8 shows the initial Drupal screen when it’s first
installed.

Figure A-8. A newly installed Drupal site

Keeping Drupal Up-to-Date
It’s not enough to just get Drupal installed, however; you also need to make sure to
keep it up-to-date. New releases of modules and Drupal core come out periodically,
most of which fix problems, some of which add new whiz-bang features, and some of
which address critical security problems.

414 | Appendix A: Installing and Upgrading Drupal

Version Numbers
When discussing updates, you’ll find it helps to have some background information
about Drupal’s version numbering system. For all the gory details, see http://drupal.org/
handbook/version-info, summarized in Figure A-9.

Each “major” release of Drupal core gets a new number: Drupal 5, Drupal 6, Drupal
7, and so on. A new major Drupal version consists of new features, improved usability,
and more flexible APIs. Throughout a major version of Drupal’s release cycle, several
“minor” versions of Drupal are also released, such as 7.1, 7.2, and 7.3. Minor Drupal
versions fix critical security problems and important bugs as well.

Releases of projects like contributed modules, themes, and translations have a version
naming scheme such as 7.x-1.3. The “7.x” indicates the major version of Drupal that
it is intended to work with; in this case, Drupal 7. The “1” indicates the “major” release
of the contributed module. And the “3” indicates that this is the third bug fix release of
this major release of the module.

Some releases also have “extra” version information, such as “-beta4” or “-rc2.” These
indicate that the modules are still in development, but available for testing.

Figure A-9. Drupal version numbers explained

Updates between minor versions of Drupal core and modules, such as between Drupal
7.3 and 7.4, or Views module 7.x-3.0 and 7.x-3.1, are normally fairly painless, as long
as your site is kept up-to-date. Updates between major versions, however, such as
Drupal 6.3 to 7.0, or Organic Groups module 6.x-1.0 to 6.x-2.0, and especially to
7.x-1.0, will need special care because the changes are generally quite extensive.

Keeping Drupal Up-to-Date | 415

http://drupal.org/handbook/version-info
http://drupal.org/handbook/version-info

Backward Compatibility
The Drupal project’s policy on backward compatibility is that between major versions
(such as Drupal 6.x to 7.x), developers are allowed to freely break the underlying
code, but must always provide a migration path for a user’s data. If a cleaner, faster, or
better way of doing something is discovered, developers are allowed (and encouraged)
to change the underlying code to work in that fashion. This allows Drupal to stay on
the cutting edge of technology without the burden of legacy code that needs to be
supported and maintained throughout the ages. However, the result of this policy is
that contributed module authors must incorporate these code changes into their own
modules between major versions in order to upgrade and stay compatible.

Additionally, the Drupal project currently has a policy of supporting only the current
release and one release previous. Although Drupal 7 is the newest release of Drupal as
of this writing, both Drupal 6 and Drupal 7 will continue to have bug fixes applied,
security updates, and so on. But when Drupal 8 comes out, Drupal 6 will no longer be
supported.

What these policies mean to you as a Drupal user is that there is often a lag time of a
few months between when a new major version of Drupal is released and when key
contributed modules are ready for widespread use. You should also plan on upgrading
your Drupal sites to a new major release shortly after a new version is released so that
you don’t get left behind.

For more on Drupal’s backward compatibility policy, see http://drupal.org/node/65922.

Update Status Module
Drupal 7 core includes a module called Update Status, which periodically checks
Drupal.org for new releases of modules, themes, and Drupal itself. If one or more of
these projects is out of date, or if there is a new security release available, a red warning
will be displayed on all pages of the administration panel, telling you to head to the
administrative toolbar, and click Reports→“Available updates” (admin/reports/up-
dates) for more information. You can read all of the security announcements on the
web and/or follow the Security RSS feed. It is recommended that you subscribe to the
Security newsletter, which you can do under your Drupal.org user profile.

Security updates should be taken very seriously and updated as soon as
possible. Read the module’s release notes for more information about
bug fixes or features that the update offers.

The “Available updates” screen, as shown in Figure A-10, displays an index of projects
installed on your website, colored according to status.

416 | Appendix A: Installing and Upgrading Drupal

http://drupal.org/node/65922
http://drupal.org/security
http://drupal.org/security/rss.xml
http://drupal.org/user

Figure A-10. Update Status showing the different project statuses

The color codes indicate the following status states:

Red
A new recommended version of this project is available, and the version on this
website is out of date. Pay special attention to projects marked “Security update
required!” and download the new recommended versions immediately.

Yellow
Update Status was not able to find the state of this project. This will happen on
projects such as a specific site’s custom, hand-built theme; on projects that were
not downloaded from Drupal.org; or if there was a problem reading the status
information for this project.

Green
Project is up-to-date. No further action is required.

The Update Status module can be very noisy if you have many
modules installed; over the course of a week, several modules may
report that new updates are available if they’re undergoing heavy
development. You can adjust the notification threshold at Admin-
ister→Reports→“Available updates” on the Settings tab (admin/re-
ports/updates/settings) to email only about security releases, which
are mandatory, rather than regular bug fix releases.

Keeping Drupal Up-to-Date | 417

There is also a contributed module called the Upgrade Status module, similar to the
Update Status module, which will display comparable information about enabled
modules and whether they have been ported to the next major Drupal version. This
functionality comes in handy when you’re determining the best time to move to a new
major version, such as from Drupal 7 to Drupal 8.

Site Maintenance Mode
If you go to the administrative toolbar, and click the Configuration→“Maintenance
mode” (admin/config/development/maintenance) page, pictured in Figure A-11, you can
set the site into maintenance mode prior to the upgrade taking place. This mode is
useful, as sometimes updates can temporarily cause errors before the entire process is
completed. Maintenance mode makes the site inaccessible to regular users while still
allowing administrators to work on the site. You don’t want users creating content
while you are updating the database, because this could lose some data or display errors
to your site visitors. When you put the site into maintenance mode, you can also set a
message to display to your users to let them know what is going on.

Figure A-11. Putting a Drupal site into maintenance mode

If you wish to log into the site while it is in offline mode, your user
account must be assigned to a role that has the “administer site config-
uration” permission. Pull up the login form by heading to http://
www.example.com/user.

418 | Appendix A: Installing and Upgrading Drupal

http://drupal.org/project/upgrade_status

The update.php Script
The update.php script, pictured in Figure A-12, automatically runs through any un-
derlying database changes that a module requires in order to move from one version
to another. Whether you’re updating between minor or major versions of Drupal and
contributed modules, update.php is the piece that ensures your data ends up in the
places that it should when all is said and done.

Because update.php performs updates against the database, it’s very im-
portant to create a backup of your database before running this script.
The Drupal handbook has instructions at http://drupal.org/node/22281.

The script lists all of the enabled modules on your site, and specifies whether updates
are required to be run. A progress bar counts up as each module is updated. And finally,
at the end, a report is generated that lists the database changes that were performed,
along with any errors that occurred.

Figure A-12. The update.php script, which performs database updates between versions

The update.php script is intended to be run by User 1. If you are not
using the User 1 account, you need to edit the settings.php file manually
in order to be able to run the update script. You must change the
$update_free_access variable in settings.php so that it is equal to TRUE
rather than FALSE.

But be careful, if you change this value in settings.php, make sure that
you change it back to FALSE as soon as you are done running the update
script! Failure to do so means that anonymous users might be able to
rerun database updates, which could cause all manner of problems.

Keeping Drupal Up-to-Date | 419

http://drupal.org/node/22281

Updating Drupal Core
Updating your site often sounds much scarier than the actual experience is. In addition
to the included UPGRADE.txt file, the online handbook has a great deal of documen-
tation available at http://drupal.org/upgrade and a helpful support forum at http://drupal
.org/forum/21. The most important step to remember is creating and testing backups
of your site.

It cannot be stressed enough how important backups are when you are
doing upgrades. This holds true for upgrading both Drupal core and
contributed modules. You need to make sure you back up both essential
parts of a Drupal site: the filesystem and the database. Every system can
have a different way to do backups, so that won’t be covered in detail
here. You can ask your system administrator or refer to the backup sec-
tion of the upgrade guide on Drupal.org at http://drupal.org/upgrade/
backing-up-the-db. Make sure that you test the backups as well, so that
you are sure that you can recreate your site if something goes awry.

Drupal does not automatically download updates. This is to prevent overwriting ex-
isting module code before you have a chance to test it. For example, it’s possible that
a module may make a change that requires a newer version of PHP than you have
installed, which could result in fatal errors on your site if the files were downloaded
blindly. Always test updated modules on a test server before deploying them on your
“live” site.

This section walks you through the steps to update Drupal within a major version to
the next minor release number—for example, if you are using Drupal 7.3 and need to
upgrade to Drupal 7.4. When upgrading to a new major version of Drupal, such as
Drupal 8, the steps are essentially the same, except that you must also upgrade all of
your contributed and custom modules and themes at the same time:

1. Get the latest release for your version of Drupal by following the same steps as
covered in “Downloading Drupal” on page 407.

2. Before you do anything else, you must make backups of both your database and
files. Again, refer to your system administrator or the backup guide at http://drupal
.org/upgrade/backing-up-the-db.

3. Once you have your backups done, log into your site as User 1.

4. In the administrative toolbar, click Configuration→“Maintenance mode” (admin/
config/development/maintenance) and check the “Maintenance mode” checkbox.
Feel free to edit the “Maintenance mode message” to whatever you choose. Click
the “Save configuration” button to take the site offline.

420 | Appendix A: Installing and Upgrading Drupal

http://drupal.org/upgrade
http://drupal.org/forum/21
http://drupal.org/forum/21
http://drupal.org/upgrade/backing-up-the-db
http://drupal.org/upgrade/backing-up-the-db
http://drupal.org/upgrade/backing-up-the-db
http://drupal.org/upgrade/backing-up-the-db

If you set the site to maintenance mode and log out before changing
it back to online mode, you can still log in by going to the user login
page manually in the address bar at http://example.com/user.

5. For major version upgrades, it’s also recommended to go to the administrative
toolbar, click Appearance (admin/appearance), and switch the site theme to a core
theme such as Bartik or Garland. This step can prevent errors if underlying things
have changed that your site’s normal theme depends on.

6. Extract the Drupal files from the tarball and replace all of the existing files on your
server with the new files.

7. Make sure that all of your site’s files are back in place. Your entire site’s contributed
and custom code, along with your files directory, should be in the sites folder in
your backup. Grab a copy of the sites folder from the backup you made and add it
to your Drupal files. If you have made modifications to other system files, such
as .htaccess or robots.txt, restore those from backup as well.

8. Now that all of the files are in place, it is time to update the database, too. Go to
http://example.com/update.php in your browser. You will be presented with a
screen that outlines the steps you should take to update the site. Click the Continue
button.

9. You are taken to the update screen. Click the Update button to run the script.

If you expand the “Select versions” fieldset, you can see which
modules have registered that they have update code to be run.
Modules that have updates to be run will have a schema version
number, such as 7001, preselected in their drop-down select list.
Drupal keeps track of this for you, so you shouldn’t change this.
Modules with no updates will have “No updates available” se-
lected. Even if there are no updates marked, you should still run
the update.php script, as it will reset your cache, making sure that
Drupal recognizes all of the new files. Failing to run the script may
cause some weirdness in the newly updated site until you clear the
cache by going to the administrative toolbar, Configuration→Per-
formance (admin/config/development/performance), and clicking
the “Clear all caches” button.

10. After the script runs, you will be returned to a screen indicating that the update is
complete. If you changed to a core theme for the upgrade, switch it back to your
regular theme by going to the administrative toolbar and clicking Appearance
(admin/appearance).

Updating Drupal Core | 421

11. Click around your site and verify that the update was successful. Once you are
convinced the site looks OK, return to the administrative toolbar, click Configu-
ration→“Maintenance mode” (admin/config/development/maintenance), uncheck
the “Maintenance mode” checkbox, and click “Save configuration” to take the site
back online.

Updating Contributed Modules
Drupal’s contributed projects tend to move more quickly than Drupal core and there-
fore require more updates within a Drupal version’s life cycle. You can upgrade multiple
modules at the same time, although it’s best to do one at a time to reduce the chance
of errors, and to allow you to isolate problems that might come up during an upgrade.

In Drupal 7, updating contributed modules has become quite a lot easier than in the
past, due to the new update manager. To update contributed modules, follow these
steps:

1. You can see which modules are ready for an update by visiting the Available Up-
dates page: go to the administrative toolbar and click Reports→“Available updates”
(admin/reports/updates). You should always read the release notes for each project
to be sure you understand what may have changed and whether there are any
specific steps you need to take to complete the upgrade beyond running Drupal’s
update.php script.

2. It is still important to make backups of your entire Drupal installation, even though
you are only updating a module. If something goes wrong, you want to be able to
restore the site to the state it was in before you began. So make your backups before
proceeding.

3. Log into your site as User 1.

4. Go to the administrative toolbar, click Configuration→“Maintenance mode” (ad-
min/config/development/maintenance) and check the “Maintenance mode” check-
box. Edit the “Maintenance mode message” to whatever you choose. Click “Save
configuration” to put the site into maintenance mode.

5. Now it’s time to start the update. Return to the Available Updates page by going
to the administrative toolbar, and clicking Reports→“Available updates” (admin/
reports/updates) and click the Update tab. You will be shown a concise list of all of
your pending updates, as shown in Figure A-13.

6. Check the boxes for the modules you wish to update and click the “Download
these updates” button.

7. You will be asked to proceed in maintenance mode. Make sure this box is checked
and click Continue.

422 | Appendix A: Installing and Upgrading Drupal

8. Once the update is complete, return to the front page of the site and make sure
that everything looks OK by navigating around the site. You should especially
check the functionality for the particular module or modules provided for your site
and make sure that there are no errors.

9. Repeat steps 5 through 8 for each module that you wish to update.

10. To finish up, go back to the administrative toolbar, click Configuration→“Main-
tenance mode” (admin/config/development/maintenance), uncheck the “Mainte-
nance mode” checkbox, and click “Save configuration” to take the site back online.

Figure A-13. Modules to be updated

References
Here is a list of modules we referenced in this appendix:

• Update status: Part of the Drupal core

• Upgrade status

Here is a list of the external references we used in this appendix:

• Apache web server

• MAMP

• MySQL

• PHP

• PostGreSQL

• WampServer

• XAMPP

References | 423

http://drupal.org/project/upgrade_status
http://httpd.apache.org
http://mamp.info/en/download.html
http://mysql.com
http://php.net
http://postgresql.org
http://www.wampserver.com
http://www.apachefriends.org/en/xampp.html

Here are the Drupal.org resources we referenced:

• Drupal project

• Backward compatibility

• Backing up the database and files

• Clean URLs

• Installation guide

• Multisite installation

• Security

• Security RSS feed

• System requirements

• Upgrade guide

• Upgrading Drupal forum

424 | Appendix A: Installing and Upgrading Drupal

http://drupal.org/project/drupal
http://drupal.org/node/65922
http://drupal.org/node/22281
http://drupal.org/node/15365
http://drupal.org/documentation/install
http://drupal.org/node/43816
http://drupal.org/security
http://drupal.org/security/rss.xml
http://drupal.org/requirements
http://drupal.org/upgrade
http://drupal.org/forum/21

APPENDIX B

Choosing the Right Modules

With over 10,000 modules to choose from, and more added every single day, finding
the contributed module you need for a given task can be a daunting process. Through-
out this book, we have endeavored to highlight and identify most of the “must-have”
modules, particularly architectural modules that are commonly used to build Drupal
websites. We’ve also endeavored to cover modules that have a proven track record and
are likely to continue to be used to build sites.

However, each new website project has unique requirements that may be outside the
scope of what this book has covered, and the landscape of available contributed projects
is a constantly shifting space. Modules that were once critical building blocks may be
abandoned or deprecated by superior alternatives, and new modules may come along
that completely blow away anything else that came before them.

This appendix, therefore, attempts to highlight some of the best practices used by those
“in the know” for evaluating and selecting the right module for the job. It’s important
to keep in mind that no simple set of guidelines—these included—can tell you every-
thing about a module. The important thing to remember is that evaluating modules
carefully before you commit to them will help prevent unpleasant surprises down the
road.

Finding Modules
The first step to choosing the right module for your needs is actually finding it. Fortu-
nately, all Drupal modules (with only a few rare exceptions) are located directly on the
main Drupal.org website, so there’s only one resource for finding them. Here’s how
you do it.

425

Browse Module Listings
The main module listing page at http://drupal.org/project/modules, and pictured in Fig-
ure B-1, lists all of the available modules and sorts them so that the most popular
modules (based on the number of active installations) are listed at the top. If the module
you want to use is on the first few pages of this listing, you’re in good company. You
can narrow this huge list by using the variety of filters at the top of the page. You can
see a list of all the categories for modules at http://drupal.org/project/modules/categories.

Drupal 6.x modules are not compatible with Drupal 7.x, and vice versa.
To see an accurate list for your site, make sure to change the “Filter by
compatibility” filter to show only those modules that are compatible
with your Drupal version.

Figure B-1. Module browse pages on Drupal.org

Another nice Drupal.org “hack” is keeping an RSS reader pointed at
http://drupal.org/taxonomy/term/14/0/feed, which is a list of all the new-
est modules on Drupal.org as they are created. You can see this listing
in the regular module browser by changing the default sort order from
“Most installed” to “Date.”

426 | Appendix B: Choosing the Right Modules

http://drupal.org/project/modules
http://drupal.org/project/modules/categories
http://drupal.org/taxonomy/term/14/0/feed

Keyword Search
Drupal.org also provides several places for searching the downloads on the site, also
shown in Figure B-1. There is a search box directly on the module page, and the main
site search box also provides an option for you to limit your search to just modules by
clicking the “Refine your search” link, then selecting modules from the options. Search-
ing by keyword allows you to drill down to modules specific to your needs faster than
browsing by the default category view.

Local User Groups
http://groups.drupal.org/ is a collaboration space for working groups, event planning
groups, and geographical groups. There are over 450 local user groups worldwide listed
at http://groups.drupal.org/groups. Many of these groups hold monthly meetups where
you can meet other human beings in the “real world” who’ve heard of this “Drupal”
thing before. Whether you’re in New York City or the Philippines, attending these
meetups can be a great way to learn about new modules and technologies, get help on
questions you might have, brainstorm on solutions with others, or just meet friends!

Similar Module Review Group
The Similar Module Review group at http://groups.drupal.org/similar-module-review
provides posts that perform comprehensive analysis of all modules that overlap in cer-
tain areas of functionality. If you want to know which is the best WYSIWYG module
to use, or why you’d want to use one sort of voting module over another, this is a great
place to look first (and, if the comparison you’re looking for doesn’t exist already,
research and contribute your own)!

Drupal.org Forums
The Drupal.org support forums at http://drupal.org/forum, particularly the “Before you
start” forum at http://drupal.org/forum/20, can provide a wealth of information in the
form of questions from other users about the modules they used for their own projects.
Often, you can receive some helpful advice not only about the feature you’re trying to
implement now, but also for future things your website will need to take into consid-
eration. The “Drupal showcase” forum at http://drupal.org/forum/25 is also filled with
people showing off websites they built with Drupal—and they are often more than
happy to share details about how they built a particular piece.

Case Studies
Chances are good that no matter how crazy the use case, someone else has had to solve
the very same problem with Drupal as you have. You can cut down tremendously the
time required to find modules by discovering how that person went about it. The

Finding Modules | 427

http://groups.drupal.org/
http://groups.drupal.org/groups
http://groups.drupal.org/similar-module-review
http://drupal.org/forum
http://drupal.org/forum/20
http://drupal.org/forum/25

Drupal documentation contains a section for case studies at http://drupal.org/cases.
These consist of detailed writeups, often about major websites using Drupal, why Dru-
pal was chosen, and how the site was put together.

Planet Drupal
Planet Drupal (http://drupal.org/planet), pictured in Figure B-2, is an aggregation of
Drupal contributing members’ blogs and is a great way to find out what’s new and hot
in the module world. Module tutorials, reviews, and news are often posted there, and
Planet Drupal is also a great general resource for keeping your finger on the pulse of
what’s happening in the larger community.

Figure B-2. Planet Drupal, which aggregates content from blogs of Drupal companies and contributors

Third-Party Websites
http://drupal.org/node/289913 provides a list of third-party websites—that is, separate
from Drupal.org—that often provide useful information for evaluating modules. For
example, http://drupalmodules.com provides user ratings and reviews of Drupal mod-
ules, and http://www.lullabot.com has a variety of articles, videos, and podcasts, many
of which highlight popular modules and how to use them.

428 | Appendix B: Choosing the Right Modules

http://drupal.org/cases
http://drupal.org/planet
http://drupal.org/node/289913
http://drupalmodules.com
http://www.lullabot.com

Assessing a Module’s Health
An open source project’s strength comes from the power of its base of contributors,
and the Drupal project is no different. Although every line of code added or changed
in Drupal core goes through rigorous peer review, contributed modules are more of a
Wild West where anyone who jumps through a few basic hoops can add modules for
everyone to download. Drupal strives to keep the barriers to contributing code as low
as possible in order to facilitate growing Drupal’s thriving development community.
This approach has both pros (for almost any problem, there’s a module that can get
you fully or at least partway there) and cons (developers’ experience levels are varied,
so contributed code quality is uneven; the code can have inefficiencies and security
problems; and developers can become overextended and unable to keep up with main-
tenance of their modules).

Whether or not a module is well maintained, its overall code quality, and how well
used it is in the overall community are all important factors for you to consider when
selecting modules. This section will talk about determining these factors by closely
inspecting the tools Drupal.org provides, starting with the central feature of all Drupal
modules: the project page.

Project Pages
Modules, themes, and even Drupal core itself are all referred to as projects on
Drupal.org. Each project has its own page at http://drupal.org/project/project_name,
which contains a wealth of information that you can use to evaluate a module’s health.

Figure B-3 shows the first part of a module’s project page. Here you can find the name
of the module’s lead maintainer (usually the original author and/or the module’s pri-
mary developer), the date the project was first created, some basic project information,
a description of what the module does, and sometimes a screenshot showing what the
module does. The project information section gives you important information, like
whether the project is being actively maintained, and shows the number of reported
installations of the module. The usage statistics are helpful to gauge how widely used
a module is. A module that only has 50 or 100 sites using it may (or may not) be a good
module, but the community support for improvements and troubleshooting will be
very limited. The original project creation date can be useful when you are looking for
time-tested solutions (if the module was created in the past week, it’s probably best to
let it mature a bit before depending on it). But also be aware that some older modules
may be legacy solutions that more modern modules deprecate.

The sidebar on the project page contains a lot of useful information as well. Here you
will find a full list of up to four of the most recently active maintainers—that is, people
who have permission to modify the code—and a search box to do a search within the
project’s issue queue. You can also see the number of currently pending issues for this
project and a short list of the latest issues that have been updated. Farther down the

Assessing a Module’s Health | 429

sidebar is a list of related projects, which is very useful to investigate to make sure you
are using the module that best fits your needs. The resources section is an optional list
of links, including resources such as a project’s external home page, a link to its doc-
umentation, or a demonstration site. The presence of these links tends to indicate a
maintainer who is passionate about his module, and wants it to be as high-quality as
possible.

Figure B-3. The project page for the Nice Menus module

Further down, we see the module release table (pictured in Figure B-4), which we dis-
cussed briefly in Chapter 2. A plethora of useful information is available here, including
the date that the code was last updated; whether the module has “Recommended re-
leases,” which indicate stable releases that the maintainer recommends for use; links
to release notes for each release to tell what bugs were fixed and features were added;
and a link to view all releases—even old, outdated ones.

430 | Appendix B: Choosing the Right Modules

Figure B-4. The module release table for a typical module

The release table in Figure B-4, taken from the Organic Groups module on May 1, 2011,
is indicative of a healthy project. The module has stable releases for both Drupal 6 and
Drupal 7. The date on the module’s development releases indicates that the code has
been updated very recently, which means that the maintainer is actively developing on
the project. Clicking on “View all releases” shows releases of this module dating back
to Drupal 4.7.

Here are some signs to look for on a project page that indicate it might be worth
searching elsewhere:

• If there are only development snapshots available and no recommended releases,
or if there is no release table at all, this indicates that this module is undergoing
development and should not yet be relied upon for production websites.

• If the last updated date of the latest release (or at least the development release) is
more than several months in the past, this could indicate lack of maintainer activity
and interest in the module. It could also mean that you’ve found an example of a
completely perfect module that has no bugs and needs no new features added (it’s
extremely rare, but it happens), so you should investigate the module a little more
to determine if this is a positive or negative indicator.

Issue Queues
Development of code in the Drupal community happens in a project’s issue queue, such
as http://drupal.org/project/issues/3060, pictured in Figure B-5. The issue queue is a log

Assessing a Module’s Health | 431

http://drupal.org/project/issues/3060

of bugs, feature requests, support requests, and tasks for a given project that module
maintainers use as their public working space. Anyone in the community can log issues
against a project, and anyone can provide solutions for them as well.

Figure B-5. The issue queue from the Drupal core, an example of a healthy project

You can find an issue queue for a project in several ways. The most common way is
simply to start on the project’s page. If you look in the sidebar, you will see an “Issues
for Project Name” section, which has a quick search box and some links to the current
issues. You can also look at the main list of all issues across all projects at http://drupal
.org/project/issues, and use the Project box to select the project you’re interested in.

Because issue queues provide an open window into what’s happening with develop-
ment of a given project, being able to “read” an issue queue is an invaluable skill in
evaluating a project’s health.

For example, most people might logically assume that a project with lots of issues is a
poor-quality project, and one with very few issues is a high-quality project. While this
certainly can be the case, it’s worth pointing out that Drupal itself currently has more
than 5,000 open issues, and its code is written to a very high standard of quality. More
often than not, the number of issues in an issue queue indicates the popularity of a
project, not necessarily a lack of quality.

That said, the specific details of said issues are very important. In Figure B-5, we see a
number of things that indicate an overall healthy project. There is an issue that has
been marked “fixed” within the past 24 hours. Several of the open issues have code

432 | Appendix B: Choosing the Right Modules

http://drupal.org/project/issues
http://drupal.org/project/issues

associated with them in one way or another: one that is ready for larger community
review, one that has been fixed in the current version and is ready to be back-ported to
Drupal 6, and one that has been reviewed and is waiting to be committed to the code.
This is indicative of a healthy developer community around the project. Only two of
these issues are marked “active,” which indicates that they are still awaiting code to fix
them.

Figure B-6 shows a different story. This is the issue queue from the Flexinode module,
which was the predecessor to the current Field feature of Drupal core. At first glance,
it looks similar to the Drupal issue queue that we saw earlier. Sure, there are a few more
“active” issues, and none that are currently marked as having been fixed, but what’s
the problem?

The problem is the “Last updated” column, which indicates when a reply was last
posted to the issue. In the Drupal project issue queue, shown in Figure B-5, replies are
typically at most an hour or two apart, with some replies as recent as eight minutes
ago! This means that at almost any given hour, people from all over the world are
constantly contributing to the project. However, the last time that anyone responded
to Flexinode’s most recent issue was over a year ago. This is a sure sign of an abandoned
module whose maintainer has lost interest.

Most modules are somewhere in between these two extremes, with a mix of issues that
haven’t been looked at in a while and those that have more activity. Spot-check a couple
of issues by clicking them and seeing who’s actually responding. Is it the maintainer,
specifying what she found when she looked at the problem, or is it other desperate users
who are saying, “I have this problem too. Help!”

Figure B-6. The issue queue from Flexinode, an example of a project that has been abandoned

Assessing a Module’s Health | 433

Code
All of Drupal’s contributed modules are stored in a central code repository. You can
browse a project’s repository by clicking on the “Repository viewer” link on the project
page, located in the bottom sidebar under the Development section. Once there, you’ll
see a code browser page, as pictured in Figure B-7. Scroll to the list of “heads” (the code
that development releases come from) at the bottom to find the version you wish to
look at, and then click the “tree” link page to see the list of files to browse for that
version. Obviously, people with a PHP background are going to be able to get more
out of this, but in general anyone can spot some basic best practices. Look for clearly
written, documented, well-organized code that conforms to a standard coding style.
Code that does not meet these criteria is harder to maintain, and harder for other de-
velopers to jump in and help with.

Figure B-7. Drupal.org’s code browser allows inspection of a module’s code, as well as its recent
development activity

The People Behind the Code
Each contributor to Drupal is a unique individual who has his or her own areas of
interest, expertise, background, and motivations for contributing. Some contributors
are master programmers who live, breathe, sleep, and eat code. Some are backed by

434 | Appendix B: Choosing the Right Modules

Drupal development and consulting companies, and are paid to maintain their mod-
ules. Others are hobbyists who run a fan club site and maintain one or two particular
modules that act as the main backbone of their community. Still others help out for the
fun of it, because it feels good and they enjoy it. There are those who get code as far as
they need it, toss it out there, and move on to bigger and greener pastures. And, of
course, there are those who are some, all, or none of the above.

Therefore, a critical piece to evaluating a module is to also learn more about the humans
behind the code. Drupal.org has a few useful tools to help.

Maintainer Activity
The first is the “View all committers” link in the project page sidebar (for example,
http://drupal.org/node/3060/committers), which takes you to a table, shown in Fig-
ure B-8, displaying a list of the individual developers who are maintaining (or have
maintained) the project. The data shown here are the commits, or code changes to a
project, by everyone who has ever had access.

From this information, you can get a general idea of who within the project has been
working on it the longest, how active each contributor is, and how much experience
each has with a given project’s code. A sign of a good, healthy project is lots of recent
commit activity, along with numerous contributors in the list if some of the original
folks are no longer around. If this list is small, and the last commit was more than
several months ago—and particularly if the project’s issue queue shows warning
signs—it may be worth looking for alternative solutions, or perhaps offering the main-
tainer payment for the changes you need in order to help spark her interest again.

Figure B-8. A list of developers for the Drupal project, along with commit activity

The People Behind the Code | 435

http://drupal.org/node/3060/committers

User Profiles
Anytime you see a username on Drupal.org, you can click it to view the user’s profile
(for example, http://drupal.org/user/35821), as shown in Figure B-9. Although there’s
information here that’s typical of any user profile on any site—such as first and last
name, a list of interests, gender, and country—there are a few elements that are par-
ticularly useful if you’re looking to find out more about the person behind the code.

The user profile begins with a brief blurb about the user’s contributions to Drupal. This
typically mentions modules that he has written, various initiatives that he’s a part of
(such as the documentation team or site administration team), and other such data.
This information can help provide insight into the person’s motivations and
background.

Figure B-9. User profile page on Drupal.org

436 | Appendix B: Choosing the Right Modules

http://drupal.org/user/35821

This information is followed by a series of “flags” that indicate things such as whether
the person helps out with documentation, user support, and module development, as
well as what Drupal conferences he has attended. Each flag is a link that displays a list
of other users who have that flag checked. A user with many of these links displayed is
generally much more tied into the larger Drupal community than one without.

The tabs at the top of the profile are useful as well. The Posts tab shows a list of all of
the posts on Drupal.org that the user has created or responded to, including forums
and issue queues. This can help gauge his overall involvement in the Drupal community
and how active he is, as well as his general attitude toward others. The Commits tab is
a list of the person’s code commits so you can quickly take a peek at the kind of code
he has committed.

The Contact link, if it’s enabled, can be used to contact the contributor directly via
email.

Although it can be tempting to use the Contact form to ask maintainers
support questions or to report bugs about their modules directly, this
is considered bad form. Time a maintainer spends answering emails is
time that is not spent further developing the module and helping other
users who might have the same problem.

Always use a module’s issue queue for reporting problems, as that
method allows anyone who uses the module to respond, not just the
maintainer, and allows the results to be searched by others. In general,
use a maintainer’s contact form only for topics that are intended to be
kept private, such as requests for hire.

Note that the contact form can also be used to send a general “thanks”
for a job well done; most module developers hear only about problems
from their users, so it can make a maintainer’s day to hear from someone
who has nice things to say about the code she received for free.

Further down the profile page, there’s an indication of how long the user has been a
member of Drupal.org, as well as a list of the projects that the user has committed code
to during that time, shown in Figure B-10. Some maintainers have 1 or 2 projects listed
here, and others have 50 or more. A list consisting of many projects is usually indicative
of someone who’s been around awhile and likely knows what he’s doing. On the other
hand, because he has been around awhile, he might also be overextended and trying to
do too many things at once, and all of his modules may be suffering as a result.

Getting Involved
By far, the best way to keep up-to-date on which modules are the most useful, and to
ensure that those modules do what you need, is to actually get directly involved and
help. The Drupal community offers a myriad of ways for everyone, from the person

Getting Involved | 437

who just installed Drupal for the first time yesterday to the person who has been coding
since she was in diapers, to give something back.

The Getting Involved handbook at http://drupal.org/getting-involved-guide is the main
jumping-off point for ways to get involved in the Drupal project. Here are a few that
are suited to nonprogrammers as well:

Issue queue cleanup
While you’re evaluating modules, you’ll naturally be in the issue queue anyway.
Why not take a few extra minutes and look for places you might be able to clean
things up? If there are two or more similar issues, mark the higher-numbered one
as a “duplicate.” See if a bug report is still valid, and if it’s not, mark it “fixed.” If
you see a support request that you know the answer to, answer it. Every minute
spent by someone other than the module maintainer on this type of activity is more
time that she can spend improving her modules, and so this type of contribution
is hugely appreciated by maintainers.

Figure B-10. Drupal developers have a list of projects they’ve committed to at the bottom of their user
profiles

438 | Appendix B: Choosing the Right Modules

http://drupal.org/getting-involved-guide

Helping with user support
If you’ve gotten as far as getting Drupal installed, congratulations! You now
officially know enough to help someone else. Head to the Drupal forums or
#drupal-support on irc.freenode.net and look for opportunities to answer other
users’ questions. You’re guaranteed to learn a ton in the process, and might end
up with a job!

Filing issues
If you come across a problem with a module, or something that you think would
be really cool, file it as a detailed bug report or feature request in the module’s issue
queue using the guidelines at http://drupal.org/node/317. Remember to search us-
ing the search box and filters at the top of the issue queue first to check for an
existing issue before creating one of your own.

Documentation
Did you just spend a frustrating half hour on something because there was a lack
of documentation or an error in the existing documentation? Edit the page with
your corrections, so that you can spare the next person the same fate. You can also
join the documentation team at http://drupal.org/contribute/documentation/join to
collaborate with others on the overall direction of Drupal’s documentation.

Donations
Don’t have time to contribute yourself, but have some spare change rolling around?
You can donate to the Drupal Association, the legal entity that provides server
infrastructure, organizes Drupal conferences, and handles fundraising for the Dru-
pal project at http://association.drupal.org/donate. Many individual developers also
gladly accept donations. If using someone’s module has helped save you some
money, give them a little back to say thanks.

Why get involved? Aside from the warm fuzzy feeling, there are a number of practical
reasons, which include:

• As a general rule, more attention is paid to your support requests, bug reports, and
feature requests if you are known to be a contributor to the project.

• Being an active part of the community helps forge relationships, which can lead to
clients and employers.

• Being involved can help take months off of your Drupal learning curve by exposing
you to discussions and individuals that you wouldn’t otherwise have come across.

• You can help shape the exact direction of modules and even the Drupal core itself,
so that they meet the requirements for your project.

• It’s also really fun! You meet people from all over the world, and get to learn from
some of the best and brightest minds out there on web design.

Looking forward to meeting you on Drupal.org!

Getting Involved | 439

http://drupal.org/node/317
http://drupal.org/contribute/documentation/join
http://association.drupal.org/donate

Summary
The tips and techniques outlined in this chapter can help identify must-have modules
long after this book is out of date. By assessing things such as how active a project’s
maintainer is, how large the user community is around a project, and how well docu-
mented and easy to read its code is, you can help make smart, future-proof choices on
your module selection. And by getting involved directly in the community itself, you
can meet the awesome people who make Drupal what it is, and become one of them
yourself!

References
Here is a list of the resources referred to in this appendix:

• Bug report and feature request guidelines (http://drupal.org/node/317)

• Case studies (http://drupal.org/cases)

• Contribute page (http://drupal.org/contribute)

• Contributed module list (http://drupal.org/project/Modules)

• Developers list for the Drupal project (http://drupal.org/node/3060/committers)

• Documentation team (http://drupal.org/contribute/documentation/join)

• Donate money (http://association.drupal.org/donate)

• Drupal core project issue queue (http://drupal.org/project/issues/drupal)

• Drupal.org forums (http://drupal.org/forum)

• Drupal “Before You Start” forum (http://drupal.org/forum/20)

• Drupal showcase forum (http://drupal.org/forum/25)

• Planet Drupal (http://drupal.org/planet)

• Third-party resources (http://drupal.org/node/289913)

440 | Appendix B: Choosing the Right Modules

http://drupal.org/node/317
http://drupal.org/cases
http://drupal.org/contribute
http://drupal.org/project/Modules
http://drupal.org/node/3060/committers
http://drupal.org/contribute/documentation/join
http://association.drupal.org/donate
http://drupal.org/project/issues/drupal
http://drupal.org/forum
http://drupal.org/forum/20
http://drupal.org/forum/25
http://drupal.org/planet
http://drupal.org/node/289913

APPENDIX C

Modules and Themes Used in This Book

This appendix lists the modules and themes used in each project throughout the book.
These are all included with the source code and are listed here for quick reference or if
you would like to replicate the chapters without using the source code.

This book was written against Drupal 7.12.

Chapter 1, Drupal Overview
Not applicable.

Chapter 2, Drupal Jumpstart
Modules:

• Module Filter

Theme:

• Bartik (core)

Chapter 3, Job Posting Board
Modules:

• Advanced help

• Chaos Tools

• References

• Views

Theme:

• Mayo

441

http://drupal.org/project/module_filter
http://drupal.org/project/advanced_help
http://drupal.org/project/ctools
http://drupal.org/project/references
http://drupal.org/project/views
http://drupal.org/project/mayo

Chapter 4, Media Management
Modules:

• Media

• Media: YouTube

• WYSIWYG

Theme:

• Corolla

Chapter 5, Product Reviews
Modules:

• Advanced help

• Amazon

• Chaos Tools

• CSS Injector

• Field Group

• Fivestar

• Views

• Voting API

Theme:

• Tarski

Chapter 6, Event Management
Modules:

• Advanced help

• Chaos Tools

• Calendar

• Date

• Flag

• Views

Theme:

• Deco

442 | Appendix C: Modules and Themes Used in This Book

http://drupal.org/project/media
http://drupal.org/project/media_youtube
http://drupal.org/project/wysiwyg
http://drupal.org/project/corolla
http://drupal.org/project/advanced_help
http://drupal.org/project/amazon
http://drupal.org/project/ctools
http://drupal.org/project/css_injector
http://drupal.org/project/field_group
http://drupal.org/project/fivestar
http://drupal.org/project/views
http://drupal.org/project/votingapi
http://drupal.org/project/tarski
http://drupal.org/project/advanced_help
http://drupal.org/project/ctools
http://drupal.org/project/calendar
http://drupal.org/project/date
http://drupal.org/project/flag
http://drupal.org/project/views
http://drupal.org/project/deco

Chapter 7, Managing Publishing Workflows
Modules:

• Pathauto

• Workbench

• Workbench Access

• Workbench Moderation

Theme:

• Nitobe

Chapter 8, Multilingual Sites
Modules:

• Internationalization

• Localization client

• Localization update

• Variable

Theme:

• Marinelli

Chapter 9, Online Store
Modules:

• Chaos Tools

• Commerce Feeds

• Drupal Commerce

• Entity API

• Feeds

• Rules

• Views

Theme:

• AT Commerce

| 443

http://drupal.org/project/pathauto
http://drupal.org/project/workbench
http://drupal.org/project/workbench_access
http://drupal.org/project/workbench_moderation
http://drupal.org/project/nitobe
http://drupal.org/project/i18n
http://drupal.org/project/l10n_client
http://drupal.org/project/l10n_update
http://drupal.org/project/variable
http://drupal.org/project/marinelli
http://drupal.org/project/ctools
http://drupal.org/project/commerce_feeds
http://drupal.org/project/commerce
http://drupal.org/project/entity
http://drupal.org/project/feeds
http://drupal.org/project/rules
http://drupal.org/project/ctools
http://drupal.org/project/at-commerce

APPENDIX D

Major Changes Between Drupal 6 and 7

A lot of basic concepts from Drupal 6 are still present in Drupal 7, but there have also
been lots of changes in the new version. The Drupal 7 release cycle was the longest to
date, which gave developers a lot of time to pack in a ton of new features as well as
make some significant changes to existing features. For those people coming from
Drupal 6, we’ll take a look at some of the biggest changes and note any “gotchas” to
look out for.

New Features in Drupal 7
Let’s start off with things that are new in Drupal 7 core. Some of these are brand-
spanking-new, while others are features that used to be in contributed modules for
Drupal 6 that have now been integrated into core. These are the biggest items from a
long list that you will notice right away and will have an impact on your new sites.

New Themes
The first thing that many people will be struck by with Drupal 7 is that it looks quite
different when you first install it. There is a new default core theme, named Bartik,
shown in Figure D-1. Bartik was written from the ground up as a new, modern design
that also provides a guideline for theming best practices. Bartik offers many more re-
gions for structuring the site than Drupal 6’s old default theme, Garland. Like Garland,
it also has “Color module integration,” which lets you recolor sections of the theme,
such as header background and links, in the appearance settings.

To help visually separate Drupal’s backend and frontend, Drupal 7 also ships with a
new theme called Seven, pictured in Figure D-2. Seven is a theme designed specifically
for use in Drupal’s administration section, to help provide a visual cue between tasks
that only privileged users can perform (i.e., everything under the admin/ URL and,
optionally, the node edit forms), and the frontend of the site that all visitors will see.

445

Figure D-1. Drupal 7’s new default theme, Bartik

Figure D-2. Drupal 7’s new default administration theme, Seven

446 | Appendix D: Major Changes Between Drupal 6 and 7

The final new theme in Drupal 7 is called Stark. This theme isn’t designed to look pretty,
but rather is intended to be a tool for theme authors. When you enable Stark, you will
see the bare-bones default HTML and CSS that Drupal core creates, as shown in Fig-
ure D-3. Stark provides only minimal CSS of its own—just enough to provide a basic
layout so sidebars show up in the correct place. You can use Stark as a starting place
for creating your own CSS-only themes. Stark shows you the raw HTML so you can
dive straight into the fun of styling with CSS.

Figure D-3. Stark, a bare-bones theme for people who want to start their designs from scratch

Administration User Interface
Another thing that looks very different out of the box is the entire administrative user
interface (UI) for Drupal 7. In addition to the new Seven theme, there are five new
modules that have been added in order to make Drupal easier to navigate and less
overwhelming. These modules are all enabled by default when you do a fresh installa-
tion of Drupal 7, but if you are upgrading from a Drupal 6 site, you’ll need to enable
them yourself:

Toolbar module
This new module provides a menu of all the main administrative links across the
top of the screen. It allows you to have handy access to all administrative tasks as
you move around the site, without affecting the design or layout of the underlying
theme.

New Features in Drupal 7 | 447

For more advanced users and site builders, the “Administration
menu” module (http://drupal.org/project/admin_menu) provides a
more fully featured toolbar with drop-downs for subnavigation and
additional helpers.

Shortcut module
While the toolbar provides links to all administrative functions, often an individual
person’s duties on the site will be limited to just a handful of frequently accessed
links. Enter the Shortcut module, which provides a second toolbar for your own
most-often-used administrative links. An administrator can provide default short-
cut sets, or users with the proper permissions can create their own. If the Toolbar
module is being used, the shortcuts will appear in a bar under the main toolbar
navigation. There is also a Shortcuts block available, which can be placed in a page
region, just like a regular block.

Figure D-4 shows the Toolbar and Shortcut modules being used together.

Figure D-4. Drupal 7’s Toolbar and Shortcut modules’ menu bars

Dashboard module
This module adds a Dashboard landing page, pictured in Figure D-5, which pro-
vides a drag-and-drop interface for placing blocks. This allows you to create a nice
overview page of common things you want to keep track of on a regular basis.

Figure D-5. Blocks in the Dashboard show current site activity

448 | Appendix D: Major Changes Between Drupal 6 and 7

http://drupal.org/project/admin_menu

Contextual Links module
If you hover over a piece of content or a block, you will see a small gear icon with
a drop-down list of administrative actions you can take that pertain to that specific
item, as shown in Figure D-6. This functionality is provided by the new Contextual
Links module, which makes getting to the place you want to go to do work much
faster since you don’t have to remember or drill down to the menu in the admin-
istration panel that contains it.

Figure D-6. Contextual links on a menu block

Overlay module
The Overlay module, pictured in Figure D-7, opens a lightbox-style pop up for
performing administrative tasks, instead of taking you to a new page. This system
works particularly well with contextual links, as it allows you to click a link on the
frontend to be taken to the appropriate administrative section, make your changes
in the overlay window, and when finished, close the window to return to the orig-
inal frontend page without losing your context.

Figure D-7. Overlay showing the frontend of the site in the background while in administrative context

All of these features can be enabled and disabled individually, as you see fit. They do
not depend on one another, but they have been designed to work well together to create
a more productive administrative environment. An overview of these new modules is
available in Chapter 2.

New Features in Drupal 7 | 449

Fields
In addition to a whiz-bang new look and handy administrative tools, Drupal 7 offers
some significant new site building features as well. The Content Construction Kit
(CCK) was a top module in Drupal 6, used on almost all Drupal sites. Most of the
functionality of CCK has now been incorporated into core as the Field module.

The field functionality in Drupal 7 also improves upon CCK in the following ways:

• Fields can not only be applied to content, but to anything in Drupal that declares
itself as an “entity”: users, taxonomy terms, and comments are supported out of
the box, with many more options from contributed modules.

• The storage for fields is also swappable. By default, field values are stored in an
SQL database like Drupal itself. However, additional modules can save field data
to external services, such as Amazon S3 or Mongo DB.

Core comes bundled with a large list of field types, pictured in Figure D-8, and like
CCK, ships with Text, List, Number, and Options (select lists, radios, and checkboxes)
modules. Just like in Drupal 6, you can extend this list further with contributed
modules.

Figure D-8. The Field UI can be used to place additional data fields on any entity in the system context

You may notice that a few of the “core” CCK field types that were provided in Drupal
6 are not in this list. These are now provided by contributed modules in Drupal 7:

• The Node Reference and User Reference features are now provided by the Refer-
ences module.

• Content Permissions is now provided by the Field Permissions module.

• Fieldgroups are now provided by the Field Group module.

450 | Appendix D: Major Changes Between Drupal 6 and 7

http://drupal.org/project/references
http://drupal.org/project/references
http://drupal.org/project/field_permissions
http://drupal.org/project/field_group

• The Content Copy module does not have a direct replacement per se, but the
Features module for Drupal 7 will allow you to export and import fields and content
types.

There is a Drupal 7 version of the CCK module, but its main purpose is to provide an
upgrade path from Drupal 6 CCK to Drupal Field. It also provides a few helper func-
tions for special features you may have used with your Drupal 6 CCK fields, like using
PHP within the field.

For an introduction to using the core Field module along with a few contributed fields,
you should review Chapter 3.

Image Handling
Another group of contributed modules that has made its way into Drupal core relates
to images. In Drupal 6, there was a common contributed module recipe for adding
images to your content, since core did not provide any image handling. This recipe
included the Filefield, Imagefield, Imagecache, and Image API modules. These are now
all in Drupal 7 core itself:

• Filefield is now the core File module, which provides a “File” upload field. The File
module replaces the old core Upload module.

• Imagefield is now the core Image module, and this provides an image field that can
be attached to content types, users, and so on. It relies on the File module for
uploading the images.

• Imagecache is now known as Image Styles in core, pictured in Figure D-9. Image
Styles lets you automatically manipulate images that have been added to the site.

• Image API has been incorporated directly into the core’s image handling code. It
isn’t visible in the UI, just as Image API was not.

You can read more about how to use the new core image handling features in Chapter 4.

Update Manager
A brand-new, exciting feature in Drupal 7 is the ability to update your modules and
themes from within your Drupal administrative interface instead of having to dig into
the server’s filesystem. The new core Update Manager, pictured in Figure D-10, will
let you know which of your modules or themes have updates available, then install the
updates directly through the UI.

You can read all about the update process and using the Update Manager module in
Appendix A.

New Features in Drupal 7 | 451

http://drupal.org/project/features

Other Nips and Tucks
There are a few other interesting things that have been added in Drupal 7, although
you aren’t likely to see or directly interact with them very much:

Minimal installation profile
During the installation process, you now have two profiles to choose from: Stan-
dard and Minimal. Most people will use the Standard profile, but if you want to
install Drupal without any features turned on, you can use the Minimal profile
instead. This way, you don’t need to turn off lots of things that Drupal would
normally install for you.

Figure D-9. Image Styles provides automatic image manipulation effects such as cropping and resizing

Figure D-10. Update Manager allows users to install and upgrade their modules and themes from the
administrative interface

452 | Appendix D: Major Changes Between Drupal 6 and 7

RDFa
Using the new Resource Description Framework (RDF) module, Drupal now out-
puts machine-readable metatags in site output, embedded in the HTML. Various
services on the Web, such as Google, can then use this metadata to provide more
context around the information, as well as tie your content to other information
sources on the Web. Basic RDF is included in core now, and if your theme is using
Drupal 7 theme best practices, you will have RDFa tags added to your content
HTML without having to do any extra work. You can read more about RDF and
Drupal at http://drupal.org/documentation/modules/rdf.

cron out of the box
cron is a way to run scheduled tasks on your site. This is important to keep things
such as old error log entries tidy and provides functionality for things that don’t
necessarily happen immediately, such as content search indexing. Normally, you
run cron by having your server trigger a script within Drupal, but it can be com-
plicated to set up, and is a step often forgotten. In Drupal 7, a method fashioned
after the Poor Man’s Cron module allows cron to be triggered in the background
at set intervals when visitors load pages on your site.

Increased security
Drupal 7 includes a number of security improvements over Drupal 6, including
requiring users to enter their current password in order to change it, limiting login
attempts to prevent brute-force password attacks, adding a new permission for
running the update.php script, and providing much stronger encryption to user
passwords stored in the database.

Better private file handling
In Drupal 6 and below, the decision to use private or public files was a one-time
choice that you had to make at the beginning of the site creation, and applied to
all file uploads on the entire site. In Drupal 7, private and public files are stored in
separate places, so they can be used interchangeably and you can decide on a per-
file field basis whether uploads should be private (in the case of sensitive docu-
ments) or public (in the case of product thumbnails).

Changes in Drupal 7
In addition to brand-new features in Drupal 7, a few things that have been around for
a while got an update.

Administration Navigation
The most notable change is obvious when you look at the administration navigation.
If you go to the main administration page (admin), you will see that things are organized
differently than they were in Drupal 6, in addition to some terms being changed. This
reorganization and renaming is also apparent in the Toolbar module’s list of top-level

Changes in Drupal 7 | 453

http://drupal.org/documentation/modules/rdf
http://drupal.org/project/poormanscron

links for handling administrative tasks. There was a large user experience (UX) project
for Drupal 7 called D7UX that brought a fresh look to how Drupal’s administrative
interface is organized. The reorganization is designed to guide a new administrator
intuitively by using terminology and categorization that is more accessible to the aver-
age person. For instance, you will find administration tasks for creating and managing
users and permissions on the site in the People section.

While this new interface takes some getting used to, it’s now much more task-oriented
than before, so hopefully you’ll find your way around quickly!

cron
As we mentioned previously, Drupal 7 now comes with an internal way to trigger the
cron script. The preferred method to run the cron script, though, is to have a server
trigger it. This is a more reliable method, and reduces the amount of work your Drupal
site must do. In Drupal 6, you just needed to point the server cron to the cron.php file,
and it would fire it off when scheduled. You could also just type the URL (http://ex-
ample.com/cron.php) into any web browser and trigger the cron that way. In Drupal 7,
more security was added to the cron URL so that not just anyone can fire the cron script
on your site. When using cron in Drupal 7, you need to get a special URL for the script
by going to the administrative toolbar and clicking Reports→Status Report (admin/
reports/status), and then you will see the external link in the “Cron maintenance tasks”
section of the report.

Input Formats
Input formats, renamed to “Text formats” in Drupal 7, got a major revamp in this
release. You can now provide default text formats for different roles by reordering them
on the administrative screen, so anonymous users can default to Filtered HTML, while
editors default to Full HTML. Access to text formats is now controlled on the Permis-
sions page, along with all other access permissions, for better consistency. And finally,
a new “Plain text” format is available as a fallback for all users if no other formats are
accessible.

Features Removed from Drupal 7
As things progress in the world of the Web, there are also some things that inevitably
get left behind. Drupal core tries to be very focused on providing features that a majority
of people would need for their sites, leaving the contributed world to add on lots of
bells and whistles. This means that a few outdated features have been removed from
core. Many, but not all, of these features have new modules in contrib, so you can
continue using the feature it provided in core. If a feature you rely on is not fully up-
graded to Drupal 7 yet, you should consider helping out in the issue queue by either

454 | Appendix D: Major Changes Between Drupal 6 and 7

http://www.d7ux.org/

supplying patches or helping to test and review the work that the developers are doing.
The following modules have been removed from Drupal core:

• Blog API has been made into a contributed module. This module allowed desktop
blogging software to post new content to, and edit existing content on, a Drupal
site. The development has been slow, and so at the time of this writing the module
is not fully functional in Drupal 7, nor is there an upgrade path for this feature from
Drupal 6 to 7.

• The Ping module functionality, plus more, is already provided by the existing con-
tributed Multiping module. The work for upgrading this module to Drupal 7 has
started, but at the time of this writing there is no working version available yet.

• All of the core themes were removed from Drupal 6 except for Garland. The Blue-
marine theme, Pushbutton theme, and Chameleon (and Marvin) themes are all
now contributed themes, and they all have Drupal 7 versions available.

• The Profile module has been removed from new Drupal 7 installations (the module
still exists for legacy purposes), and there are two ways to achieve the same features
in Drupal 7, depending on which ones you are looking for in particular. Drupal
core fields can be added to any entity, not just nodes, so you can easily add fields
to a user (and the user registration form) by just using core fields. The contributed
Profile 2 module provides more features, like private fields.

• The Upload module has been replaced by the core File module in Drupal 7, which
provides a file upload field that can be attached to nodes, users, and so on. The
Upload module has been fully deprecated.

• The Throttle module, which turned off certain site functionality in the event of a
traffic spike, was deprecated due to the much better caching options that have been
added to Drupal core in the last few releases. There is no contributed module to
explicitly replace this feature, and it is recommended that you use Drupal’s caching
settings instead.

Under-the-Hood Changes
In addition to these changes in Drupal 7, there are literally hundreds of other changes
under the hood. Here are some of the big ones. Although these will not affect site
builders particularly, they are good to know about nonetheless:

New database abstraction layer
Drupal 7 includes a new, object-oriented database abstraction layer, nicknamed
“Database: The Next Generation” (DBTNG). This functionality provides support
for many new database types in Drupal, including SQLite, Oracle, and Microsoft
SQL Server. It also provides support for advanced database features such as trans-
actions and master/slave replication.

Under-the-Hood Changes | 455

http://drupal.org/project/blogapi
http://drupal.org/project/multiping
http://drupal.org/project/bluemarine
http://drupal.org/project/bluemarine
http://drupal.org/project/pushbutton
http://drupal.org/project/chameleon
http://drupal.org/project/profile2

Automated tests
The core Testing module provides an interface for running the more than 30,000
automated tests that ship with Drupal 7. These tests are code that checks to see
that Drupal’s code is working, and cover functionality ranging from content cre-
ation and user registration to security filtering and more.

User interface effects
Drupal 7 ships with all kinds of new user interface enhancements for developers
to use in their modules. jQuery UI now ships with Drupal core, providing drag and
drop, accordions, and other visual effects. Additionally, Drupal ships with a re-
vamped AJAX framework and new JavaScript “States” system, which allows for
dependent drop-downs and other eye candy.

Improved file handling
Drupal 7’s file and image API was completely revamped in Drupal 7, and is much
more robust than before. Files can now be saved to and served from external serv-
ices such as content delivery networks, and other modules can react when events
happen to files such as saving, deleting, and downloading.

More granular theming
Thanks to the new Render API, themers now have much more control over place-
ment of page elements, and now have access to perform cosmetic alterations
without hassling a module developer.

Resources
The following resources provide more detailed information on the changes between
Drupal 6 and Drupal 7:

• The CHANGELOG.txt file in the Drupal root directory talks about high-level
changes between Drupal versions.

• Look at http://www.unleashedmind.com/en/blog/sun/more-than-50-drupal-modules
-moved-into-drupal-7 for a list of all Drupal 6 modules that are either moved to
core or deprecated by functionality in Drupal 7.

• See http://drupal.org/update/modules/6/7 for a list of all developer-facing changes
between Drupal 6 and Drupal 7.

• See http://drupal.org/update/themes/6/7 for a list of all themer-facing changes be-
tween Drupal 6 and Drupal 7.

456 | Appendix D: Major Changes Between Drupal 6 and 7

http://www.unleashedmind.com/en/blog/sun/more-than-50-drupal-modules-moved-into-drupal-7
http://www.unleashedmind.com/en/blog/sun/more-than-50-drupal-modules-moved-into-drupal-7
http://drupal.org/update/modules/6/7
http://drupal.org/update/themes/6/7

Index

A
abusive users, 58
access control, 53–66

abusive users, 58
account settings, 58
permissions configuration, 62–66
roles and users, creating, 59
testing, 56
user access configuration, 54
user profiles, 57

actions, 384
Add language link, 316
Add language screen, 316
Administration interface, 22

administrative settings, configuration, 25
Administration menu module, 25
administration user interface, Drupal 7, 447
administrators, 11

administrator permissions, 65
AdSense module, 228
Advanced help module, 115
Amazon Associate ID, 204
Amazon module, 197
Amazon modules, 195, 203–209

AWS accounts and keys, 204
locale, 204

Amazon product IDs, 207
anonymous user permissions, 62
anonymous users, 10
AntiSpam module, 68
Apache, 406
Apache/MySQL/PHP packages, xiv
API modules, 203
Appearance page, 73

Applications view, 134–146
access control issues, 137
Applications block display, 144
default relationships, applications view,

140
Job tab display, 139

display page settings, 142
view and default display, creating, 134

Articles, 26, 84
Article nodes, 11
creating, 39

attachment display type (Views module), 118
attendance flag configuration, 257
Attendees view page settings, 260
Attendees view settings, 259
attributes and attribute selection fields, 372
authenticated users, 10

authenticated user permissions, 62
Autocomplete term widget, 86
automated spam prevention, 66
automatic language switching options, 312
Automatic Node Titles module, 147
Available updates reports, 24

B
Bartik theme, 75, 445
Basic pages, 26, 84

Basic page nodes, 11
comment settings, 30
creating, 36

block display type (Views module), 118
Block module, 19
blocks, 15, 34

as defined in themes, 75
configuration, 42

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

457

Blog API, 455
Blog module, 14, 228
Body field, 27
Book module, 308, 309
"Book page" content, 329
Boolean field type, 85
built-in menus, 32
Buytaert, Dries, 8, 66

C
cache dates, 241
Calendar module, 231, 248

Calendar view type, 248
iCal integration, 250

CAPTCHAs, 66
Cart module, 352, 395
CCK (Content Construction Kit) module, 83,

450
CGI (common gateway interface) programs, 6
CHANGELOG.txt file, 456
Checkboxes/Radio button widgets, 86
Checkout module, 353
CKEditor WYSIWIG editor, 152

configuration, 186
download and installation, 184
for Band Wagon website, 183
Media filter, 189

Clean URLs, 158
CMF (content management framework), 2
CMS (content management system), 1
code authors, 434
Color module, 75
color to black and white image conversion,

155
command-line implementation of Drupal

(Drush), 53
comment moderation queue administration,

31
Comment module, 19, 30
comments, 15
Commerce and Commerce UI modules, 352
Commerce Feeds module, 366
Commerce modules, 394
Commerce Shipping module, 402
Commerce Stock module, 402
common gateway interface (CGI) programs, 6
components, 384
conditions, 384
configuration, 24

contact category settings, 69
Contact field settings, 101, 103
contact menu item settings, 70
Contact module, 20, 21

contact form, 68
permissions, 71

Contact translation module, 335
content, 11–15

editing, 177
entities and fields, 12
organization of, 13
supporting, 15

Content Access module, 147
Content administration, 23

Content administration page, 29
Content Construction Kit (CCK) module, 83,

450
content editing, 178
content management, 4–8, 26
content management framework (CMF), 2
content management system (CMS), 1
content management websites

access control, 59
Articles, creating, 39
Basic pages, creating, 36
blocks, configuring, 42
contact form, 68
content revolution, 7
Mom and Pop, Inc. case study, 20–25
permissions, configuring, 62
scripts and databases, 6
site navigation, 40
theme settings, 77

content moderation tools, 66
content navigation menus, 32
content revolution, 7
Content translation module, 307, 326

"Enabled, with translation option", 327
Blue Peak Fanatics website case study, 310
permissions, 329

content type administration form, 28
content type-specific field settings, 91
content types, 26, 83

Review content type (see Review content
type)

Contextual Links module, 449
contributed modules, 10, 46

code repository, 434
contributed modules, updating, 422

458 | Index

core field types, 85
core modules, 10, 19, 44
core view modes, 88
core widget types, 86
Countdown module, 261
cron, 223, 453, 454
cropping images, 154
CSS Injector module, 195, 212

configuration, 216
CSV (comma-separated values) files, 366
custom input forms, 83
custom search pages, 198
Customer and Customer UI modules, 353

D
Dashboard, 23
Dashboard module, 448
data selectors, 384
database servers, 406
Date API module, 235
"Date attributes to collect" settings, 243
Date module, 231, 235–242

date field settings, 239
time zone options, 240

date form elements, 236
field types, 236
submodules, 235

Date Repeat Field module, 237
Decimal field type, 85
default content types, 26
default language setting, 317
Default view mode, 89
default view modes and associated entities, 89
dependencies, 45
Devel Generate module, 281
Devel module, 56
display output configuration, 87
Display Suite module, 228
displays, 118
downloading of modules, 48
Drupal, 1

backward compatibility, 416
command-line implementation, 53
features, 3
files and directories, 408
installation, 405, 410–414

downloading, 407
preinstallation preparations, 405

multisite capability, 410

requirements, 406
right-to-left (RTL) language support, 310
updating, 414

site maintenance mode, 418
status state color codes, 417
Update Status module, 416
update.php script, 419

updating Drupal core, 420
users, 2
versions, 415

Drupal 7, 445–456
administration navigation, 453
administration user interface, 447
automated tests, 456
core image field, 179
cron, 454
database abstraction layer, 455
Field module, 450
image handling modules, 451
module update manager, 451
removed Drupal 6 features, 454
security features, 453
source code, xviii
Text formats, 454
themes, 445
user interface effects, 456

Drupal Answers website, 16
Drupal Commerce add-ons, 357
Drupal Commerce module, 84, 349, 351–357

permissions, 400
product management, 358

Drupal community, 2, 434–439
getting involved, 437

Drupal Community Documentation, 16
Drupal core, 21
Drupal stack, 8
Drupal user groups, 16
Drupal websites, 2
Drupal.org Theming Guide, 73
Drush project, 53

E
editor permissions, 64
enabled and disabled themes, 73
entities, 3, 12, 358
Entity Reference module, 100
Entity translation module, 326
Event content type, 233

access control and permissions, 234

Index | 459

adding date fields, 242
Date module, usage with, 235
location field settings, 234

event management websites, 231
applicable modules, 233
attendance tracking, 233
Aurora Book Club case study, 232
Calendar view of events, 250
event attendees list view, 259
Flag module configuration for event

attendance, 257
upcoming events view, 245

events, 384
extensions, 9

F
feed display type (Views module), 118
Feeds module, 349, 364

bulk-importing product data, 366
CSV file feed importers, 366
importing CSV product data, 370
mapping CSV data to products, 368

Fetcher, 364
field displays, customizing, 102
field formatters for image fields, 157
Field Group module, 195, 199
Field module, 81, 83, 450

display settings, 214
Field Permissions module, 147
field translation, 335
field types, 85
Field UI module, 81, 84
field-specific field settings, 90
fields, 13

reusing, 90
fields and available field formatters, 89
File Entity module, 84, 168
File field type, 85
File module, 81, 83, 451
File widget, 86
filters, 180

filter order, 183
finding modules, 425
Fivestar module, 193, 195, 198

permissions for ratings, 212
rating widgets, 209

Flag Actions module, 257
Flag module, 231, 233, 252–261

configuration for event attendance, 257

settings options, 254
Flag relationship settings, 259
Flags contextual filter settings, 260
Float field type, 85
formatters, 89
forms, 83
Forum module, 308, 309
front page, 14, 29
Full Calendar module, 261
Full comment view mode, 89
Full content view mode, 89

G
Garland theme, 75
Getting Started Guide, 16
global field settings, 91
Global flag option, 254

H
Hojtsy, Gábor, 326
httpd.conf, 410

I
iCalendar, 250
Image field type, 85
Image module, 149, 451

image styles (see Image styles)
Image styles, 152

creating, 160
image quality settings, 163
scaling styles, 162
thumbnail scale and crop effect settings,

162
crop, 154
desaturate, 155
main page, 153
manually viewing, 158
resize, 155
rotate, 155
scale, 156
scale and crop, 156
style names, 153
troubleshooting, 158

Clean URLs, 158
GD image library, 159

using, 157
field formatters, 157

Image styles formatter, 89

460 | Index

Image Styles module, 451
Image widget, 86
implementation notes, 21
importers, 364
install.php, 409
installed languages table, 318
instance-specific field settings, 90
Integer field type, 85
interface translation, 310–314, 321–326

Locale module, 311–314
using, 321

Localization client module, using, 323
internationalization (i18n), 307
Internationalization module, 308, 310, 332–

345
content selection, 336
content types, 339
dependency on Strings module, 333
forums, 342
module helpers, 334
site-wide language-dependent variables,

333
site-wide variables, 336
taxonomy, 342

issue queues, 431
issue queue cleanup, 438

J
job application content type, 108–113

completed appearance, 110
job node reference field settings, 109
permissions, 110

job content type, 92–99
arranging field order, 103
completed appearance, 101
display output, 104
permissions, 99
Teaser display settings, 107

job posting websites, 92–99
adding reference fields, 100

field order, 103
Applications view, 134–146
customizing field displays, 102
Epic University job posting case study, 82
job application types, 108–113
job content types, 92–99
Jobs view, 125–134
Views module, 124–146

Jobs view, 125–134

available positions view configuration, 133
configuration values, 125
contextual filters, 131
fields, 127
individual field configuration, 128
preview, 129

jQuery UI, 456

K
Knowledge Base, 329

L
Language icons module, 345
language switcher, 319
Language switcher dropdown module, 346
language switching, 312
"Limit allowed HTML tags" filter, 181
Line item and Line item UI modules, 355
link rot, 275
List field types (float, integer, and text), 85
Locale module, 307, 309, 310–319

account page language settings, 313
interface translation, 311

using, 321
language switcher block, 319
language switching, 312
localized installers, 313
translation, 311

localization (l10n), 307
Localization client module, 308, 309, 320

interface translation using, 323
Localization update module, 307, 309, 311
Localized Drupal Distribution, 314
Long Text and Summary field type, 85
Long Text field type, 85

M
Main menu, 32
MAMP, 407
Manage Display settings, 88
Management menu, 32
manual spam prevention tools, 68
Media browser, 166
media files

integration of media with content, 179
media files, displaying, 174
Media Internet Sources module, 189
media management, 149–168

Index | 461

in older Drupal versions, 164
modules, 149

media management websites, 150
Band Wagon website case study, 150
content editing, 177
integration of media with content, 179
media files, displaying, 174
posting videos, 191
Review content type, 168–177
WYSIWYG editor, setup, 183

Media module, 149, 151, 164–168, 189
File entity module, 168
File field, extension to, 165
filter, 180
user permissions, 172

media provider modules, 190
Media: YouTube module, 149, 189
Menu Block module, 33
Menu module, 19
menu translation, 345
merchant accounts, 388
moderation states, 295
Module Filter module, 20, 49
modules, 2, 3, 8, 9, 19, 44–53

AdSense module, 228
Advanced help module, 115
Amazon modules, 203–209
assessing modules, 429–434

code, 434
issue queues, 431
maintainer activity, 435
project pages, 429
user profiles, 436

Automatic Node Titles module, 147
Block module, 19
Blog module, 14, 228
Book module, 309
CCK module, 83
choosing for tasks, 425
coders, 434
Comment module, 19, 30
Contact module, 20

contact form, 68
permissions, 71

Content Access module, 147
Content translation module, 310, 326, 335

permissions, 329
Contextual Links module, 449
core versus contributed modules, 10

CSS Injector module, 212
injector configuration, 216

Dashboard module, 448
Date API module, 235
Date module, 235

data form elements, 236
date field settings, 239
field types, 236

Date Repeat Field module, 237
dependencies, 45
Devel Generate module, 281
Devel module

Switch user block, 56
Display Suite module, 228
downloading, 48
Drupal Commerce module, 84
Entity Reference module, 100
Entity translation module, 326
Field Group module, 199
Field module, 81, 83, 450

display settings, 214
Field Permissions module, 147
Field UI module, 81, 84
File Entity module, 84
File module, 81, 451
finding and installing modules, 46
finding modules, 425–428

browse module listings, 426
case studies, 427
Drupal.org forums, 427
keyword searches, 427
local user groups, 427
Planet Drupal, 428
third-party websites, 428

Fivestar module, 193, 198
permissions for ratings, 212
rating widgets, 209

Flag module, 233
Forum module, 309
hands-on example, 49
Image module, 149, 159, 451

(see also Image styles)
Image Styles module, 451
Internationalization module, 310, 332–345
Language icons module, 345
Language switcher module, 346
Locale module, 309, 310–319
Localization client module, 309, 320

interface translation using, 323

462 | Index

Localization update module, 309
Media Internet Sources module, 189
Media module, 149, 151, 164–168, 189

filter, 180
media provider modules, 190
Media: YouTube module, 149, 189
Menu Block module, 33
Menu module, 19
Module administration page, 45
Module filter, 20
Module Filter module, 49
module releases, 47
modules directory, 409
Multilingual Blocks module, 335
Multilingual content module, 335
Multilingual Menu module, 334
Multiping module, 455
Node module, 19, 21
node properties definitions, 12
Node Reference module, 100
Node Reference URL Widget module, 147
Overlay module, 449
Path module, 19
Path translation module, 335
Pathauto module, 273–276
Profile module, 455
project pages, 47
RDF module, 453
Recipe module, 228
Redirect module, 275
References module, 82, 100

reference fields, adding, 100
use in making content types, 92

Relation module, 100
removing, 48
Search module, 222–223
Service Links module, 193
Signup module, 233
Taxonomy Menu module, 268
Taxonomy module, 14, 266
Testing module, 456
Throttle module, 455
Token module, 276
Translation overview module, 346
Translation Synchronization module, 335
Transliteration module, 346
Update Status modules, 416
updating contributed modules, 422
Upload module, 455

User module, 19
User Reference module, 100
Views module, 15, 81, 113–124

wizard for building views, 115
Voting API module, 198
Workbench Access module, 284–295
Workbench Moderation module, 295–303
Workbench suite, 263, 265, 278
WYSIWYG module, 149

mod_rewrite Apache extension, 158
Mollom, 66
Multilingual Blocks module, 335
Multilingual content module, 335
Multilingual Forum module, 335
Multilingual Menu module, 334
multilingual websites, 307

Blue Peak Fanatics website case study, 308
Content translation module, 326
default language setting, 317
installing translations, 316
interface translation, 310
Internationalization module, 332
language detection and selection, 318
language switching, 312
Locale module, 311

using for interface translation, 321
Localization client module, 320

using for interface translation, 323
menu translation, 345
right-to-left languages, 310
translating content, 328

multilingual content, 328
Multiping module, 455
multisite capability, 410
My Workbench page, 279
MySQL, 406

N
Navigation menu, 32
negotiation method for language settings, 313
News sections vocabulary settings, 269
node access modules, 285
Node module, 19, 21
Node Reference module, 100
Node Reference URL Widget module, 147
Nodequeue module, 304
nodes, 11, 26

Body fields, 27
Title fields, 26

Index | 463

O
online stores, 349

access control, 400
bulk-importing product data, 366
checkout workflow, 396
creating product catalogs, 374
creating sample products, 362
payment method configuration, 393
product displays, 373
Products and Product types, 359
shopping cart, 395
storefront and shopping cart, building, 371
Sweet Tees website case study, 350
taking credit card payment, 388
tax processing with the Rules module, 385
testing, 397

OpenLayers module, 262
Order and Order UI modules, 355
Overlay module, 449

P
page display type (Views module), 119
pages, 27

regions, 34
Parser, 364
Path aliases, 273
Path module, 19
path naming conventions, 273
Path translation module, 335
Pathauto module, 263, 273–277

managing aliases, 275
Pathauto patterns, 274
pattern settings, 276
updating URL aliases, 277
URL pattern configuration, 276

Payment and Payment UI modules, 355
payment gateway, 388
PayPal, 389
permissions, 21, 53

Contact module permissions, 71
PHP permissions, risks of, 55
Product review content type, 201

permissions configuration, 62–66
personal language settings, 313
photo uploads, 151
PHP, 8
PHP user permissions, risks, 55
plug-in modules, 2

plug-ins, 9
.po file extension, 311
pop-up calendar, 237
portable object files, 311
Price field, 358
Price module, 357
Processor, 365
Product and Product UI modules, 356
product catalogs, 374
product displays, 373
Product Pricing and Product Pricing UI

modules, 357
Product Reference fields, 372

reference field properties, 373
Product Reference module, 357
Product review content type, 199

adding product data from Amazon, 203
display settings, 215
setting permissions, 201

product review websites, 195–213
adding Amazon fields, 204
adding product fields, 206
adding ratings, 210
building a product listing page, 217
custom searching, 198
Field module display settings, 214
making product lists searchable, 224
Product Finder settings, 219
Product Finder view field configuration

settings, 220
Product Finder view table style options,

220
product information, 197
product rating fields, 210
product ratings, 197
Product review content type (see Product

review content type)
Products view vote results relationships

settings, 219
rating and evaluation modules, 209
reader rating fields, 211
requirements, 199
Search filter settings, 224
search permissions, 225
Super Duper Chefs website case study, 196–

228
Views field output, rewriting, 226

Product SKU field, 358
Products and Product Types, 358–364

464 | Index

creating sample products, 362
product type configuration, 359
product type fields, 358
setup, 359

Profile module, 455
project pages, 47
published and unpublished content, 295
publishing workflow management, 263

content access control, 266
content management tools, 265
editorial workflow, 266

R
rating and voting plug-in modules, 197
Recent log entries, 24
Recipe module, 228
Redirect module, 275
reference fields, adding, 100–107

field order, 103
References module, 82, 100

reference fields, adding, 100
use in making content types, 92

regions, 34
Relation module, 100
Relations fieldset, 270
releases, 47
reports section, Administrative interface, 24
resizing images, 155
Resource Description Framework (RDF)

module, 453
Résumé file field settings, 109
Résumé title field settings, 110
Review content type, 168–177

content display settings, 175
file field settings, 169
permissions, 172
small display settings, image file type, 176
Tags field settings, 170
Teaser display settings, 175

Revisioning module, 68
right-to-left languages, support in Drupal, 310
roles, 21, 53
rotating images, 155
RSS view mode, 89
Rules module, 349, 383–387

rule processing logic, 384

S
scaling and cropping images, 156
scaling images, 156
Schrauwen, Benjamin, 66
scripts, 6
Search index view mode, 89
Search module, 195, 222–223
Search result view mode, 89
Secure Pages module, 402
security

filters, 181
Text formats and security, 179

select list, 237
Select list widget, 86
server-side includes (SSI), 6
Service Links module, 193
settings.php, 410
Seven theme, 76, 445
shopping cart, 395
Signup module, 233
Single on/off checkbox, 86
site configuration example, 25
site navigation, managing, 40
site themes, 34
site-wide language-dependent variables, 333
sites directory, 409
spam prevention, 66
SQL, 115
SSI (server-side Includes), 6
stack, 8
standard and minimum installation profiles,

452
Stark theme, 74, 447
states, 295
Status field, 358
Status reports, 24
stream wrappers, 190
Strings module, 333
Structure administration, 24
summaries, 27
Summary fieldset, 214
Support forums, 16
supporting content types, 15
Sweaver module, 78

T
t() function, 311
Tax and Tax UI modules, 357

Index | 465

Tax module, 385
tax rule forms, 387
Taxonomy Menu module, 268
Taxonomy module, 14, 263, 266–272

categorizing content, 269
List versus Term reference, 269
Taxonomy term links, 268

Taxonomy term page view mode, 89
Taxonomy translation, 335
taxonomy types and widgets, 267
Teaser view mode, 89
Term field settings, 271
Term reference field type, 85, 267
Term settings, 270
terms, 267
test users, 56
Testing module, 456
Text area widget, 86
Text area with summary widget, 86
text field, 237
Text field type, 85
Text field widget, 86
Text formats, 28, 179, 454

filters, 180
themes, 3, 24, 34, 71–76

administration theme settings, 76
Blocks and regions, 75
configuration, 73
customizing settings, 77
finding themes, 72
installation, 73
repositories, 72
theme system, 8

themes directory, 409
Third-party integration category, 203
Throttle module, 455
thumbnail generation, 152
Title field, 26, 358
Token module, 274, 276
Tokens, 274
Top Notch Themes, 73
translation, 311, 329
translation function, 311
Translation overview module, 346
Translation Synchronization module, 335
Transliteration module, 346
Troubleshooting FAQ, 16

U
Ubercart module, 351
upcoming events view

block view, 247
configuration values, 246

Update Manager, 48, 451
module installation with, 49

update status color codes, 417
Update Status module, 416
update.php, 409, 419
updating contributed modules, 422
updating Drupal core, 420
Upload module, 455
URL aliases, 270

automating aliases, 276
URL detection method for language settings,

312
User account view mode, 89
user groups, 16
user interface text, 309
User menu, 32
User module, 19
user profiles, 57
user profiles on Drupal.org, 436
User Reference module, 100
user support, 439
user-defined language settings, 313
users, 10, 53

abusive users, 58

V
Variable module, 308
variables, 384
versions, Drupal, 415
video posts, 151
video, posting to websites, 191
view modes, 87, 88
Views Bulk Operations (VBO) module, 304
Views module, 15, 81, 83, 113–124

building queries with, 113
data types, 115
displays, 118
efficiency of views, 122
enabling, 124
interface, 121

contextual filters, 123
field, 122
filter criteria, 122

466 | Index

format, 121
headers, footers, and no results, 124
relationships, 124
sort criteria, 123
Title, 121

italicized fonts, 119
Media browser, 166
overriding default display settings, 119
wizard for building views, 115

Views Slideshow, 193
vocabularies, 267
Voting API module, 195, 198, 209

W
WampServer, 407
web servers, 406
Website Payments Pro (WPP), 389
Website Payments Standard (WPS), 389
websites, 4

scalability issues, 5
weekly deals block settings, 43
widgets, 86–87
wizard for building basic views, 115
Workbench Access module, 263, 278, 284–

295
access control, 284, 290
creating roles and users, 287
Workbench Access sections, 286

assigning editorial access, 286
Workbench Files module, 304
Workbench Media module, 304
Workbench Moderation module, 263, 278,

295–303
configuring state transitions, 300
content activation, 299
default states, 300
managing editorial workflow, 295
moderation permissions, 301
moderation state transitions, 297
moderation states settings, 295

Workbench module suite, 263, 265, 278–281
My Workbench page, 279
permissions, 281
sample content generation, 281
Workbench environment, configuring, 280

WYSIWYG editor, 152
setup, 183

WYSIWYG module, 149
Band Wagon website, 183

X
XAMPP, 407

Index | 467

About the Authors
Angela Byron is an open source evangelist, and has been called a Drupal freak by those
in the know. She got her start as a Google Summer of Code student in 2005 and since
then, she has immersed herself in the Drupal community. Her work includes coding
and reviewing patches, creating and contributing to modules and themes, testing and
providing quality assurance efforts within the project, improving documentation, and
providing user support on forums and IRC. Angela is on the board of directors for the
Drupal Association, and helps drive community growth by leading initiatives to help
get new contributors involved. She is the Drupal 7 core co-maintainer, and leads a
development team of 1,000 contributors whose efforts became Drupal 7.

Addison Berry is deeply involved with Drupal and takes part in many aspects of both
the software and the community. She contributes patches to core Drupal, maintains
several contributed modules, and is active in various mentoring programs such as the
Drupal Dojo group and Google’s Highly Open Participation (GHOP) program. Addi-
son helps maintain the drupal.org website, and is a permanent member of the Drupal
Association General Assembly. Her work focuses on improving Drupal documentation,
and she has worked to provide a wide range of tutorials covering all aspects of Drupal
from community involvement to code.

Bruno De Bondt has been theming and developing with Drupal since 2005, special-
izing in independent media sites. After stumbling upon Drupal while looking for an
open source CMS to build a major Belgian citizen journalism website, he was captivated
with its flexibility and the project’s community. His contributions to Drupal include
documentation and usability testing, with a focus on multimedia, and modules that
improve editorial workflows.

Colophon
The animal on the cover of Using Drupal is a dormouse. Dormice are part of the
Gliridae family and originally come from Africa and Southern Europe. There are many
species of this rodent, but the most popular and common one on the pet market is the
African dormouse. The other known dormice are the “common dormouse” or the “ha-
zel mouse,” and most resemble small squirrels. Their name is derived from the French
word dormir, which means to sleep—significant because dormice hibernate for as long
as six months, or longer if the weather is cool, awaking only briefly to eat food they
stored nearby. During the summer months, they accumulate fat in their bodies, allow-
ing them to hibernate for such long periods of time.

On average, dormice are about four inches long, not including the two-inch bushy tail.
They have rounded ears, large eyes, and thick, soft, reddish-brown fur. Dormice have
an excellent sense of hearing and use a range of different vocalizations to signal each
other. They are very playful, social, and personable animals (more so if you raise them
from a young age). Their playfulness consists of flips, climbing rope, and leaping and

jumping; they are nocturnal, so they play mostly at night. Being left alone may cause
them to become stressed and unhappy, as they thrive on interaction with others.

Dormice feed on fruit, insects, berries, flowers, seeds, and nuts, and they are especially
partial to hazelnuts. They are unique among other rodents because they lack a “cecum,”
a pouch connected to the colon of the large intestine, which is used in fermenting
vegetable matter. Dormice breed once or twice a year and produce an average litter of
four young. Their average lifespan is a somewhat short five years. They are born hairless,
and their eyes don’t open until about 18 days after birth, rendering them helpless at
birth. They become sexually mature after the end of their first hibernation.

The cover image is from an unknown source. The cover font is Adobe ITC Garamond.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Foreword
	Preface
	Audience
	Assumptions This Book Makes
	A Note About the Modules Used in This Book
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	Downloading the Book’s Source Code
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Drupal Overview
	What Is Drupal?
	Who Uses It?
	What Features Does Drupal Offer?

	A Brief History of Content Management
	A Historical Look at Website Creation
	The Age of Scripts and Databases
	The Content Revolution

	How Does Drupal Work?
	Modules
	Users
	Content (Nodes)
	Entities and Fields
	Ways of Organizing Content
	Types of Supporting Content

	Getting Help
	Conclusion

	Chapter 2. Drupal Jumpstart
	Case Study
	Implementation Notes

	Spotlight: Drupal’s Administration Interface
	Hands-On: Changing Administrative Settings
	Spotlight: Content Management
	Content
	Comments
	Navigation
	Blocks

	Hands-On: Content Management
	Creating a Basic Page
	Creating an Article
	Managing Site Navigation
	Configuring Blocks

	Spotlight: Modules
	Module Administration Page
	Finding and Installing Modules
	Removing Modules

	Hands-On: Working with Modules
	Spotlight: Access Control
	Configuring User Access
	User Profiles
	Account Settings
	Handling Abusive Users

	Hands-On: Creating Roles and Users
	Hands-On: Configuring Permissions
	Spotlight: Content Moderation Tools
	Automated Spam Detection
	Manual Spam Prevention Tools

	Hands-On: Contact Form
	Spotlight: Themes
	Finding a Theme
	Theme Installation
	Theme Configuration
	Blocks and Regions
	Administration Theme Setting

	Hands-On: Branding the Site
	Summary

	Chapter 3. Job Posting Board
	Case Study
	Implementation Notes
	Custom input forms
	File uploads
	Listings

	Spotlight: Field and Field UI
	Field Types
	Input Widgets
	Displays, View Modes, and Formatters
	Reusing Existing Fields

	Hands-On: Job Content Type
	Spotlight: References
	Hands-On: Adding a Reference Field
	Hands-On: Customizing Field Display
	Hands-On: Job Application Type
	Spotlight: Views Module
	Data Types
	Displays
	Pieces of a View
	Title
	Format
	Fields
	Filter criteria
	Sort criteria
	Contextual filters
	Relationships
	Header, footer, and no results behavior

	Hands-On: The Views Module
	Jobs View
	Applications View
	Create the view and default display
	Create the Job Tab display
	Create the Applications block display

	Taking It Further
	Summary

	Chapter 4. Media Management
	Case Study
	Implementation Notes
	Photo Uploads
	Posting Videos
	Thumbnail Generation
	WYSIWYG Editor

	Spotlight: Image Styles
	Styles and Effects
	Crop
	Desaturate
	Resize
	Rotate
	Scale
	Scale and crop

	Using an Image Style
	Field formatters
	Manually viewing a styled image

	Troubleshooting Image Styles
	Check Clean URLs
	Check GD library

	Hands-On: Image Styles
	Create Image Styles
	Improve Image Quality

	Spotlight: Media
	Media Files
	Media Browser

	Hands-On: Music Reviews
	Review Content Type
	Displaying Media Files

	Spotlight: Content Editing and Image Handling
	Content Editing
	Integrating Media in Content

	Spotlight: Text Formats and Filters
	Hands-On: Setting Up WYSIWYG
	Set Up and Configuration
	Enabling the Media Filter

	Spotlight: Media Internet Sources
	Hands-On: Posting Videos
	Taking It Further
	Summary

	Chapter 5. Product Reviews
	Case Study
	Implementation Notes
	Product information
	Product ratings
	Custom searching

	Hands-On: Basic Product Reviews
	Creating the Product Review Content Type

	Spotlight: Amazon Module
	What’s Included?
	Locale
	Referral Settings
	Amazon Keys

	Hands-On: Adding an Amazon Field
	Adding the Product Field

	Spotlight: Voting API and Fivestar
	Hands-On: Adding Ratings
	Adding the Product Rating Field
	Adding the Reader Rating Field

	Spotlight: CSS Injector
	Hands-On: Polishing the Presentation
	Setting Field Display Options
	Configuring CSS Injector

	Hands-On: Building a Product List
	Spotlight: The Search Module
	Searching with Views

	Hands-On: Make the Product List Searchable
	Rewriting Views Field Output
	Taking It Further
	Summary

	Chapter 6. Event Management
	Case Study
	Implementation Notes
	Event Management
	Attendance Tracking

	Hands-On: First Steps
	Creating an Event Content Type
	Access Control

	Spotlight: Date Module
	Date Submodules
	Date Field Types
	Date Form Elements
	Date Field Settings

	Hands-On: Adding Dates
	Add the Date Field

	Hands-On: Upcoming Events View
	Spotlight: Calendar Module
	Calendar View Type
	iCal Integration

	Hands-On: Calendar View
	Spotlight: Flag Module
	Flag Settings
	Flag Actions Module

	Hands-On: Flag Configuration
	Hands-On: Attendee View
	Taking It Further
	Summary

	Chapter 7. Managing Publishing Workflows
	Case Study
	Implementation Notes
	Content management tools
	Content access control
	Editorial workflow

	Spotlight: Taxonomy
	Vocabularies and Terms
	Taxonomy Term Links

	Hands-On: Categorizing Content
	Spotlight: Pathauto
	Path Aliases
	Pathauto Patterns

	Hands-On: Automating URL Aliases
	Spotlight: Workbench
	My Workbench

	Hands-On: Creating Editorial Work Spaces
	Hands-On: Generating Sample Content
	Spotlight: Workbench Access
	Using Hierarchies to Define Access Control
	Workbench Access sections

	Assigning Editorial Access to Workbench Access Sections

	Hands-On: Workbench Access
	Setting Up Access Control with Workbench Access

	Spotlight: Workbench Moderation
	Editorial Workflow Management with Workbench Moderation

	Hands-On: Workbench Moderation
	Taking It Further
	Summary

	Chapter 8. Multilingual Sites
	Case Study
	Implementation Notes
	Forum Discussions
	Knowledge Base
	Translating User Interface Text
	Translating User-Generated Content

	Spotlight: Interface Translation
	Locale
	Translations
	Interface translation
	Language switching
	Localized installer

	Hands-On: Installing a Translation
	Hands-On: Configuring Locale Features
	Language Detection and Selection
	Language Switcher

	Spotlight: Localization Client
	Hands-On: Translating the Interface
	Using the Locale Module
	Using the Localization Client

	Spotlight: Content Translation
	Hands-On: Translating Content
	Multilingual Content
	Translation

	Spotlight: Internationalization
	Multilingual Content Selection
	Strings
	Site-Wide Language-Dependent Variables
	Module Helpers
	Paths
	Synchronization

	Hands-On: Internationalization Features
	Content Selection
	Site-Wide Variables
	Content Types
	Taxonomy
	Forums

	Menu Translation

	Taking It Further
	Summary

	Chapter 9. Online Store
	Case Study
	Implementation Notes

	Spotlight: Drupal Commerce
	Commerce and Commerce UI
	Cart
	Checkout
	Customer and Customer UI
	Order, Order UI, Line Item, and Line Item UI
	Payment and Payment UI
	Product and Product UI
	Product Reference
	Price, Product Pricing, and Product Pricing UI
	Tax and Tax UI
	Additional Drupal Commerce Add-Ons

	Spotlight: Managing Products with Drupal Commerce
	Products and Product Types

	Hands-On: Products and Product Types
	Initial Setup Tasks
	Configuring Product Types
	Creating Sample Products

	Spotlight: Feeds Module
	Hands-On: Bulk-Importing Product Data
	Creating a Feed Importer for CSV Files
	Mapping CSV Data to Drupal Commerce Products
	Importing CSV Product Data

	Spotlight: Building the Storefront and Shopping Cart
	Hands-On: Product Displays
	Hands-On: Creating a Product Catalog
	Spotlight: Rules Module
	Hands-On: Taxes
	Spotlight: Accepting Credit Card Payments Online
	Hands-On: PayPal
	Hands-On: Configuring a Payment Method
	Hands-On: Processing Orders
	Shopping Cart
	Checkout Process
	Placing a Test Order
	Access Control

	Taking It Further
	Summary

	Appendix A. Installing and Upgrading Drupal
	Before You Begin Installation
	Gathering Requirements
	Downloading Drupal
	Drupal’s Files and Directories

	Installing Drupal
	Keeping Drupal Up-to-Date
	Version Numbers
	Update Status Module
	Site Maintenance Mode
	The update.php Script

	Updating Drupal Core
	Updating Contributed Modules
	References

	Appendix B. Choosing the Right Modules
	Finding Modules
	Browse Module Listings
	Keyword Search
	Local User Groups
	Similar Module Review Group
	Drupal.org Forums
	Case Studies
	Planet Drupal
	Third-Party Websites

	Assessing a Module’s Health
	Project Pages
	Issue Queues
	Code

	The People Behind the Code
	Maintainer Activity
	User Profiles

	Getting Involved
	Summary
	References

	Appendix C. Modules and Themes Used in This Book
	Chapter 1, Drupal Overview
	Chapter 2, Drupal Jumpstart
	Chapter 3, Job Posting Board
	Chapter 4, Media Management
	Chapter 5, Product Reviews
	Chapter 6, Event Management
	Chapter 7, Managing Publishing Workflows
	Chapter 8, Multilingual Sites
	Chapter 9, Online Store

	Appendix D. Major Changes Between Drupal 6 and 7
	New Features in Drupal 7
	New Themes
	Administration User Interface
	Fields
	Image Handling
	Update Manager
	Other Nips and Tucks

	Changes in Drupal 7
	Administration Navigation
	cron
	Input Formats

	Features Removed from Drupal 7
	Under-the-Hood Changes
	Resources

	Index

